现代植物生理学(李合生)课后题答案
更新时间:2023-06-12 11:10:01 阅读量: 实用文档 文档下载
生物
绪论
一、教学大纲基本要求
通过绪论学习,了解什么是植物生理学以及它主要研究的内容、了解绿色植物代谢活动的主要特点;了解植物生理学的发展历史;了解植物生理学对农业生产的指导作用和发展趋势;为认识和学好植物生理学打下基础。
二、本章知识要点
三、单元自测题
1.与其他生物相比较,绿色植物代谢活动有哪些显著的特点?
答:植物的基本组成物质如蛋白质、糖、脂肪和核酸以及它们的代谢都与其他生物(动物、微生物)大同小异。但是,植物本身的代谢活动有一些独特的地方,如:①绿色植物代谢活动的一个最大特点,是它的“自养性”,绿色植物不需要摄取现成的有机物作为食物来源,而能以太阳光能作动力,用来自空气中的C02和主要来自土壤中的水及矿物质合成有机物,因而是现代地球上几乎一切有机物的原初生产者;②植物扎根在土中营固定式生活,趋利避害的余地很小,必须能适应当地环境条件并演化出对不良环境的耐性与抗性;③植物的生长没有定限,虽然部分组织或细胞死亡,仍可以再生或更新,不断地生长;④植物的体细胞具全能性,在适宜的条件下,一个体细胞经过生长和分化,就可成为一棵完整的植株。
因此作为研究植物生命活动规律以及与环境相互关系的科学--植物生理学在实践上、理论上都具有重要的意义,是大有可为的。
2.请简述植物生理学在中国的发展情况。
答:在科学的植物生理学诞生之前,我国劳动人民在生产劳动中已积累并记载下了丰富的有关植物生命活动方面的知识,其中有些方法至今仍在民间应用。
比较系统的实验性植物生理学是20世纪初开始从国外引进的。20世纪20~30年代钱崇澍、李继侗、罗宗洛、汤佩松等先后留学回国,在南开大学、清华大学、中央大学等开设了植物生理学课程、建立植物生理实验室,为中国植物生理学的发展奠定了基础。1949年以后,植物生理的研究和教学工作发展很快,设有中国科学院上海植物生理研究所(现改名为中国科学院上海生命科学研究院植物生理生态研究所);各大地区的植物研究所及各高等院校中,设有植物生理学研究室(组)或教研室(组);农林等部门设立了作物生理研究室(组)。中国植物生理学会自1963年成立后,已召开过多次全国性的代表大会,许多省、市、自治区陆续成立了地方性植物生理学会。中国植物生理学会主办了《植物生理学报》(现改名《植物生理与分子生物学学报》)和《植物生理学通讯》两刊物,北京植物生理学会主办有不定期刊物《植物生理生化进展》。
中国植物生理学会会员现在已发展到5000余人,植物生理学的研究队伍在不断壮大,在有关植物生理学的各个领域里,都开展了工作,有些工作在国际植物生理学领域中已经占有一席之地。目前在中国植物生理学主要研究方向有:① 功能基因组学研究:水稻及拟南芥的突变群体构建,基因表达谱和DNA芯片,转录因子,细胞分化和形态建成。② 分子生理与生物化学研究:光合作用,植物和微生物次生代谢,植物激素作用机理,光信号传导和生物钟,植物蛋白质组学研究。③ 环境生物学和分子生态学研究:植物-昆虫相互作用,植物-微生物相互作用,共生固氮,植物和昆虫抗逆及对环境的适应机制,现代农业,空间生物学。④ 基因工程与生物技术:植物遗传转化技术,优质高抗农作物基因工程,植物生物反应器等。
为了更好地适应当今植物生理学领域的发展趋势,中国植物生理学界的广大科技工作者将继承和发扬老一辈的爱祖国、爱科学的优良传统,将分子、生化、生物物理、遗传学等学科结合起来,在植物的细胞、组织、器官和整体水平,研究结构与功能的联系及其与环境因素的相互作用等,以期在掌握植物生理过程的分子机理,促进农业生产、改善生态环境、促
生物
进人与自然和谐发展的过程中发挥更大的作用。
第一章植物细胞的结构和功能
一、教学大纲基本要求
了解高等植物细胞的特点与主要结构;了解植物细胞原生质的主要特性;熟悉植物细胞壁的组成、结构和功能以及胞间丝的结构和功能;了解生物膜的化学组成、结构和主要功能;了解植物细胞主要的细胞器如细胞核、叶绿体和线粒体、细胞骨架、内质网、高尔基体、液泡以及微体、圆球体、核糖体等的结构和功能;熟悉植物细胞周期与细胞的阶段性和全能性,了解植物细胞的基因组和基因表达的特点。
二、本章知识要点
(一)名词解释
1.原核细胞(prokaryotic-cell) 无典型细胞核的细胞,其核质外面无核膜,细胞质中缺少复杂的内膜系统和细胞器。由原核细胞构成的生物称原核生物(prokaryote)。细菌、蓝藻等低等生物属原核生物。
2.真核细胞(eukaryotic-cell) 具有真正细胞核的细胞,其核质被两层核膜包裹,细胞内有结构与功能不同的细胞器,多种细胞器之间有内膜系统联络。由真核细胞构成的生物称为真核生物(eukayote)。高等动物与植物属真核生物。
3.原生质体(protoplast) 除细胞壁以外的细胞部分。包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。原生质体失去了细胞的固有形态,通常呈球状。
4.细胞壁(cell-wall) 细胞外围的一层壁,是植物细胞所特有的,具有一定弹性和硬度,界定细胞的形状和大小。典型的细胞壁由胞间层、初生壁以及次生壁组成。
5.生物膜(biomembrane) 即构成细胞的所有膜的总称,它由脂类和蛋白质等组成,具有特定的结构和生理功能。按其所处的位置可分为质膜和内膜。
6.共质体(symplast) 由胞间连丝把原生质(不含液泡)连成一体的体系,包含质膜。
7.质外体(apoplast) 由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。
8.内膜系统(endomembrane-system) 是那些处在细胞质中,在结构上连续、功能上关联的,由膜组成的细胞器总称。主要指核膜、内质网、高尔基体以及高尔基体小泡和液泡等。
9.细胞骨架(cytoskeleton) 指真核细胞中的蛋白质纤维网架体系,包括微管、微丝和中间纤维等,它们都由蛋白质组成,没有膜的结构,互相联结成立体的网络,也称为细胞内的微梁系统(microtrabecular system)。
10.细胞器(cell-organelle) 细胞质中具有一定形态结构和特定生理功能的细微结构。依被膜的多少可把细胞器分为:双层膜细胞器如细胞核、线粒体、质体等;单层膜细胞器如内质网、液泡、高尔基体、蛋白体等;无膜细胞器如核糖体、微管、微丝等。
11.质体(plastid) 植物细胞所特有的细胞器,具有双层被膜,由前质体分化发育而成,包括淀粉体、叶绿体和杂色体等。
12.线粒体(mitochondria) 真核细胞的一种半自主的细胞器。呈球状、棒状或细丝状等,由双层膜组成的囊状结构;其内膜向腔内突起形成许多嵴,主要功能进行三羧循环和氧化磷酸化作用,将有机物中贮存的能量逐步释放出来,供应细胞各项生命活动的需要,故有“细胞动力站”之称。线粒体能自行分裂,并含有DNA、RNA和核糖体,能进行遗传信息的复制、转录与翻译,但由于遗传信息量不足,大部分蛋白质仍需由细胞核遗传系统提供,故其只具半自主性。
生物
13.微管(microtubule) 存在于动植物细胞质内的由微管蛋白组成的中空的管状结构。其主要功能除起细胞的支架作用和参与细胞器与细胞运动外,还与细胞壁、纺缍丝、中心粒的形成有关。
14.微丝(microfilament) 由丝状收缩蛋白所组成的纤维状结构,类似于肌肉中的肌动蛋白,可以聚集成束状,参与胞质运动、物质运输,并与细胞感应有关。
15.内质网(endoplasmic-reticulum) 交织分布于细胞质中的膜层系统,内与细胞核外被膜相连,外与质膜相连,并通过胞间连丝与邻近细胞的内质网相连。内质网是物质合成的场所,参与细胞器和细胞间物质和信息的传递。
16.高尔基体(Golgi-body) 由若干个由膜包围的扁平盘状的液囊垛叠而成的细胞器,它能向细胞质中分泌囊泡(高尔基体小泡),与物质集运和分泌、细胞壁形成、大分子装配等有关。
17.核小体(nucleosome) 构成染色质的基本单位,每个核小体包括200bp的DNA片断和8个组蛋白分子。
18.液泡(vacuole) 植物细胞特有的,由单层膜包裹的囊泡。它起源于内质网或高尔基体小泡。在分生组织细胞中液泡较小且分散,而在成熟植物细胞中小液泡被融合成大液泡。在转运物质、调节细胞水势、吸收与积累物质方面有重要作用。
19.溶酶体(lysosome) 是由单层膜包围,内含多种酸性水解酶类的囊泡状细胞器,具有消化生物大分子,溶解细胞器等作用。如溶酶体破裂,酸性水解酶进入细胞质,会引起细胞的自溶。
20.核糖体(ribosome) 细胞内参与合成蛋白质的颗粒状结构,亦称核糖核蛋白体。无膜包裹,大致由等量的RNA和蛋白质组成,大多分布于胞基质中,呈游离状态或附于粗糙型内质网上,少数存在于叶绿体、线粒体及细胞核中。核糖体是蛋白质合成的场所,游离于胞基质的核糖体往往成串排列在mRNA上,组成多聚核糖体(polysome),这样一条mRNA链上的信息可以同时用来合成多条同样的多肽链。
