五年级数学竞赛模拟试卷及答案(一) - 7
更新时间:2024-04-29 21:28:01 阅读量: 综合文库 文档下载
- 五菱宏光推荐度:
- 相关推荐
五、六年级数学竞赛题五套及答案 五、六年级数学竞赛模拟试卷及答案(一) 家校通整理 1. 计算。
(1)甲、乙两数之和加上甲数是220,加上乙数是170,求甲、乙两数之和。
(2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式。 2. 填空。
(1)在下面的()内填上适当的数字,使得三个数的平均数是140。
( ),( )8,( )27
(2)按规律填数 5,20,45,80,125,_____________,245。
3. 一个台阶图的每一层都由黑色和白色的正方形交错组成。且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少?
4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆?
5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同。分得苹果个数最多的小朋友,至少得到几个苹果?
6. 书架有甲、乙、丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层。这时,甲、乙、丙三层的书同样多。求原来三层各有多少本书?
7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡。
8. 在下面的数表中,第100行左边的第一个数是什么?
5 6
4 7
3 8
2 9
13 12 11 10
14 15 16 17 21 20 19 18
_______________________________________
9. 两个孩子逆着自动扶梯行驶的方向行走,男孩每秒钟可走3级梯级,女孩每秒钟可走2级梯级,结果从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,问扶梯有多少级梯级?
10. 有一个五位奇数,将这个五位奇数中的所有2都换成5,所有5也都换成2,其它数保持不变,得到一个新的五位数,若新五位数的一半比原五位数大1,那么原五位数是多少?
试题一答案 1. (1)甲、乙两数之和加上甲数是220,加上乙数是170,求甲、乙两数之和。 据题意
2甲+2乙=220 (1) 甲+2乙=170 (2) (1)式+(2)式得到 3甲+3乙=390 所以,甲、乙两数之和为 390÷3=130
(2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式。
因为商增加了3,可求得除数 (151-115)÷3=36÷3 =12
所以,所求的除式为: 115÷12=9……7
2. (1)在下面的( )内填上适当的数字,使得三个数的平均数是140。 (5),(8)8,(3)27
三数的平均数是140,则三数之和: 140×3=420 第三个数应为327 420-327=93
显然,第一个数是5,第二个数是88。 (2)按规律填数
5,20,45,80,125,180,245。 20=5+15
45=20+25 80=45+35 125=80+45 所以下一个数应为: 125+55=180
3. 一个台阶图的每一层都由黑色和白色的正方形交错组成。且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少?
观察图形可知,每层的白色正方形的个数等于层数减1,所以,第2000层中应有1999个白色正方形。
4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆?
假设48辆车都是汽车 应有车轮数为 48×4=192
所以,摩托车的数量为 (48×4-172)÷(4-1) =20(辆)
汽车有48-20=28(辆)
5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同。分得苹果个数最多的小朋友,至少得到几个苹果?
所有人的苹果个数应当尽量接近,10个小朋友先分别得到:1,2,3……10个苹果,剩下的苹果除以10得 [100-(1+2+3+……+10)]÷10 =45÷10=4……5
所以,再给每个小朋友增加4个苹果,后5个小朋友每人再增加1个苹果,10个小朋友的苹果个数应分别为: 5,6,7,8,9,11,12,13,14,15。 所以,得到苹果最多的小朋友至少得15个。
6. 书架有甲、乙、丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层。这时,甲、乙、丙三层的书同样多。求原来三层各有多少本书?
列表,用倒推法(从下往上填) 初始状态 甲给乙后 甲 88 32 乙 56 112 丙 48 48 乙给丙后 丙给甲后 32 64 64 64 96 64 甲、乙、丙三层原有书分别为:88本、56本、48本。
7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡。
各位数字之和为34,小于10000的数只能是四位数。
所以,各鸡场养鸡的只数,是只能由9,9,9,7或9,9,8,8组成的四位数,据题意各不相同,知10个数分别为:
7997,9799,9979,9997,8899,8989,8998,9889,9898,9988。 它们的和为:94435(只)。
8. 在下面的数表中,第100行左边的第一个数是什么? 5 6
4 7
3 8
2 9
13 12 11 10 14 15 16 17 21 20 19 18
__________________________________________________ 因为每行有4个数,所以前99行共有: 99×4=396(个)数
又因为这个数表中开始的最小的一个数为2,所以,依数列的排列规律可知,第100行的左边第1个数为: 396+1+1=398
9. 两个孩子逆着自动扶梯行驶的方向行走,男孩每秒钟可走3级梯级,女孩每秒钟可走2级梯级,结果从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,问扶梯有多少级梯级?