21.核糖核酸(ribose-nucleic-acid) 即含核糖的核酸。它由多个核苷酸通过磷酸二酯键连接而成,细胞内的核糖核酸因其功能和性质的不同,分为三种:①转移核糖核酸(tRNA),在蛋白质生物合成过程中,起着携带和转移活化氨基酸的作用;②信使核糖核酸(mRNA),是合成蛋白质的模板;③核糖体核糖核酸(rRNA),同蛋白质一起构成核糖体,后者是蛋白质合成的场所。
22.胞间连丝(plasmodesma) 穿越细胞壁,连接相邻细胞原生质(体)的管状通道,其通道可由质膜或内质网膜或连丝微管所构成。
23.流动镶嵌模型(fluid-mosaic-model) 由辛格尔和尼柯尔森提出的解释生物膜结构的模型,认为液态的脂质双分子层中镶嵌着可移动的蛋白质,使膜具有不对称性和流动性。
24.细胞全能性(totipotency) 指每一个细胞中都包含着产生一个完整机体的全套基因,在适宜条件下,能形成一个新的个体。细胞的全能性是组织培养的理论基础。
25.细胞周期(cell-cycle) 从一次细胞分裂结束形成子细胞到下一次分裂结束形成新的子细胞所经历的时期。可以分为G1期、S期、G2期、M期四个时期。
26.G1期:第1间隙期(gap1),又称DNA合成前期(pre-synthetic phase),从有丝分裂完成到DNA复制之前的时期,进行rRNA、mRNA、tRNA与蛋白质的合成,为DNA复制作准备。
27.S期 DNA复制期(synthetic phase)。主要进行DNA及有关组蛋白的合成。
28.G2期:第2间隙期(gap2),又称DNA合成后期(post-synthetic phase),指DNA复制完到有丝分裂开始的一段间隙,主要进行染色体的精确复制,为有丝分裂作准备。
29.M期 有丝分裂期(mitosis),按前期(prophase)、中期(metaphase)、后期(anaphase)和
生物
末期(telophase)的次序进行细胞分裂。
30.周期时间(time of cycle) 完成一个细胞周期所需的时间。
31.细胞程序化死亡(programmed cell death) 为了自身发育及抵抗不良环境的需要而主动地结束细胞生命。
(二)缩写符号
1.ER 内质网
2.RER 粗糙型内质网
3.SER 光滑型内质网
4.RNA 核糖核酸
5.mtDNA 线粒体DNA
6.cpDNA 叶绿体DNA
7.TAG 甘油三酯
8.HRGP 富含羟脯氨酸的糖蛋白
9.PCD 细胞程序化死亡
10.G1期 第1间隙期,又称DNA合成前期
11.S期 DNA复制期
12.G2期 第2间隙期,又称DNA合成后期
13.M期 有丝分裂期
(三)知识要点
细胞是生物体结构和功能的基本单位,可分为原核细胞(如细菌、蓝藻)和真核细胞(其他单细胞和多细胞生物)两大类。原核细胞简单,没有细胞核和高度分化的细胞器。真核细胞结构复杂。植物细胞的细胞壁、质体(包括叶绿体)和液泡是其区别于动物细胞的三大结构特征,细胞是由多糖、脂类、蛋白质、核酸等生物大分子和其他小分子等成分所组成的。原生质的物理特性、胶体性质和液晶性质与细胞的生命活动密切相关。
细胞壁由胞间层、初生壁、次生壁所构成,其化学成分主要是纤维素、半纤维素、果胶、蛋白质等物质。细胞壁不仅是细胞的骨架与屏障,而且在物质运输、抗病抗逆、细胞识别等方面起积极作用。胞间连丝充当了细胞间物质运输与信息传递的通道。
磷脂双分子层是组成生物膜的基本结构,其中镶嵌的各种膜蛋白决定了膜的大部分功能。“流动镶嵌模型”是最流行的生物膜结构模型。生物膜是细胞实现区域化的屏障,也是细胞同外界、细胞器间以及细胞器同细胞基质间进行物质交换的通道。此外,生物膜还是生化反应的场所,并具有细胞识别、传递信息等功能。细胞核是细胞遗传与代谢的调控中心。染色体由核酸与蛋白构成,它是核内最重要的结构物质。叶绿体和线粒体是植物细胞内能量转换的细胞器,并有环状DNA及自身转录RNA与翻译蛋白质的体系,被称为第二遗传信息系统。它们与细胞核都具有双层被膜。
微管、微丝、中间纤维等构成了细胞骨架,是植物细胞的蛋白质纤维网架体系,它们在维持细胞形态、保持细胞内部结构的有序性、推动细胞器的运动和物质运输等方面起重要的作用。内膜系统是在结构、功能或发生上有联系的一类亚细胞结构。内质网内接核膜、外连质膜,甚至经胞间连丝与相邻细胞相连,参与细胞间物质运输、交换和信息传递。高尔基体则与质网密切配合,参与多种生物大分子的合成以及膜结构、壁物质与细胞器的组建。 溶酶体与液泡内都富含水解酶,参与细胞内物质的分解和细胞的自溶反应。此外,液泡还具有物质贮藏、调控细胞水分平衡以及参与多种代谢的作用。过氧化物体是光呼吸的场所,而乙醛酸循环体则为脂肪酸代谢所不可少,圆球体为油脂积累和代谢所必需。核糖体是蛋白质合成场所。
在看似无稳定结构的细胞质基质里,进行着一系列复杂而有序的生理生化反应。细胞质
生物
基质、细胞器和生物膜系统协调配合,使细胞的结构和功能达到高度的统一。
细胞代谢有其固有的周期性、阶段性。衰老和死亡是细胞生命活动的必然结果,但程序化死亡却是细胞自身基因调控的主动方式,在细胞分化、过敏性反应和抗病抗逆中有特殊作用。
高等植物细胞具有核、叶绿体、线粒体三个基因组,后两组称为核外基因。基因表达包括转录与翻译两个步骤。转录是RNA的生物合成,翻译是蛋白质的生物合成,这两个过程受到严格的调节控制。
三、重点、难点
(一)重点
1.植物细胞原生质的物理特性、胶体特性和液晶性质。
2.植物细胞壁的结构、组成与功能。胞间连丝的结构和功能。
3.生物膜的流动镶嵌模型、板块镶嵌模型和生物膜的主要功能。
4.细胞核的结构和功能;细胞骨架的结构和功能;细胞内膜系统的结构和功能。
5.植物细胞周期。细胞的全能性。植物细胞的核基因与核外基因。植物细胞基因表达的特点。
(二)难点
1.植物细胞原生质物理与胶体特性。
2.细胞壁的化学组成及壁的形成过程。
3.生物膜的结构与功能的关系。植物细胞基因表达的特点。
四、典型例题解析
例1 保持植物细胞原生质胶体稳定性的因素是 。
A.双电层与疏水基因 B.双电层与水合膜
C.胶粒直径与双电层 D.疏水基团与胶粒直径
解析:植物细胞原生质胶体主要由蛋白质组成,蛋白质表面的氨基与羧基发生电离时可使蛋白质分子表面形成一层带电荷的吸附层。在吸附层外又有一层带电量相等而符号相反的扩散层。这样就在原生质胶体颗粒外面形成一个双电层。双电层的存在对于维持胶体的稳定性起了重要作用。由于所有颗粒最外层都带有相同的电荷,使它们彼此之间不致相互凝聚而沉淀。另外,蛋白质是亲水化合物,在其表面可以吸附一层很厚的水合膜,由于水合膜的存在,使原生质胶体系统更加稳定。
答案:B
例2 叶绿体基质中的可溶性蛋白质大部分是 。
A.ATPase B.淀粉合成酶 C.Rubisco D.脱氢酶
解析:叶绿体基质是进行碳同化的场所,它含有还原C02与合成淀粉的全部酶系,其中1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)占基质总蛋白的一半以上。此外,基质中含有氨基酸、蛋白质、DNA、RNA、脂类(糖脂、磷脂、硫脂)、四吡咯(叶绿素类、细胞色素类)和萜类(类胡萝卜素、叶醇)等物质及其合成和降解的酶类,还含有还原亚硝酸盐和硫酸盐的酶类以及参与这些反应的底物与产物,因而在基质中能进行多种多样复杂的生化反应。 答案:C
例3 植物细胞原生质具有弹性和粘性,一般原生质弹性 ,粘性 的植物,对干旱、低温等不良环境的抗性比较强。
解析:原生质的粘性与弹性随植物生育期或外界环境条件的改变而发生变化。当粘性增加,代谢活动降低时,植物与外界的物质交换减少,抗逆性增强;反之植株生长旺盛,抗逆
生物
性减弱。原生质的弹性与植物抗逆性也有密切关系。弹性越大,则植物对机械压力的忍受力也越大,对不良环境的适应性也增强。因此,凡原生质粘性高、弹性大的植物,它对干旱、低温等不良环境的抗性强。
答案:大,高
例4 从细胞壁中的蛋白质和酶的发现,谈谈对细胞壁的功能的认识。
解析:长期以来细胞壁被认为是界定原生质体的僵死的“木头盒子”,起被动的防御作用。随着研究的深入,大量蛋白质尤其是几十种酶蛋白在细胞壁中被发现,使人们改变了传统观念,认识到细胞壁是植物进行生命活动不可缺少的部分。它至少具有以下生理功能:①维持细胞形状,控制细胞生长。细胞壁增加了细胞的机械强度,这不仅有保护原生质体的作用,而且维持了器官与植株的固有形态。②物质运输与信息传递。细胞壁涉及了物质运输,参与植物水势调节,另外细胞壁也是化学信号(激素等)、物理信号(电波、压力等)传递的介质与通路。③代谢功能。细胞壁中的酶类广泛参与细胞壁高分子的合成、转移与水解等生化反应。④防御与抗性。细胞壁中的寡糖素能诱导植物抗毒素的形成;伸展蛋白除了作为结构成分外,还有防御和抗病抗逆的功能。⑤识别反应。如花粉的外壁蛋白和柱头表面的亲水蛋白质膜参与了授粉受精过程中的识别反应;豆科植物根细胞与根瘤菌之间的识别反应等。 例5 你怎样看待细胞质基质与其功能的关系?