男孩100秒走了 3×100=300(级) 女孩300秒走了 2×300=600(级) 说明自动扶梯每秒走 (600-300)÷(300-100) =1.5(级) 所以自动扶梯共有
(3-1.5)×100=150(级)
10. 有一个五位奇数,将这个五位奇数中的所有2都换成5,所有5也都换成2,其它数保持不变,得到一个新的五位数,若新五位数的一半比原五位数大1,那么原五位数是多少?
首先,原数的万位数字显然是2,新数的万位数字则只能是5,
其次,原数的千位数字必大于4,否则乘2不进位,但百位数字乘2后至多进1到千位,这样千位数字只能为9。
依次类推得到原数的前四位数字为2,9,9,9。 又个位数字只能为奇数,经检验,原数的个位数字为5。 所以,所求的原五位奇数为29995。
五、六年级数学竞赛模拟试卷及答案(二)
1. 列式计算:
(1)(294.4-19.2×6)÷(6+8) (2)12.5×0.76×0.4×8×2.5
2. (1)二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么?
(2)1990年6月1日是星期五,那么,2000年10月1日是星期几? 3. 一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值?
4. 现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来。
5. 有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家? 6. 在桌子上有三张扑克牌,排成一行,我们已经知道:
(1)k右边的两张牌中至少有一张是A。 (2)A左边的两张牌中也有一张是A。 (3)方块左边的两张牌中至少有一张是红桃。 (4)红桃右边的两张牌中也有一张是红桃。 请将这三张牌按顺序写出来。 7. 将偶数排成下表:
A B C D E
2 4 6 8
16 14 12 10
18 20 22 24
32 30 28 26 ……
那么,1998这个数在哪个字母下面?
8. 在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12
格填7,那么,第8个格子中应填什么数?
97
9. 将自然数1,2,3……15,这15个自然数分成两组数A和B。求证:A或者B中,必有两个不同的数的和为完全平方数。
10. 把一张纸剪成6块,从中任取几块,将每一块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块?说明理由。
试题二答案 1. (1)(294.4-19.2×6)÷(6+8)
=179.2÷14 =12.8
(2)12.5×0.76×0.4×8×2.5 =(12.5×8)×(0.4×2.5)×0.76 =100×1×0.76=76 2.
(1)解:二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么?
设原题为a×b
据题意:(a+12)×b=a×b+60 可得:12×b=60 b=5 同样:(b+12)×a=a×b+144 从而:12×a=144 a=12 ?原来的积为:12×5=60
(2)解:1990年6月1日是星期五,那么,2000年10月1日是星期几?
一年365天,十年加上1992,1996,2000三个闰年的3天,再加上六、七、八、九月的天数,还有10月1日,共 3650+3+30+31+31+30+1 =3776
3776÷7=539……3
1990年6月1日星期五,所以,2000年10月1日是星期日。 3. 一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值?
答:所有的钱共有9元6角。
最小的币值是一角,而有6张,与伍角可以组成一角、二角……九角、一元的所有整角钱数。所以,可以组成从一角到九元六角的所有整角,共96种不同钱数。
4. 现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来。
图解(○)代表棋子):
答案不唯一。
5. 有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家?
解:每家订2份不同报纸,而共订了 34+30+22=86(份) 所以,共有43家。
订中国电视报有34家,那么,设订此报的有9家。
而不订中国电视报的人家,必然订的是北京晚报和参考消息。 所以,订北京晚报和参考消息的共有9家。 6. 在桌子上有三张扑克牌,排成一行,我们已经知道:
(1)k右边的两张牌中至少有一张是A。 (2)A左边的两张牌中也有一张是A。 (3)方块左边的两张牌中至少有一张是红桃。 (4)红桃右边的两张牌中也有一张是红桃。 请将这三张牌按顺序写出来。
解:设桌上的三张牌为甲、乙、丙,由条件(1)k右边有两张牌,所以,甲必是k,且乙、丙中至少有一张是A。 由条件(2),A的左边还有A,那么,必然乙、丙都是A。
同样,可推出,由(4)知:甲为红桃。由(3)得丙为方块,再由(4)即得乙是红桃。 ?三张牌的顺次为:红桃k,红桃A,方块A。 7. 将偶数排成下表:
A B C D E
2 4 6 8
16 14 12 10
18 20 22 24
32 30 28 26 ……
那么,1998这个数在哪个字母下面?
解:由图表看出:偶数依次排列,每8个偶数一组依次按B、C、D、E、D、C、B、A列顺序排。
看A列,E列得到排列顺序是以16为周期来循环的。 1998÷16=124……14
所以,1998与14同列在B列。
8. 在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数?
97
解:设a、b、c、d是任连续四格中的数,据题意: a+b+c=20=b+c+d ?a=d
那么,第1,4,7,10,13格中的数相同,都是9。 同样,第3,6,9,12格中的数都是7。
那么,第2,5,8,11,14格中的数相同,都应为: 20-9-7=4
9. 将自然数1,2,3……15,这15个自然数分成两组数A和B。求证:A或者B中,必有两个不同的数的和为完全平方数。
解:假设A、B两组中都没有不同的两个数的和是完全平方数,我们说明是不可能的。 不妨设1在A组
1+3=4=2,1+15=16=4 ?3,15都在B组 3+6=9=3 6须在A组 6+10=16=4
又得到10应在B组,这时,B组已有两数和为完全平方数了。 10+15=25=5
所以,在A组或B组中,必有两个不相同的数的和为完全平方数。
10. 把一张纸剪成6块,从中任取几块,将每一又块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块?说明理由。
解:设剪成6块后,第一次从中取出k1块,将每一块剪成6块,则多出了5k1块,这时,共有: 6+5k1=1+5+5k1 =5(k1+1)+1(块)
第二次从中又取出k2块,每块剪成6块,增加了5k2块,这时,共有 6+5k1+5k2
22222
=5(k1+k2+1)+1(块)
以此类推,第n次取kn块,剪成6块后共有 5(k1+k2+……+kn+1)+1(块)
因此,每次剪完后,纸的总数都是(5k+1)的自然数(即除以5余1) 1999÷5=399……4
所以,不可能得到1999张纸块。
五、六年级数学竞赛模拟试卷及答案(三)
1. (1)如果a?b表示(a-2)×b,例如3?4?(3?2)?4?4,那么,当a?5?30时,求a的值。
(2)a、b、c是1~9中的不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍? 2. (1)大、小两个长方形对应边的距离是5厘米,如图,两个长方形之间部分的面积是1000平方厘米,求:大长方形的周长。
5
(2)口袋中装有10种不同颜色的珠子,每种都是100个,要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子。
3. 把一根长1米的圆柱形铁棒锯成4段,每段仍是圆柱体,表面积比原来增加了24平方厘米,求,这根铁棒的体积多少立方分米。
4. 恰有两位数字相同的三位数共有多少个?
5. 杨静新买的手表比家里的挂钟每小时快30秒,家里的挂钟每小时比标准时间慢30秒。杨静的手表是快还是慢?一昼夜差多少秒?
6. 将9张面积都是9的图形,放在面积为45的桌面上,(不能超出桌面),能否使其中任意两个图形相互重叠的面积都小于1?
7. 甲、乙两人同时从山脚开始爬山,到达山顶后,就立即下山,他们两人下山的速度都是各自上山速度的2倍。甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰。求:山脚到山顶的距离。
8. 有三块草地,面积分别为4亩、8亩和10亩,草地上的草一样厚,而且生长的一样快,若第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问:第三块草地可供50头牛吃几周?
9. 某工厂生产一种圆盘形玩具。在圆盘正面的圆周上均匀分布安装10个小球,其中3个为红球,7个为白球,如图所示,若两个圆盘都正面朝上,可以圆心对圆心,红球对红球,白球对白球叠放在一起,就算同一种规格。问:这类玩具一共可以有多少种不同的规格?