解析:细胞质基质也称为细胞浆,是富含蛋白质(酶),具有一定粘度,能流动的透明物质,是细胞重要的结构成分。很多代谢反应都在细胞质基质中进行,如糖酵解、磷酸戊糖途径、脂肪酸合成、光合细胞内蔗糖的合成等。细胞质基质还为细胞器的实体完整性提供所需要的离子环境,供给细胞器行使功能所必需的底物与能量。另外细胞基质是流动的,能进行环流或穿梭运动,这样有利于各细胞器与基质间进行物质、能量交换与信息传递。
第二章 植物的水分生理
一、教学大纲基本要求
了解水的物理化学性质和水分在植物生命活动中的作用;了解水的化学势、水势的基本概念、植物生理学中引入水势的意义;了解植物细胞的水势的组成、溶质势、衬质势、压力势等的概念及其在植物细胞水势组成中的作用,了解并初步学会植物组织水势的测定方法;了解植物根系对水分吸收的部位、途径、吸水的机理以及影响根系吸水的土壤条件;了解植物的蒸腾作用的生理意义和气孔蒸腾是蒸腾的主要方式、蒸腾作用的指标、测定方法以及适当降低蒸腾速率的途径;了解植物体内水分从地下向地上部分运输的途径和速度、水分沿导管上升的机制;作物的需水规律、合理灌溉指标及灌溉方法以及发展节水农业促进水资源持续利用的重要性。
二、本章知识要点
(一)名词解释
1.水分代谢(water metabolism) 植物对水分的吸收、运输、利用和水分散失的过程。
2.自由水(free water) 细胞组分之间吸附力较弱,可以自由移动的水。
3.束缚水(bound water) 与细胞组分紧密结合不能自由移动、不易蒸发散失的水。
4.表面张力(surface tension) 处于界面的水分子均受着垂直向内的拉力,这种作用于单位长度表面上的力,称为表面张力。
生物
5.化学势(chemical potential,μ) 每偏摩尔物质所具有的自由能。用希腊字母μ表示。可用来描述体系中组分发生化学反应的本领及转移的潜在能力。如果物质带电荷或电势不为零时的化学势称为电化学势(electrochemical potential)。物质总是从化学势高的地方自发地转移到化学势低的地方,而化学势相等时,则呈现动态平衡。
6.水的化学势(water chemical potential,μW),水的化学势的热力学含义是:当温度、压力及物质数量(水分以外)一定时,由水(摩尔)量变化引起的体系自由能的改变量。水的化学势之差,可用来判断水分参加化学反应的本领或两相间移动的方向和限度。
7.水势(water potential) 每偏摩尔体积水的化学势差。用Ψw表示。Ψw=(μW-μoW)/Vw,m,即水势为体系中水的化学势与处于等温、等压条件下纯水的化学势之差,再除以水的偏摩尔体积的商。用两地间的水势差可判别它们间水流的方向和限度,即水分总是从水势高处流向水势低处,直到两处水势差为O为止。
8.偏摩尔体积(partial molal volume) 在一定温度、压力和浓度下,1 摩尔某组分在混合物中所体现出来的体积,称为该组分在该条件下的偏摩尔体积。偏摩尔体积的单位是m3·mol-1。
9.帕斯卡(pascal,Pa) 亦称帕,法定压强单位,也是表示水势的单位。1帕斯卡相当于每平方米一牛顿
10.兆帕斯卡(megapascal,Mpa) 兆帕,1MPa=106Pa=10bar=9.87atm 。
11.巴(bar) 压强单位,1 bar =0.987atm =106达因/厘米2,1毫巴等于0.75毫米水银柱的压力,由于bar不是法定的计量单位,已废弃不用。
12.水的摩尔分数(molar numeric of water,NW) 表示水在水溶液中的含量,NW=水的摩尔数/(水的摩尔数 + 溶质的摩尔数),NW大表示水溶液中水分含量高,溶质含量少,水势高。纯水的NW≈55.1mol/dm3。
13.渗透作用(osmosis)溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,就是指水分子从水势高处通过半透膜向水势低处扩散的现象。渗透作用所形成的流体静压叫渗透压。
14.半透膜(semipermeable membrane) 也叫选择透性膜,是只容许混合物(溶液、混合气体)中的一些物质透过,而不容许另一些物质透过的薄膜。
15.溶质势Ψs(solute potential,Ψs) 由于溶质颗粒的存在而引起体系水势降低的数值。溶质势表示溶液中水分潜在的渗透能力的大小,因此,溶质势又可称为渗透势(osmotic potential,Ψπ)。溶质势可用Ψs=RTlnNW/Vw.m公式计算,也可按范特霍夫公式Ψπ=-π=-iCRT计算。
16,衬质势(matrix potential,Ψm) 由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。
17.压力势(pressure potential,Ψp) 由于压力的存在而使体系水势改变的数值。若加正压力,使体系水势增加,加负压力,使体系水势下降。
18.重力势(gravity potential,Ψg) 由于重力的存在而使体系水势增加的数值。
19.膨压(turgor pressure) 有液泡的活细胞吸水时,由于液泡吸水体积增加而产生的对细胞壁的压力叫膨压。
20.集流(mass flow或bulk flow) 液体中成群的原子或分子(例如组成水溶液的各种物质的分子)在压力梯度(水势梯度)作用下共同移动的现象。
21.质壁分离(plasmolysis) 如果把具有液泡的细胞置于水势较低的溶液中,液泡失水,细胞收缩,体积变小。由于细胞壁的伸缩性有限,而原生质体的伸缩性较大,随着细胞继续失水,原生质层便和细胞壁分离开来,这种现象被称为质壁分离。
22.质壁分离复原(deplasmolysis) 如果把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中,外液中的水分又会进入细胞,液泡变大,整个原生质层很快会恢复原来的状态,重新与细胞壁相贴,这种现象称为质壁分离复原(deplasmolysis)。
23.水通道蛋白(water channel protein) 存在生物膜上的具有通透水分功能的内在蛋白。其多肽链穿越膜并形成孔道,特异地允许水分子通过。水通道蛋白亦称水孔蛋白(aquaporin,AQP)。
24.吸胀吸水(imbibing absorption of water) 依赖于低的衬质势而引起的吸水。干种子的吸水为典型的吸胀吸水。
生物
25.吸胀作用(imbibition) 亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀力。蛋白质类物质吸胀力最大,淀粉次之,纤维素较小。
26.根压(root pressure) 由于植物根系生理活动而促使液流从根部上升的压力。它是根系与外液水势差的表现和量度。根系活力强、土壤供水力高、叶的蒸腾量低时,根压较大。伤流和吐水现象是根压存在的证据。
27.伤流(bleeding) 从受伤或折断的植物组织伤口处溢出液体的现象。伤流是由根压引起的,是从伤口的输导组织中溢出的。伤流液的数量和成分可作为根系生理活性高低的指标。
28.吐水(guttation) 从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。吐水也是由根压引起的。作物生长健壮,根系活动较强,吐水量也较多,所以,吐水现象可以作为根系生理活动的指标,并能用以判断苗长势的好坏。
29.萎蔫(wilting) 植物在水分亏缺严重时,细胞失去膨压,茎叶下垂的现象。
30.暂时萎蔫(temporary wilting) 萎蔫植株若在蒸腾速率降低后能恢复正常,这种萎蔫称为暂时萎蔫。暂时萎蔫是由于蒸腾失水量一时大于根系吸水量引起的。
31.永久萎蔫(permanent wilting) 萎蔫植物若在蒸腾降低以后仍不能恢复正常,这样的萎蔫就称为永久萎蔫。永久萎蔫是由于土壤缺乏可利用的水分引起的,只有向土壤供水才能消除植株的萎蔫现象。
32.永久萎蔫系数(permanent wilting coefficient) 指植物发生永久萎蔫时,土壤中尚存留的水分占土壤干重的百分率,是反映土壤中不可利用水的指标。永久萎蔫系数因土壤质地而异,粗砂为1%左右,砂壤为6%左右,粘土为15%左右。同一种质地的土壤上,不同作物的永久萎蔫系数变化幅度很小。