10. 已知:1×2×3×4×……×1998
n21×a =
其中:21表示有n个21连乘,a是自然数,求n的最大值。
n试题三答案 1. (1)如果a?b表示(a-2)×b,例如3?4?(3?2)?4?4
那么,当a?5?30时,求a的值。
a?5?(a?2)?55a?10?305a?40?a?8
(2)a、b、c是1~9中的不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?
abc?acb?bac?bca?cab?cba?200(a?b?c)?20(a?b?c)?2(a?b?c)?222(a?b?c)
2. (1)大、小两个长方形对应边的距离是5厘米,如图,两个长方形之间部分的面积是1000平方厘米,求:大长方形的周长。
5
设大长方形长为a厘米,宽为b厘米,则小长方形的长为(a-b)厘米,宽为(b-10)厘米 据题意:
ab?(a?10)(b?10)?1000ab?[ab?10a?10b?100]?100010a?10b?1100?a?b?110?大长方形周长为:2(a?b)?220(厘米)
(2)口袋中装有10种不同颜色的珠子,每种都是100个,要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子。
从最不利的情况考虑,他摸出2种颜色的珠子每种100个,剩下8种颜色的珠子每种摸出9个。此时,再摸出1个珠子,无论是剩下的8种颜色的哪一种,都可满足题意。
所以,至少要摸出 100×2+9×8+1 =273(个)
3. 把一根长1米的圆柱形铁棒锯成4段,每段仍是圆柱体,表面积比原来增加了24平方厘米,求,这根铁棒的体积多少立方分米。
锯成4段需锯3次,每锯1次表面积增加两个底面面积。共增加了6个底面积,所以,圆柱底面面积是: 24÷(2×3)=4(平方厘米)
?铁棒的体积是
0.04×10=0.4(立方分米)
4. 恰有两位数字相同的三位数共有多少个? 方法1:
三位数各不相同的有 9×9×8=648(个) 三位数字全相同的有9个
所以,在900个(三位数一共有900个)三位数中,恰有两位数字相同的共有: 900-648-9=243(个) 方法2:
三位数abc a=b≠c 9*9=81 a=c≠b 9*9=81
b=c≠a b=c=0 有9种;b=c≠0 9*8=72
共81+81+9+72=243
5. 杨静新买的手表比家里的挂钟每小时快30秒,家里的挂钟每小时比标准时间慢30秒。杨静的手表是快还是慢?一昼夜差多少秒?
一小时是3600秒,据题意,手表走3630秒,挂钟走3600秒,挂钟走3570秒是标准时间的3600秒。 所以标准时间走3600秒,手表走: 3630÷3600×3570 =3599.75(秒)
所以,一昼夜24小时,手表慢 (3600-3599.75)×24 =6(秒)
6. 将9张面积都是9的图形,放在面积为45的桌面上,(不能超出桌面),能否使其中任意两个图形相互重叠的面积都小于1?
如果能,将9个图形依次编号为1~9号,1号与2~9号重叠的面积小于8,2号与3~9号重叠的面积小于7……,8号与9号重叠的面积小于1。
总重叠面积必小于: 1+2+3+……+8=36
那么,九个图形所占的总面积必大于 9×9-36=45
与题意矛盾,所以不能。
7. 甲、乙两人同时从山脚开始爬山,到达山顶后,就立即下山,他们两人下山的速度都是各自上山速度的2倍。甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰。求:山脚到山顶的距离。
11如果两人下山的速度与他们各自上山的速度相同,题中相应的条件应变为:“甲下山路走了2,乙下山路走了4。” 1因为,甲到山顶时比乙多走了400米,所以,甲下山路走了2,应比乙多走: 1400×(1+2)=600(米)
1而这时乙下山路走了4,知,甲、乙的距离是山路的: 1112-4=4
1即山路的4是600米,所以从山脚到山顶的距离为: 1600÷4=2400(米)
8. 有三块草地,面积分别为4亩、8亩和10亩,草地上的草一样厚,而且生长的一样快,若第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问:第三块草地可供50头牛吃几周?
将第一块草地及牛的头数都扩大到原来的2倍,变为:8亩草地可供48头牛吃6周。对比第二块草地,8亩草地可供36头牛吃12周。设1头牛1周吃的草为1份,则8亩地每周可长草:
(36×12-48×6)÷(12-6) =24(份) 8亩草地原有草:
(36-24)×12=144(份) 由此推知,10亩草地原有草: 144÷8×10=180(份) 每周长草: 24÷8×10=30(份) 可供50头牛吃
180÷(50-30)=9(周)
9. 某工厂生产一种圆盘形玩具。在圆盘正面的圆周上均匀分布安装10个小球,其中3个为红球,7个为白球,如图所示,若两个圆盘都正面朝上,可以圆心对圆心,红球对红球,白球对白球叠放在一起,就算同一种规格。问:这类玩具一共可以有多少种不同的规格?
按两个红球间隔白球的数量分类。
用黑点代表红球,空心点代表白球,最多间隔3个白球的有2种不同规格:
最多间隔4个白球的有4种不同规格:
类似地,最多间隔5个白球的有3种不同的规格,最多间隔6个白球的有2种不同规格。 最多间隔7个白球的有1种规格。 所以,共有不同规格: 2+4+3+2+1=12(种) 10. 已知:1×2×3×4×……×1998
n=21×a
其中:21表示有n个21连乘,a是自然数,求,n的最大值。 21=3×7
分3与7两种情况讨论,用[ ]表示一个数的整数部分。 这1998个因数中,7的倍数有 [1998÷7]=285(个)
就是说有:7×1,7×2,7×3……7×285=1995,共285个,在这285个因数中,是7的倍数的共有: [285÷7]=40(个)
在上面的40个因数中,是7的倍数的有: [40÷7]=5个
所以,原题左式中有质因数7的个数: 285+40+5=330(个)
同样的方法推出,原题左式有质因数3的个数为: 666+222+74+24+8+2 =996(个) 因为996>330
所以,原因中有330个因数21 即n的最大值是330。 32n五、六年级数学竞赛模拟试卷及答案(四)
1. (1)从1~6中选出5个数,填入下式,使得算式的结果尽量大,求出这个结果。
○×(○-○)×(○-○)
(2)49名探险队员过一条小河,只有可乘7人的小皮划艇一个,过一次河需3分钟,全体队员渡到对岸,至少需要多少分钟?
2. (1)在19和91之间插入5个数,使这7个数构成一个等差数列,求这7个数的和。
(2)把1~12,12个自然数填入图中的小圆内,使每边上四个数的和相等,并使这个和最小?最大?
3. 将正六边形分成四个三角形,有几种不同的方法?(通过旋转或翻转可以相互得到的方法,认为是同一种方法)
4. 几位同学一起算他们语文考试的平均分。若赵峰的得分提高8分,则他们的平均分就达到90分。若赵峰的得分降低12分,则他们的平均分只有85分,求他们实际的平均分。
5. 甲、乙二人在登山的台阶上做“石头、剪子、布”的游戏,每次必分出胜负,胜者上5个台阶,负者下3个台阶。他们同时在第50个台阶上开始游戏,玩了25次后,甲的位置比乙的位置高40个台阶,问此时,甲、乙两人各在第几个台阶上?
6. 两个自然数之和为350,把其中的最后一位数字去掉,它就与另一个数相同,求这两个数的差。
7. 食堂管理员带着一笔钱去买肉,如果买牛肉10千克还差6元,如果买猪肉12千克还剩4元。已知每千克牛肉比猪肉贵3元。问管理员带了多少钱?
8. 奋斗小学组织同学到百花山进行野营,路上是步行的,行程每天增加2千米,去时用了4天,回来时用了3天,求学校到百花山的距离是多少千米?
9. 五位数字中各位数字之和为42,且能被4整除的数有几个?把它们写出来。
10. 在给定的2×8的方格表中,第一行的8个方格内,依次写着1,2……8(如下表)。如果再把1~8按适当的次序分别填入第二行的8个方格内,使得每列两数之差(大数减小数)的8个差数两两不同,那么第二行所显示的八位数的最大可能值是什么?
1
2 3 4 5 6 7 8
试题四答题 1. (1)从1~6中选出5个数,填入下式,使得算式的结果尽量大,求出这个结果。
○×(○-○)×(○-○)
要求积最大,须使式中两个差较大,显然应6、5做被减数 6-1=5 5-2=3 积为 5×3=15
而 6-2=4 5-1=4 积为 4×4=16 所以,算式为: 4×(5-1)×(6-2) =4×4×4=64
(2)49名探险队员过一条小河,只有可乘7人的小皮划艇一个,过一次河需3分钟,全体队员渡到对岸,至少需要多少分钟?