33.田间持水量(field capacity,field moisture capacity) 是指当土壤中重力水全部排除,而保留全部毛管水和束缚水时的土壤含水量。通常以水分占土壤干重的百分比表示。当土壤含水量为田间持水量的70%左右时,最适宜耕作。土壤砂性越强,田间持水量越小,而土壤粘性越大,田间持水量就越大。
34.蒸腾作用(transpiration) 植物体内的水分以气态方式散失到大气中去的过程。蒸腾作用可以促进水分的吸收和运转,降低植物体的温度,促进盐类的运转和分布。
35.蒸腾拉力(transpirational pull) 由于蒸腾作用而产生的一系列水势梯度使导管中水分上升的力量。
36.小孔扩散律(small opening diffusion law) 指气体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长或直径成正比的规律。气孔蒸腾速率符合小孔扩散律。
37.蒸腾速率(transpiration rate) 又称蒸腾强度或蒸腾率,指植物在单位时间内、单位面积上通过蒸腾作用散失的水量(g·m-2·h-1)。
38.蒸腾效率(transpiration ratio) 植物每蒸腾1kg水时所形成的干物质的g数(g·kg-1H2O)。
39.蒸腾系数(transpiration coefficient) 植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量(water requirement)。
40.内聚力(cohesion) 分子的凝聚力,使物体各部分聚合在一起的分子间相互的吸引力。
41.内聚力学说(cohesion theory) 由狄克逊(H.H.Dixon)和伦尼尔(O.Renner)在20世纪初提出,是以水分的内聚力来解释水分在木质部中上升的原因的学说。也称蒸腾流-内聚力-张力学说。
42.水分临界期(critical period of water) 植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。
43.相对湿度(relative humidity,RH) 在特定温度下空气中的水气相对于在这个温度下空气所能包含的最大水气量的比率,用百分比表示,RH高表示气相中的水分含量高,水势高。
44.土壤-植物-大气连续体(soil-plant-atmosphere continuum,SPAC) 土壤的水分由根吸收,经过植物,然后蒸发到大气,这样水分在土壤、植物和大气间的运动就构成一个连续体。一般情况下,土壤的水势>根水势≥茎水势≥叶水势>大气水势,因此,土壤—植物—大气连续体就成为土壤中水分经植物体散失到大气的途径。
45.调亏灌溉(regulated deficit irrigation,RDI)一种新型节水技术,在作物营养生长旺期适度亏水,在
生物
作物需水临界期充分供水,促控结合提高水的利用效率,增加作物产量。
46.节水农业(economize water agriculture) 是指充分利用水资源,采取水利和农业措施,提高水的利用率和生产效率,并创造出有利于农业持续发展的生态环境的农业。
(二)缩写符号翻译
1.μW 水的化学势
2.Ψw 水势
3.Ψm 衬质势
4.Ψs 溶质势
5.Ψπ 渗透势
6.Ψg 重力势
7.Ψp 压力势
8.atm 大气压
9.AQP 水孔蛋白
10.bar 巴
11.MPa 兆帕
12.Pa 帕,亦称帕斯卡
13.NW 水的摩尔分数
14.RH 相对湿度
15.SPAC 土壤-植物-大气连续体
16.RDI 调亏灌溉
(三)本章知识要点
水是生命的“先天”环境,没有水就没有植物。水是植物体的主要组成成分。水除了直接或间接地参与生理生化反应之外,还调节植物的生态环境。植物体内的水分以自由水和束缚水两种形态存在,两者的比例与植物的代谢强度和抗逆性强弱有着密切关系。
每偏摩尔水的自由能就是水的化学势。每偏摩尔体积水的化学势差就是水势。植物细胞的水势由渗透势(溶质势)、压力势和衬质势组成,Ψw=Ψs+Ψp+Ψm。水势单位采用压力单位(MPa)。水分从水势高处通过半透膜移向水势低处,就是渗透作用。
细胞吸水有渗透吸水、吸胀吸水以及降压吸水之分。具有液泡的植物细胞以渗透吸水为主。未形成液泡的嫩细胞和干燥种子的吸水主要靠吸胀吸水。细胞与细胞之间的水分移动方向,决定于两处的水势差,水分总是从水势高处流向水势低处,直至两处水势差为零。
土壤中只有可利用水才能被植物根系吸收。根系吸收水分最活跃的部位是根毛区。根系吸水可分为主动吸水和被动吸水,通常被动吸水是主要的。凡是影响根压形成和影响蒸腾速率的内外条件,都影响根的吸水。 蒸腾作用在植物生活中具有重要的作用。气孔蒸腾是蒸腾作用的主要方式。气孔关闭机理可以用无机离子吸收学说和苹果酸生成学说来解释。开孔的关键问题是保卫细胞中的溶质增加和水势的下降,当保卫细胞水势下降后它周围细胞吸水,气孔就张开,反之气孔则关闭。影响气孔蒸腾的外界因素主要有光照、温度和湿度,而内部因素则以气孔开度为主。
水分在植物体内可经质外体和共质体途径运输。运输的途径是:土壤→根毛→皮层→内皮层→中柱鞘→根的导管或管胞→茎的导管→叶柄导管→叶脉导管→叶肉细胞→叶细胞间隙→气孔下腔→气孔→大气。水分在导管或管胞上升的动力是根压与蒸腾拉力,并以蒸腾拉力为主。由于水分子之间的内聚力和水分子与导管壁之间的吸附力远大于水柱张力,因而导管中的水柱连续不中断,这是水分源源不断上升的保证
灌溉的基本原则是用少量的水取得最大的效果。要进一步发挥灌溉的作用,就需要掌握作物的需水规律。作物需水量(蒸腾系数)因作物种类、生长发育时期不同而有差异。合理灌溉则要以作物需水量和水分临界期为依据,参照生理指标制定灌溉方案,采用先进的灌溉方法及时地进行灌溉。合理灌溉可取得良好的生理效应和生态效应,增产效果显著。
生物
三、重点、难点
(一)重点
1.水分在植物生命活动中的作用。
2.植物细胞水势的组成,水分移动的方向。
3.细胞对水分的吸收。
4.植物根系对水分的吸收。
5.气孔蒸腾的机理和影响因素。
6.植物体内水分运输的途径。
7.作物需水规律和合理灌溉。
(二)难点
1.植物细胞的水势的基本概念。
2.组成和有关计算。
3.气孔开闭的机理。
四、典型例题解析
例1 下列情况会发生渗透作用吸水的是 。
A.干种子萌发时的吸水 B.水从气孔进入外界环境
C.萎蔫的青菜放进清水中 D.玫瑰枝条插入盛有清水的花瓶中
解析:渗透作用是水分子通过半透膜的扩散。干种子的细胞没有液泡,它的吸水属于吸
胀吸水;水从气孔进入外界环境这种失水方式属于蒸腾作用;枝条插入水中的吸水主要是通
过枝条中的导管的毛细管吸水。而萎蔫的青菜放进清水中,青菜细胞和周围水环境构成渗透
系统,青菜细胞吸水为渗透作用吸水。
答案:C.
例2 能发生质壁分离的细胞是 。
A.干种子细胞 B.根毛细胞 C.红细胞 D.腌萝卜干的细胞
解析: 活的成熟的植物细胞是一个渗透系统,能与外界中的溶液发生渗透作用。只有能
够发生渗透作用的植物细胞才能发生质壁分离。本题中符合上述条件的只有根毛细胞。因为
干种子细胞靠吸胀作用吸水,红细胞无细胞壁,谈不上什么质壁分离,腌萝卜干的细胞已经
死亡,不会发生质壁分离。
答案:B.
例3 以下论点是否正确,为什么?
(1)一个细胞的溶质势与所处外界溶液的溶质势相等,则细胞体积不变。
(2)若细胞的Ψp=-Ψs,将其放入某一溶液中时,则体积不变。
(3)若细胞的Ψw=Ψs,将其放入纯水中,则体积不变。
解析:
(1)论点不完全正确:因为一个成熟细胞的水势由溶质势和压力势两部分组成,只有在初
生物
始质壁分离Ψp=0时,上述论点才能成立。通常一个细胞的溶质势与所处外界溶液的溶质势
相等时,由于压力势(常为正值)的存在,使细胞水势高于外界溶液的水势(也即它的溶质
势),因而细胞失水,体积变小。
(2)该论点不正确:因为当细胞的Ψp=-Ψs时,该细胞的Ψw=0。把这样的细胞放入任
一溶液中,细胞都会失水,体积变小。
(3)该论点不正确:因为当细胞的Ψw=Ψs时,该细胞的Ψp=0,而Ψs为负值,即其Ψw
<0,把这样的细胞放入纯水中,细胞吸水,体积变大。
例4 根据图2.1所示阐述细胞水势Ψw、压力势Ψp、溶质势Ψs和细胞相对体积间的关系。请
指出在细胞相对体积分别为Ⅱ和Ⅲ时,细胞所处的状态以及Ψp、Ψs和Ψw各为多少MPa?