7个人划船过河用3分钟,到对岸后须有一人将船划回来,再运7人过去,即往返一次运6人过河,用时6分钟。 49人,要8次过河,但最后不用返回,所以7次返回,共用时 6×8-3=45(分钟)
2. (1)在19和91之间插入5个数,使这7个数构成一个等差数列,求这7个数的和。
在19和91之间插入5个数,使7个数成等差数列,有首项19,末项91,项数7,不须求出插入的5个数是什么,可直接求和
S=(19+91)×7÷2 =110×7÷2 =385
(2)把1~12,12个自然数填入图中的小圆内,使每边上四个数的和相等,并使这个和最小?最大?
注意到,拐角处的4个数属于两边,在求和时各用两次,其余8个数每个只用一次 显然1、2、3、4用两次最小
(1+2+3+4)×2+(5+6+7+8+9+10+11+12) =10×2+68=88
所以,每边四个数之和的最小数为22 9、10、11、12用两次最大
(1+2+3+4+5+6+7+8)+(9+10+11+12)×2 =36+42×2 =120
所以,每边四个数的最大和数为30 找到每边的四个数的和,很容易填出各数 填法不唯一。
1 6 11 4 7 10 12 5 2 8 9 3
9 2 7 12 3 6 8 1 10 4 5 11
3. 将正六边形分成四个三角形,有几种不同的方法?(通过旋转或翻转可以相互得到的方法,认为是同一种方法)
有下面3种不同分法:
4. 几位同学一起算他们语文考试的平均分。若赵峰的得分提高8分,则他们的平均分就达到90分。若赵峰的得分降低12分,则他们的平均分只有85分,求他们实际的平均分。
赵峰的得分提高8分,降低12分,变化是20分,平均分分别为90分和85分,变化是5分,由此看出 20÷5=4(人)
4人的平均成绩,多8分应提高2分,所以实际上他们的平均成绩是 90-2=88(分)
5. 甲、乙二人在登山的台阶上做“石头、剪子、布”的游戏,每次必分出胜负,胜者上5个台阶,负者下3个台阶。他们同时在第50个台阶上开始游戏,玩了25次后,甲的位置比乙的位置高40个台阶,问此时,甲、乙两人各在第几个台阶上?
甲每胜一次,两人相差 5+3=8(个)台阶
甲比乙高40个台阶,说明甲比乙多胜 40÷8=5(次)
共玩了25次,由和、差问题,易得甲胜 (25+5)÷2=15(次) 从而知乙胜10次,推得甲位于 50+5×15-3×10 =50+75-30
=95(级) 乙位于: 50+5×10-3×15 =50+50-45 =55(级)
6. 两个自然数之和为350,把其中的最后一位数字去掉,它就与另一个数相同,求这两个数的差。
化为数字谜
a b c+ a b 3 5 0
a只能是2或3,b+c=10 因此a+b=14,是不可的 所以a不能是2,只能是3 那么b=1,c=9
两数为319和31,其差为319-31=288
7. 食堂管理员带着一笔钱去买肉,如果买牛肉10千克还差6元,如果买猪肉12千克还剩4元。已知每千克牛肉比猪肉贵3元。问管理员带了多少钱?
不妨将题改为买10斤猪肉则剩余 10×3-6=24(元)
买12斤猪肉,多4元,那么1斤猪肉 (24-4)÷(12-10)=10(元) 所以,管理员共带了 12×10+4=124(元)
8. 奋斗小学组织同学到百花山进行野营,路上是步行的,行程每天增加2千米,去时用了4天,回来时用了3天,求学校到百花山的距离是多少千米?
七天的路程,分两部分,前4天,后3天,据题意,每天所走的路程数组成等差数列,设第一天走a千米,以后六天的路程分别为(a?2)、(a?4)、(a?6)、(a?8)、
(a?10)、(a?12)千米,前4天的路程和为(4a?12)千米,后3天的路程和为(3a?30)千米
4a?12?3a?30
可得:a?18
前4天的路程,即是学校到百花山的距离
4a?12?18?4?12?84(千米)
9. 五位数字中各位数字之和为42,且能被4整除的数有几个?把它们写出来。
因为9×5=45,所求的五位数5个数字之和为42,只能有以下情况 (1)99996,这个数能被4整除,当“6”在其它位置时,都不能被4整除。 (2)99978,这5个数字无论怎样排列,所得五位数,都不能被4整除。
(3)99888、98988、89988,被4整除,而其它排列方法组成的五位数都不能被4整除。 综上所述,符合条件的五位数有4个 99996、99888、98988、89988
10. 在给定的2×8的方格表中,第一行的8个方格内,依次写着1,2……8(如下表)。如果再把1~8按适当的次序分别填入第二行的8个方格内,使得每列两数之差(大数减小数)的8个差数两两不同,那么第二行所显示的八位数的最大可能值是什么?
1 2 3 4 5 6 7 8 据题意,差数应为0~7,前4个数若为8、7、6、5,那么后面没有一列数的两数相同即没有差是0,不符合题意。 试算,前4个数是8、7、6、4,无解
前4个数为8、7、5、4时可得后4个数的顺序为1、3、6、2 1 8
2 7 3 5 4 4 5 1 6 3 7 6 8 2 五、六年级数学竞赛模拟试卷及答案(五)
1. 给一本书编页码,一共用了723个数字,那么,这本书有多少页? 2. (1)今天是星期日,经过99天是星期几?
(2)某人驾驶一辆小轿车要作32000千米的长途旅行,除了车上装着四只轮胎,只带了一只备用胎,为了使五只轮胎磨损程度相同,司机有规律地把五只轮胎轮换使用,到达终点时。每只轮胎行驶了多少千米?
3. 甲、乙、丙三人的平均年龄为42岁,若将甲的岁数增加7岁,乙的岁数增大2倍,丙的年龄缩小2倍,则三人岁数相等,求丙的年龄是多少岁?
4. 五个裁判员给一名体操运动员评分,去掉一个最高分和一个最低分,平均得9.58分;去掉一个最高分平均得9.46分,去掉一个最低分平均得9.66分。这个运动员的最高分和最低分相差多少?
5. 五年级有学生76人,其中13个女生与男生的一半参加数学竞赛,剩下的男、女生人数相等,这个年级的男生比女生多几人?
6. 有一个人用140元买了一件外衣、一顶帽子和一双鞋。外衣比帽子贵90元,外衣和帽子共比鞋贵120元。求一双鞋多少元?
7. 有甲、乙、丙三只船,甲船每小时航行6千米,乙船每小时航行5千米,丙船每小时航行3千米。三船同时、同地、同方向出发,环绕周围是15千米的海岛航行,多少小时后,三船再次相会在一起?
8. 汽车里程表表明时速不超过100千米的汽车,已经行驶了15951千米,经过两小时后,里程表上的数字表示从两面读它们是一样的。求汽车的速度。
9. 若干箱货物总重19.5吨,每箱重量不超过353千克。今有载重量为1.5吨的汽车。至少需要多少辆车,才能把这些箱货物一次全部运走?
10. 某学校有13个课外兴趣小组,各组人数如下表。一天下午学校同时举办语文、数学两个讲座,已知有12个小组
2
去听讲座。其中听语文的人数是听数学讲座人数的6倍,还有一个小组在教室里讨论问题,这一组是第几组?
组别 1 人数 2
2 3 3 5 4 7 5 9 6 10 7 14 8 14 9 13 10 17 11 21 12 24 13 24 试题五答案 1. 从1至10有11个数字,从11至100共有181个数字。从101至200共有300个数字。也就是说200页要用数字个数为:
11+181+300=492(个) 由已知,剩下的数字个数为: 723-492=231(个)
每编一页要用3个数字,还可编: 231÷3=77(页) 所以这本书共277页。 2. (1)?99?1(mod7)
?992?12?1(mod7)
又是经过99天,1+1=2,所以,那一天是星期一。
(2)如果不换轮胎,则小轿车的每只轮胎都要行驶32000千米,共有四只轮胎,共行驶: 32000×4=128000(千米)
现在五只轮胎轮换使用,并且要求每只磨损程度相同,就是每只轮胎行驶的里程相同。 128000÷5=25600(千米)
3. 平均年龄为42岁,那么三人年龄和为 42×3=126
设乙的年龄为x岁,则甲的年龄(2x-7)岁,丙的年龄为4x岁。
2(2x?7)?x?4x?1267x?133所以,丙的年龄为
x?19
4x?4?19?76(岁)
4. 据题意,这个运动员应得到5个评分。去掉一个最高分和一个最低分,其余3个的总分是9.58×3=28.74 去掉一个最高分后,其余4个的总分为9.46×4=37.84 去掉一个最低分后,其余4个的总分为9.66×4=38.64 所以,最高分是:38.64-28.74=9.9。 最低分是:37.84-28.74=9.1 它们的差为:9.9-9.1=0.8(分)
5. 设五年级有男生x人,则女生(76-x)人,据题意,列方程
76?x?13?126?2x?x3x?126x2x?42
女生有:76-42=34人 五年级男生比女生多 42-34=8(人)