图2.1 细胞水势Ψw、压力势Ψp、溶质势Ψs和细胞体积间的关系
解析:图中垂直于横轴的虚线及其与三条曲线相交点的数值(Ⅰ),表示一个常态下细胞的体积和与之相应的Ψw、Ψp、Ψs。如果把细胞放到高水势的溶液中,细胞吸水,体积增大,虚线向右移动,随着细胞含水量的增加,细胞液浓度降低,Ψs增高,Ψw也随着升高,细胞吸水能力下降。当细胞吸水达充分饱和状态(Ⅱ)时,细胞体积最大, 相对体积为1.5, Ψp=Ψs=-1.5MPa,Ψw=0。如果把细胞放到低水势溶液中,细胞失水,体积缩小,虚线向左移动,Ψw、Ψp、Ψs也相应降低。达到初始质壁分离时(Ⅲ),细胞相对体积为1,Ψp=0,Ψw=Ψs=-1.9 MPa。
第三章 植物的矿质与氮素营养
一、教学大纲基本要求
了解高等植物矿质营养的概念、研究历史、植物必需元素的名称及其在植物体内的生理作用、植物缺乏必需元素所出现的特有症状;理解营养离子跨膜运输的机理、植物根系吸收养分的过程、特点以及根外营养的意义;了解NO3-、NH4+ 在植物体内的同化过程、同化部位,以及营养物质在体内的运输方式;了解影响植物吸收矿质养分的环境因素、作物生产与矿质营养的密切关系并理解合理施肥的生理基础,能够提出合理施肥的措施。
生物
二、本章知识要点
(一)名词解释
1.矿质营养(mineral nutrition) 植物对矿物质的吸收、转运和同化,通称为植物的矿质营养。
2.灰分元素(ash element) 干物质充分燃烧后,剩余下一些不能挥发的灰白色残渣,称为灰分。构成灰分的元素称为灰分元素。灰分元素直接或间接来自土壤矿质,所以又称为矿质元素。
3.必需元素(essential element) 在植物生长发育中起着不可替代的、直接的、必不可少的作用的元素。
4.大量元素(major element,macroelement) 植物生命活动必需的、且需要量较多的一些元素。它们约占植物体干重的0.01%~10%,有C、H、O、N、P、K、Ca、Mg、S等九种元素。
5.微量元素(minor element,microelement,trace element) 植物生命活动必需的、而需要量很少的一类元素。它们约占植物体干重的10-5%~10-3%,有Fe、B、Mn、Zn、Cu、Mo、Cl等。
6.有益元素(beneficial element) 并非植物生命活动必需,但能促进某些植物的生长发育的元素。如Na、Si、Co、Se、V等。
7.稀土元素(Rare earth element) 又称稀土金属,是元素周期表中原子序数由57~71的镧系元素及其化学性质与La系相近的钪(Sc)和钇(Y)共17种元素的统称。稀土微肥就是含有稀土元素的肥料的简称。
8.水培法(water culture method) 亦称溶液培养法(solution culture method) ,是在含有全部或部分营养元素的溶液中培养植物的方法。
9.砂培法(sand culture method) 全称砂基培养法,在洗净的石英砂或玻璃球等基质中,加入营养液培养植物的方法。
10.气栽法(aeroponics) 将植物根系置于营养液气雾中栽培植物的方法。
11.营养膜技术(nutrientfilmtechnique,NFT) 是一种营养液循环的液体栽培系统,该系统通过流动的薄层营养液流经栽培槽中的根系来栽培植物。流动的薄层营养液除了可均衡供应植物所需的营养元素和水分外,还能充分供应根系呼吸所需的氧气。
12.离子的主动吸收(ionic active absorption) 细胞利用呼吸释放的能量逆电化学势梯度吸收矿质的过程。
13.离子的被动吸收(ionic passive absorption) 细胞不需要由代谢直接提供能量的顺电化学势梯度吸收矿质的过程。
14.膜片钳技术(patch clamp technique,PCT) 指使用微电极从一小片细胞膜上获取电子信息,测量通过膜的离子电流大小的技术。PC技术可用来分析膜上的离子通道,借此可用来研究细胞器间的离子运输、气孔运动、光受体、激素受体以及信号分子等的作用机理。
15.转运蛋白(transport protein) 具有转运物质功能的膜内在蛋白,包括通道蛋白和载体蛋白。
16.离子通道运输(ionchannel transport) 细胞质膜上有内在蛋白构成的圆形孔道,横跨膜的两侧,其可由化学方式及电化学方式激活,控制离子顺着浓度梯度和膜电位差,即电化学势梯度,被动地和单方向地跨质膜运输。
17.载体运输(carriertransport) 质膜上的载体蛋白有选择地与质膜一侧的分子或离子结合,形成载体—物质复合物,通过载体蛋白构象的变化,透过质膜,把分子或离子释放到质膜的另一侧。
18.单向传递体(uniportcarrier) 能催化分子或离子单方向地跨质膜运输的载体。质膜上已知的单向运输载体有Fe2+、Zn2+、Mn2+、Cu2+等载体。
19.同向传递器(symporter) 载体在与H+结合的同时又与另一分子或离子(如C1-、NO3-、NH4+、PO43-、SO42-、氨基酸、肽、蔗糖、己糖) 结合,二者向同一方向运输。
20.反向运输器(antiporter) 载体在与H+结合后再与其他分子或离子(如Na+)结合,两者朝相反方向运输。
21.离子泵运输(ionpump transport) 质膜上存在着ATP酶,它催化ATP水解释放能量,驱动离子的转运。植物细胞质膜上的离子泵主要有质子泵和钙泵。
生物
22.初级共运转(primarycotransport) 质膜H+-ATPase把细胞质的H+向膜外“泵”出的过程。又称为原初主动运转。原初主动运转在能量形式的转化上是把化学能转为渗透能。
23.次级共运转(secondarycotransport) 以△μH+作为驱动力的离子运转称为次级共运转。离子的次级运转是使质膜两边的渗透能增减,而这种渗透能是离子或中性分子跨膜运输的动力。
24.钙泵(calciumpump) 亦称为Ca2+-ATP酶,它催化质膜内侧的ATP水解,释放出能量,驱动细胞内的钙离子泵出细胞。由于其活性依赖于ATP与Mg2+的结合,所以又称为(Ca2+,Mg2+)-ATP酶。
25.钙调素(calmodulin,CaM) 一种能与钙离子结合,可以根据钙离子浓度的变化来控制细胞内多种生化反应的蛋白质。钙离子被称为细胞内的第二信使,细胞内钙离子通常维持一定水平,当外来的刺激使钙离子浓度升高,钙调素即与钙离子结合,形成Ca2+-CaM复合体,进而调控相关的酶,引起生理反应。
26.胞饮作用(pinocytosis) 物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程,称为胞饮作用。胞饮作用是植物细胞吸收水分、矿质元素和其他物质的方式之一。胞饮作用属于非选择性吸收。
27.扩散作用(diffusion) 分子或离子沿着化学势或电化学势梯度转移的现象。电化学势梯度包括化学势梯度和电势梯度两方面,细胞内外的离子扩散决定于这两种梯度的大小;而分子的扩散决定于化学势梯度。
28.单盐毒害(toxicityofsinglesalt) 植物培养在单种盐溶液中所引起的毒害现象。单盐毒害无论是营养元素或非营养元素都可发生,而且在溶液很稀时植物就会受害。
29.离子颉颃(ion antagonism) 离子间相互消除毒害的现象,也称离子对抗。
30.平衡溶液(balanced solution) 植物必需的矿质元素按一定浓度与比例配制成使植物生长有良好作用而无毒害的混合溶液称为平衡溶液。
31.离子的选择吸收(selective absorption) 植物对同一溶液中不同离子或同一盐分的阴阳离子吸收比例不同的现象。
32.生理酸性盐(physiologicallyacidsalt) 植物根系从溶液中有选择地吸收离子后使溶液酸度增加的盐类。如供给(NH4+)2SO4-,植物对其阳离子(NH4+)的吸收大于阴离子(SO42-),根细胞释放的H+与NH4+交换,使介质pH值下降,这种盐类被称为生理酸性盐,如多种铵盐。