6. 据题意:三种货物价钱之间的关系: 外衣+帽子+鞋=140 (1) 外衣-帽子=90 (2) 外衣+帽子-鞋=120 (3) 事实上是三元一次的方程组 (1)+(3)
2件外衣+2顶帽子=260
?1件外衣+1顶帽子=130 (4)
由(2)+(3)得 外衣=110(元) 帽子=20(元)
代入(1)得到一双鞋的价钱是 140-110-20=10(元) 7. 甲船追上乙船需要 15÷(6-5)=15(小时) 甲船追上丙船需要 15÷(6-3)=5(小时) 乙船追上丙船需要 15÷(5-3)=7.5(小时) [15,5,7.5]=15
?15小时后三船再次相会。
8. 依题意,汽车的时速小于100千米,但不能小于25千米。 所以两小时后汽车里程表上的数可设为 16a61 当a>0时,最小值为1 16161-15951=210
即汽车两小时行程大于200千米,不符合题意。因此a=0 里程表数字为16061 汽车每小时行驶
(16061-15951)÷2=55(千米)
9. 有人认为19.5÷1.5=13,因此13辆汽车就可以把这些箱货全部运走,这就把题意理解错了。货物是整箱的,每辆车不一定都能满载。
如果这批货物共有65只箱子,共中64只箱子的重量都是301千克,另1只箱子重236千克,那么总重为
301×64+236=19500(千克) 而301×5=1505(千克)
即5只箱子重量为1.505吨超过1.5吨,因此,每辆汽车最多只能装4箱,15辆汽车只能运60只箱子。还有4只301千克的箱子和1只重236千克的箱子。是否需2辆车呢?我们安排一下16辆车就可以了 显然,301×4+236=1440(千克)这不超过1.5吨。
上面只是一种情况,每只箱子的重量只要求不超过353千克,没有其他的限制,我们还要验证一般情况,16辆汽车也能全部运完。
让12辆汽车装到刚刚超过1.5吨,取下最后一只箱子,就不超过1.5吨,那么取下的12只箱子分别装上3辆汽车,每车4箱,4箱总重量不超过 353×4=1412(千克)
这时,15辆车装完原12辆汽车的全部货物,总重量超过1.5×12=18(吨) 且每辆汽车不超过1.5吨,余下的货物不足 19.5-18=1.5(吨)
可以全部装在第16辆汽车上运走。
10. 由于听语文讲座的人数是听数学讲座人数的6倍,因此听讲座的总人数是7的倍数。13个小组的总人数为160人 所以,160减去未听讲座小组之差必为7的倍数,经试算检验只有 160-13=147 符合要求 所以,未听讲座的组是第9组。
正在阅读:
幽门螺杆菌感染与胃癌发生发展的关系05-22
地铁土建工程环境保护措施标准版本04-14
导学案 维护国家主权和抗日战争03-21
长城汽车垂直整合战略分析01-24
可爱的小仓鼠作文800字06-23
这段木头里一定有虫子作文700字07-11
学校与家长安全责任书(1)06-06
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 模拟试卷
- 竞赛
- 答案
- 年级
- 数学
- 课堂教学改革实验方案
- 小企业管理管理2011春网试课程模拟考试用答案
- aspen高级教程第10章 工艺流程模拟 - 图文
- 绿地香树花城C地块快拆架模板施工方案
- 小学二年级阅读训练题
- 医疗软件产品技术审评规范(2017版)
- 北京建筑工程学院试题
- 心理咨询师练习题:神经系统2
- 周兴平说明书
- DLT_5210.1-2012_电力建设施工质量验收及评价规程_第1部分土建工
- 八年级英语月考试题
- 水库防汛抢险应急预案 - 图文
- 2.1计算器·2012数学青岛六三制版四上-课课练 - 图文
- 2009年各地高考题分章汇总
- 软件工程复习资料整理全部
- 武汉市地质灾害防治规划
- 计算机图形学期末考试试题
- (很实用)2018年教育科学出版社六年级下册科学教学计划
- 家风正则民风正,民风正则政风清
- 2016-2021年中国纤维级PP行业市场分析及投资可行性研究报告