33.生理碱性盐(physiologically alkaline salt) 植物根系从溶液中有选择地吸收离子后使溶液酸度降低的盐类。如供给NaNO3,植物对其阴离子(NO3-)的吸收大于阳离子(Na+),根细胞释放OH-或HCO3-与NO3-交换,从而使介质pH值升高,这种盐类被称为生理碱性盐,如多种硝酸盐。
34.生理中性盐类(physiologicallyneutralsalt) 有一类化合物的阴离子和阳离子几乎以同等速率被植物根部吸收,而溶液pH值不发生变化,这种盐类就称为生理中性盐类,如NH4N03。
35.表观自由空间(apparent free space,AFS) 根部的自由空间体积占根的总体积的比例。过去一直认为自由空间内没有生命活动,但越来越多的研究表明,其与植物抗重金属元素的毒害、活化难溶性矿物质等有密切关系。豌豆、大豆、小麦等植物的AFS在8%~14%之间。
36.离子交换吸附(ion exchange adsorption) 根部细胞在吸收离子的过程中,同时进行着离子的吸附与解吸附,一部分离子被其他离子所置换,这种现象称为离子交换吸附。
37.叶面营养(foliar nutrition) 由植物地上部的叶片吸收矿物质的过程称为叶片营养,也称为根外营养。
38.外连丝(ectodesmata) 从叶片表皮细胞角质层内表面延伸到表皮细胞质膜的纤丝,是将营养物质从胞外传送进入表皮细胞内部的通道。
39.缺素症(element deficiency symptom) 植物缺乏某些营养元素时表现出的特征性病症。
40.养分临界期(critical period of nutrition) 植物在生命周期中,对养分缺乏最敏感、最易受害的时期。
41.营养最大效率期(maximum efficiency period of nutrition) 植物在生命周期中,对施肥的增产效果最好的时期。一般作物的营养最大效率期是生殖生长时期。
42.诱导酶(inducedenzyme) 指植物体内原本没有,但在特定外来物质的诱导下可以生成的酶。如硝酸还原酶,水稻幼苗若培养在含硝酸盐的溶液中就会诱导幼苗产生硝酸还原酶,如用不含硝酸盐的溶液培养,则无此酶出现。
生物
43.重复利用(repetitious use) 已参加到生命活动中去的矿质元素,经过一个时期后再分解并调运到其它部位去重新利用的过程。
44.硝酸还原(nitrate reduction) 硝酸在硝酸还原酶和亚硝酸还原酶的相继作用下还原成氨(铵)的过程。
45.硝酸还原酶(nitrate reductase,NR) 催化硝酸盐还原为亚硝酸盐的酶。是一种可溶性的钼黄素蛋白,由黄素腺嘌呤二核苷酸,细胞色素b557和钼复合体组成。硝酸还原酶是一种诱导酶。
46.亚硝酸还原酶(nitrite reductase,NiR) 催化亚硝酸盐还原为氨(铵)的酶。由两个亚基组成,其辅基由西罗血红素和一个4Fe-4S簇组成。
47.谷氨酰胺合成酶(glutaminesynthetase,GS) 在植物的氨同化过程中,催化L-谷氨酸和氨(NH3)生成L-谷氨酰胺。GS普遍存在于各种植物的组织中,对氨有很高的亲和力,因此能防止氨累积而造成的毒害。
48.谷氨酸合酶(glutamate synthetase,glutamine α-ketoglutarate aminotransferase,GOGAT) 在植物的氨同化中,催化L-谷氨酰胺和a-酮戊二酸生成L-谷氨酸。在被子植物的组织中都有较高的GOGAT活性。绿色组织中的GOGAT存在于叶绿体内。
49.谷氨酸脱氢酶(glutamate dehydrogenase,GDH) 催化a-酮戊二酸和氨生成谷氨酸, 在植物同化氨的过程中不太重要,因为GDH与NH3的亲和力很低,而该酶在谷氨酸的降解中起较大的作用,GDH主要存在于根和叶内的线粒体,而叶绿体中的量很少。
50.硝化作用(nitrification) 硝化细菌将氨氧化为硝酸的过程。硝化作用是由两群化能自养细菌进行的。亚硝化单胞菌将铵氧化为亚硝酸;然后硝化杆菌再将亚硝酸氧化为硝酸。这两群细菌统称硝化细菌。
51.反硝化作用(denitrification) 微生物还原硝酸盐、亚硝酸盐为分子氮的过程。
52.生物固氮(biologicalnitrogenfixation) 微生物自生或与植物(或动物)共生,通过体内固氮酶的作用,将大气中的游离氮固定转化为含氮化合物的过程。
53.无土栽培(soilless culture) 不用土壤,用溶液培养植物的方法,包括水培和沙培。
(二)缩写符号
1.AFS 表观自由空间
2.GS 谷氨酰胺合成酶
3.GOGAT 谷氨酸合成酶
4.GDH 谷氨酸脱氢酶
5.Kin 质膜上由外向内运输K+的离子通道
6.Kout 质膜上由内向外运输K+的离子通道
7.NFT 营养膜技术
8.NR 硝酸还原酶
9.NiR 亚硝酸还原酶
10.NFT 营养膜技术
11.PCT 膜片钳技术
(三)知识要点
矿质元素和水分一样,主要存在于土壤中,由根系吸收进人植物体内,运输到需要的部位加以同化,以满足植物生命活动的需要。植物对矿物质的吸收、转运和同化,通称为矿质营养。
植物体内的化学元素并非全部是植物生命活动所必需的,只有其中一部分为植物生命活动所不可缺少。要确定植物体内各种元素是否为植物所必需,只根据灰分分析得到的数据是不够的。通过溶液培养或砂基培养,并按照Arnon & Stout于1939年提出的植物必须元素的标准:
(1)如缺乏该元素,植物生育发生障碍,不能完成生活史;
(2)除去该元素,则表现出专一的病症,而且这种缺乏症是可以预防和恢复的;
(3)该元素在植物营养生理上应表现直接的效果,绝不是因土壤或培养基的物理、化学、微生物条件的改变而产生的间接效果。
目前已经明确钾、钙、镁、硫、磷、氮、氯、铁、锰、硼、锌、铜、钼、镍、及碳、氢、氧等17种元素
生物
为大多数高等植物所必需的,其中碳、氧、氢、氮、钾、钙、镁、磷、硫等9种元素植物需要量相对较大,称为大量元素;其余氯、铁、硼、锰、锌、铜、镍和钼等8种元素植物需要量极微,稍多即发生毒害,故称为微量元素。
必需的矿质元素在植物体内的生理作用有3个方面: 是细胞结构物质的组成成分,如N,P,S等; 是植物生命活动的调节者,参与酶的活动, 如Mn,Mg,Fe等; 起电化学作用,即离子浓度的平衡、胶体的稳定和电荷中和等,如K+。
可被植物吸收的氮素形态主要是铵态氮和硝态氮。 氮是构成蛋白质的主要成分,占蛋白质含量的16%~18%。此外,核酸、核苷酸、辅酶、磷脂、叶绿素等化合物中都含有氮,而某些植物激素、维生素和生物碱等也含有氮。因此,氮在植物生命活动中占有首要的地位,故又称为生命元素。
磷是以正磷酸盐(H2P04—)形式被植物吸收。当磷进入植物体后,大部分成为有机物,有一部分仍保持无机物形式。磷存在于磷脂、核酸和核蛋白中,磷是核苷酸衍生物(如ATP、FMN、NAD+、NADP+和COA等)的组成成分,其在糖类代谢、蛋白质代谢和脂肪代谢中起着极其重要的作用。
K+既是植物的吸收形态又是在植物体内的存在形态,与氮、磷相反,钾不参与重要有机物的组成。钾主要集中在植物生命活动最活跃的部位,如生长点、幼叶、形成层等。钾对于参与活体内各种重要反应的酶起着活化剂的作用,是40多种酶的辅助因子。钾促进呼吸进程及核酸和蛋白质的形成。钾对糖类的合成和运输有影响。
SO42—进入植物体后,一部分保持不变,大部分被还原成硫,进一步同化为含硫氨基酸,如胱氨酸、半胱氨酸和蛋氨酸等,而这些氨基酸几乎是所有蛋白质的构成分子。硫也是CoA的成分之一,氨基酸、脂肪、糖类等的合成等都和CoA有密切关系。
植物体内的钙有呈离子状态的,有呈盐形式的,还有与有机物结合的。钙主要存在于叶子或老的器官和组织中。它是一个比较不易移动的元素。钙在生物膜中可作为磷脂的磷酸根和蛋白质的羧基间联系的桥梁,因而可以维持膜结构的稳定性。钙是构成细胞壁的一种元素,细胞壁的胞间层是由果胶酸钙组成的。胞质溶胶中的钙与可溶性的蛋白质形成钙调素(简称CaM)。CaM和Ca2+结合,形成有活性的Ca-CaM复合体,在代谢调节中起“第二信使”的作用。
镁主要存在于幼嫩器官和组织中,植物成熟时则集中于种子。镁是叶绿素的组成成分之一。在光合和呼吸过程中,镁可以活化各种磷酸变位酶和磷酸激酶。同样,镁也可以活化DNA和RNA的合成过程。
铁进入植物体内处于被固定状态,不易转移。铁是许多重要氧化还原酶的组成成分。铁在呼吸、光合等氧化还原过程中(Fe3+≒Fe2+)都起着重要的作用。铁影响叶绿体构造形成,和叶绿素的合成。
锰是糖酵解和三羧酸循环中某些酶的活化剂,所以锰能提高呼吸速率。锰是硝酸还原酶的活化剂。在光合作用方面,水的裂解需要锰参与。
硼能与游离状态的糖结合,使糖带有极性,从而使糖容易通过质膜,促进运输。硼对植物生殖过程有影响。硼具有抑制有毒酚类化合物形成的作用。
缺锌植物失去合成色氨酸的能力,而色氨酸是吲哚乙酸的前身,因此缺锌植物的吲哚乙酸含量低。 铜是某些氧化酶的成分,影响氧化还原过程。铜又存在于叶绿体的质体蓝素中,后者是光合作用电子传递体系的一员。
钼是硝酸还原酶的金属成分,起着电子传递作用。钼又是固氮酶中钼铁蛋白的成分,在固氮过程中起作用。
氯在光合作用水裂解过程中起着活化剂的作用,促进氧的释放。根和叶的细胞分裂需要氯。
镍是近年来发现的植物生长所必需的微量元素。镍是脲酶的金属成分,脲酶的作用是催化尿素水解成C02和NH4+。镍也是固氮菌脱氢酶的组成成分。
每种元素缺乏时都会使植物出现特有的症状和出现部位,根据这些可以进行缺素的简单诊断,比较准确的方法是化学分析法。
植物细胞吸收离子的方式可分为被动吸收和主动吸收,其中被动吸收的机理被理解为简单扩散和离子通道运输,主动吸收是通过离子泵和离子载体实现的。主动吸收的突出特点是,可逆电化学梯度进行, 因此
生物
要消耗能量。
除了上述两种吸收方式外,植物细胞还可以通过胞饮方式吸收矿质养分,但这种方式不具有选择性。 植物体吸收矿质元素可通过叶片进行,但主要是通过根部,而且主要吸收部位为根毛区。盐分和水分被植物的吸收是相对的,既有关、又无关。有关,表现在盐分一定要溶解于水中,才能被根部吸收;无关,表现在两者的吸收机理不同。
植物吸收离子的特点表现在3个方面: 盐分和水分被植物的吸收是相对的; 对离子的吸收具有选择性; 单盐会对植物造成伤害。
根部吸收溶液中的矿物质经过以下几个步骤: 离子吸附在根部细胞表面; 离子进入根部内部; 离子进入导管。
温度、土壤通气状况、土壤溶液浓度、土壤pH值等环境因素均对植物根系吸收矿质营养有影响。 植物地上部分也可以吸收矿物质,这个过程称为根外营养。根外施肥的优点是:作物在生育后期根部吸肥能力衰退时,或营养临界时期,可根外喷施N素等以补充营养;某些肥料(如磷肥)易被土壤固定,而根外喷施无此问题,且用量少;补充植物所缺乏的微量元素,效果快,用量省。
植物从土壤中吸收铵盐后,即可直接利用它去合成氨基酸。如果吸收硝酸盐,则必须经过还原才能利用。硝酸盐还原大致分为两步:(1)硝酸盐还原为亚硝酸盐,在细胞质中进行;(2)亚硝酸盐还原为氨,在前质体或叶绿体中进行。上述过程分别由硝酸还原酶和亚硝酸还原酶催化,其中硝酸盐还原酶为底物诱导酶。 根部吸收的无机氮化物,大部分在根内转变为有机氮化物,所以氮的运输形式主要是氨基酸(主要是天冬氨酸,还有少量丙氨酸、蛋氨酸、缬氨酸等)和酰胺(主要是天冬酰胺和谷氨酰胺)等形式运输。硫的运输形式主要是硫酸根离子,但有少数是以蛋氨酸及谷胱甘肽之类的形式运输的。金属离子则以离子状态运输。 根部吸收的矿质元素进入导管后,随着蒸腾流一起上升,叶片吸收的离子在茎部的运输途径是韧皮部。韧皮部与木质部可进行横向物质交流。
矿物质在地上部的分布,以离子在植物体内是否参与循环而异。 某些元素(如钾)进入地上部后仍呈离子状态;有些元素(如氮、磷、镁)形成不稳定的化合物,不断分解,释放出的离子又转移到其他需要的器官去。这些元素便是参与循环的元素。另外有一些元素(如硫、钙、铁、锰、硼)在细胞中呈难溶解的稳定化合物,特别是钙、铁、锰,它们是不能参与循环的元素。凡可再利用元素的缺素病征,都发生在老叶;而缺乏不可再利用元素的生理病征,都出现在嫩叶。
虽然每种作物都需要各种必需元素,但不同作物对三要素(氮、磷、钾)及其他必需元素所要求的绝对量和相对比例都不一样。即使是同一作物,其三要素含量也因品种、土壤和栽培条件等而有差异。同一作物在不同生育时期中,各有明显的生长中心,对矿质元素的需要和吸收情况也是不一样的。
合理追肥可以根据植株的长相和叶色等形态指标进行;也可以根据植株内部的生理状况去判断。常用的指标有: 营养元素含量; 酰胺含量; 酶活性。
三、重点、难点
(一)重点
1.必需元素及其生理作用、养分的可利用形态、缺素症状。
2.离子跨膜运输的方式及机理。
3.植物根系吸收矿质养分过程、特点及环境因素对植物吸收矿质养分的影响;
4.N素的同化过程。
5.农业生产中合理施肥的生理基础。
(二)难点
1.营养离子跨膜运输的方式及机理。
生物
2.N素的同化过程。
3.缺素症状的诊断。
四、典型例题解析
例1 下表列出的是生长在池塘和海水中的两种藻类细胞液中矿质离子浓度,根据其分析矿质离子进入细胞的特点。
表3.1环境溶液与两种藻类细胞液中矿质离子浓度的关系 单位:mmol/L
丽藻
离子
A(池塘)
K
Na
Ca
Cl
解析:从表3.1可看出生长在池塘中的丽藻细胞液中离子的浓度均高于池塘,细胞液中K+浓度甚至比池塘高1000倍以上。这就充分说明细胞吸收环境中的离子可逆浓度梯度进行。既然是逆浓度梯度进行, 因此必然要消耗能量。这也同时从一个侧面说明离子进入细胞不可能完全靠简单扩散。
另外,无论是丽藻还是法囊藻细胞吸收的各种离子的量均不与环境中离子比例一致,如海水中K+:Ca2+为1:1,而法囊藻中这两种离子的浓度比却为247:1,细胞液中K+离子浓度远高于海水,而细胞液中Ca2+离子浓度却显著低于海水。这说明细胞对离子的吸收具有选择性。
例2 如何理解离子吸收的“饱和效应”和“离子竞争性抑制”两现象是离子跨膜运输的载体学说的有力证据? 解析:载体学说认为载体是能选择性地携带离子通过植物细胞膜的结合蛋白或通透酶。其结构上具有专一性较强的离子结合部位,与被运输的离子结合后可从膜的一侧转移到另一侧, 然后将离子释放。卸载后的载体蛋白或酶又进行下一离子的转运。如果该学说成立,那就必然会出现如下现象:当介质中离子较少时,载体还没有全部启用,随着环境中离子浓度的增加,细胞对该离子的吸收应增加,但当环境介质中离子增加到一定程度时,载体全部启用,继续增加该离子的浓度时细胞对其吸收的速率不再随之增加;另外,由于载体具有与转运离子专一性结合的部位,当该部位被其他相似离子占据时,与被转运离子的结合几率就减少,对该离子的吸收速率必然减小。
所以前人研究发现的具有酶促反应特点的离子吸收的“饱和效应”现象,以及类似K+的吸收受Rb+抑制、Cl- 的吸收受Br- 抑制的“离子竞争性抑制”现象间接地为载体理论提供了证据。
例3 用植物燃烧后的灰分和蒸馏水配成溶液培养同种植物的幼苗,该幼苗不能健康生长,不久就出现缺素症。0.05 0.22 0.78 0.93 B(细胞) 54 10 91 91 A/B 1080 45 98 98 A(海水) 12 498 12 580 法囊藻 B(细胞) 500 90 2 592 A/B 42 0.18 0.17 1
生物
如果在培养液加入下列哪一种盐, 植物即可恢复生长。
A.磷酸盐 B.硝酸盐 C.硫酸盐 D.碳酸盐
解析:植物组织在燃烧时,其有机物所含的C,H,O元素会形成C02、H2O散失到大气中,N也会形成氧化物以气态形式挥发。不能挥发的灰分是氧化物、磷酸盐、硫酸盐、氯化物及其他盐分。如果以灰分作为营养源培养植物,显然缺少植物生长发育所必不可少的元素N,因此要使培养植物健康生长,应在介质中加入硝酸盐。
答案为B.
第四章 植物的光合作用
一、教学大纲基本要求
了解光合作用的概念、意义、研究历史、光合作用总反应式;了解叶绿体的结构、光合色素的种类;了解光合作用过程以及能量吸收转变的情况;了解光合碳同化的基本生化途径以及不同碳同化类型植物的特性;理解光呼吸的含义、基本生化途径和可能的生理意义;了解光合作用的测定方法;了解影响光合作用的内部和外部因素;理解光合作用与作物产量的关系;掌握提高光能利用率的途径与措施。
二、本章知识要点
(一)名词解释
1.光合作用(photosynthesis) 常指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。从广义上讲,光合作用是光养生物利用光能把二氧化碳合成有机物的过程。
2.碳素同化作用(carbon assimilation) 自养植物吸收二氧化碳,将其转变成有机物质的过程。植物的碳素同化作用包括细菌光合作用、绿色植物的光合作用和化能合成作用三种类型。
3.光合细菌(photobacteria) :能进行光合作用的一类原核生物。可分为两类:一些仅有光系统Ⅰ,是不释放分子氧的种类,属于无氧光细菌亚纲,包括红螺菌目和绿菌目;另一些有光系统Ⅰ和光系统Ⅱ,是释放分子氧的种类,属于生氧光细菌亚纲,包括蓝细菌目(又称蓝绿藻)和原绿菌目。
4.希尔反应(Hill reaction) 离体叶绿体在有适当的电子受体存在时,光下分解水并放出氧气的反应。希尔(Robert.Hill,1939)发现在分离的叶绿体(实际是被膜破裂的叶绿体)悬浮液中加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气,(同时高铁盐被还原成低铁盐),这个反应被称为希尔反应。其中的电子受体被称为希尔氧化剂。
5.光反应(light reaction) 光合作用中需要光的反应。为发生在类囊体上的光的吸收、传递与转换、电子传递和光合磷酸化等反应的总称。
6.暗反应(dark reaction) 光合作用中的酶促反应,即发生在叶绿体间质中的同化二氧化碳生成碳水化合物等有机物的反应。
7.同化力(assimilatory power) 指ATP(腺苷三磷酸)和NADPH(还原态烟酰胺腺嘌呤二核苷酸磷酸,还原型辅酶Ⅱ)。它们是光合作用光反应中由光能转化来的活跃的化学能,具有同化CO2为有机物的能力,所以被称为“同化力”。
8.量子效率(quantum efficiency) 又称量子产额(quantum yield),光合作用中吸收一个光量子后,所能放出的O2分子数或能固定的C02的分子数。
9.量子需要量(quantum requirement) 量子效率的倒数,即释放1个O2和还原1个CO2所需吸收的光量子数。一般认为最低量子需要量为8~10,这个数值相当于0.12~0.08的量子效率。
生物
10.光合单位(photosynthetic unit) 存在于类囊体膜上能进行完整光反应的最小结构单位。包括PSⅠ与PSⅡ两个反应中心的约600个叶绿素分子以及连结这两个反应中心的光合电子传递链,是进行捕集光能,释放氧气和还原NADP的功能单位。
11.红降现象(red drop) 植物在波长大于680nm的远红光下,光合量子产额明显下降的现象。
12.爱默生增益效应(Emerson enhancement effect),由Emerson首先发现的,在用长波红光(如680nm)照射时补加一点波长较短的光(如650nm),则光合作用的量子产额就会立刻提高,比用这两种波长的光单独照射时的总和还要高。这一现象也称为双光增益效应。这是由于光合作用的两个光反应分别由光系统Ⅰ和光系统Ⅱ进行协同作用而完成的。
13.叶绿体(chloroplast) 含有以叶绿素为主体色素的质体。它由双层被膜、基质和类囊体三部分组成,是植物进行光合作用的细胞器。高等植物的叶绿体大多呈扁平椭圆形,一个叶肉细胞中约有10至数百个叶绿体。
14.光合膜(photosynthetic membrane) 即为类囊体膜,这是因为光合作用的光反应是在叶绿体中的类囊体膜上进行的。光合膜由脂类的双分子层组成,其中含有光合色素和多种蛋白质分子。
15.类囊体(thylakoid) 叶绿体中由单层膜围起的扁平小囊。类囊体分为二类:一类是基质类囊体,伸展在基质中彼此不重叠;一类是基粒类囊体,可自身或与基质类囊体重叠构成基粒。
16.光合色素(photosynthetic pigment) 在光合作用的光反应中吸收、传递光能的色素称为光合色素,主要有三种类型:叶绿素、类胡萝卜素和藻胆素。高等植物中含有前两类,藻胆素仅存在于藻类中。
17.叶绿素(chlorophyll,Chl) 植物进行光合作用的主要色素,为镁卟啉化合物,是一类使植物呈现绿色的色素。包括叶绿素a、b、c、d及细菌叶绿素等。在光能的吸收、传递以及转化方面起着重要作用。
18.去镁叶绿素(pheophytin,Pheo) 叶绿素的卟啉环中的镁被H+置换后形成褐色的去镁叶绿素。若去镁叶绿素中的H+再被Cu2+取代,就形成鲜绿色的铜代叶绿素。
19.类胡萝卜素(carotenoid) 植物进行光合作用的重要色素,为8个异戊二烯形成的四萜化合物,是一类使植物呈现黄色的色素。包括胡萝卜素和叶黄素两类,在光能的吸收传递和保护叶绿素方面起着重要作用。
20.原初反应(primary reaction) 指光合作用中最初的反应,从光合色素分子受光激发起到引起第一个光化学反应为止的过程,它包括光能的吸收、传递与光化学反应。原初反应的结果使反应中心发生电荷分离。
21.荧光现象(fluorescence phenomenon) 叶绿素溶液在透射光下呈绿色,在反射光下呈红色,这种现象称为叶绿素的荧光现象。激发态的叶绿素分子回到基态时,可以以发光的形式释放能量。处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光。由于能量的损耗,辐射出的光能必定低于吸收的光能,因此叶绿素荧光的波长要比吸收的波长长些。故为暗红色。
22.磷光现象(phosphorescence phenomenon) 处在三线态的叶绿素分子回至基态时所发出的光称为磷光。磷光波长比荧光波长长,转换的时间也较长,而强度只有荧光的1%,故需用仪器才能测量到。
23.激子传递(exciton transfer) 激子通常是指非金属晶体中由电子激发的量子,它能转移能量但不能转移电荷。在相同分子内依靠激子传递来转移能量的方式称为激子传递。
24.共振传递(resonance transfer) 指在光合色素分子间依赖电子的振动(共振)传递能量的方式。
25.反应中心(reaction center) 发生原初反应的最小单位。它是由反应中心色素分子、原初电子受体、次级电子受体与次级电子供体等电子传递体,以及维持这些电子传递体的微环境所必需的蛋白质等组分组成的。
26.反应中心色素分子(reaction center pigment) 是处于反应中心中的一种特殊性质的叶绿素a分子,它不仅能捕获光能,还具有光化学活性,能将光能转换成电能。光系统Ⅰ和光系统Ⅱ的反应中心色素分子分别是P700和P680,这里P代表色素(pigment),P后的数值代表色素分子在受光激发被氧化时,该色素分子吸收光谱中变化最大的波长位置,也即用氧化态吸收光谱与还原态吸收光谱间的差值最大处的波长来作为色素分子的标志。P700和P680表示它们受光激发被氧化时,吸收光谱中变化最大的波长位置分别是近700nm和
生物
680nm处。
27.聚(集)光色素(light harvesting pigment) 又称天线色素(antenna pigment),指在光合作用中起吸收和传递光能作用的色素分子,它们本身没有光化学活性。
28.电子供体(electron donor) 在氧化还原反应中供给电子的反应物,即一种还原剂,如NADH、NADPH等。
29.原初电子供体(primary electron donor) 直接向原初电子受体提供电子的电子传递体。由于反应中心色素分子是光化学反应中最先向原初电子受体供给电子的,因此反应中心色素分子又称原初电子供体。
30.电子受体(electron acceptor) 在氧化还原反应中接受电子的反应物,即一种氧化剂,如NAD+、NADP+等。
31.原初电子受体(primary electron acceptor) 直接接收反应中心色素分子传来电子的电子传递体。PSⅠ的原初电子受体是叶绿素分子(A0),PSⅡ的原初电子受体是去镁叶绿素分子(Pheo)。
32.光合链(photosynthetic chain) 即光合电子传递链,定位在光合膜上的,由多个电子传递体组成的电子传递的总轨道。其作用是将水在光氧化时产生的电子,最终送至NADP+。
33.“Z”方案(“Z” scheme) 指光合电子传递途径由两个光系统串联起来的方案。当按氧化还原电位高低排列由两个光系统串联起来的各电子传递体位置时,光合电子传递途径呈侧写的“Z”字形,故称此方案为“Z”方案。
34.光系统Ⅰ(photosystem Ⅰ,PSⅠ)类囊体膜上的色素蛋白复合体,高等植物的PSⅠ由反应中心、反应中心色素分子P700、聚光色素复合体Ⅰ、铁硫蛋白、Fd、FNR等组成。PSⅠ的生理功能是吸收光能,进行光化学反应,产生强的还原剂,用于还原NADP+,实现PC到NADP+的电子传递。
35.光系统Ⅱ(photosystem Ⅱ,PSⅡ),类囊体膜上的色素蛋白复合体,由反应中心、反应中心色素分子P680、聚光色素复合体Ⅱ、中心天线、放氧复合体、细胞色素和多种辅助因子组成。PSⅡ的生理功能是吸收光能,进行光化学反应,产生强的氧化剂,使水裂解释放氧气,并把水中的电子传至质体醌。
36.水氧化钟(water oxidizing clock) 亦称Kok钟(Kok clock),Kok等(1970)根据一系列瞬间闪光处理叶绿体与放O2的关系提出的解释光合作用中水氧化机制的一种模型:叶绿体中的放氧复合体(根据带正电荷的多少,依次称为S0、S1、S2、S3、S4)在每次闪光后积累1个正电荷,积累到4个正电荷时(S4)能裂解2个H2O释放1个O2,获取4个e,并回到初始状态S0。此模型中,每吸收1个光量子推动氧化钟前进一步。
37.放氧复合体(oxygen-evolving complex,OEC) 一种含锰的蛋白,在光系统Ⅱ靠近类囊体腔的一侧,参与水的裂解和氧的释放。
38.质醌(plastoquinon,PQ) 也叫质体醌,一种苯醌的衍生物,是PSⅡ反应中心的末端电子受体,也是介于PSⅡ复合体与Cyt b6/f复合体间的电子传递体。质体醌为脂溶性分子,在膜中含量很高,能在类囊体膜中自由移动,是双e-和双H+传递体,在光合膜上转运电子与质子,对类囊体膜内外建立质子梯度起着重要的作用。另外,PQ库作为电子、质子的缓冲库,能均衡两个光系统间的电子传递,可使多个PSⅡ复合体与多个Cyt b6/f复合体发生联系,使得类囊体膜上的电子传递成网络式地进行。
39.质醌穿梭(plastoquinone shuttle) 氧化态的质醌在类囊体膜的外侧接收由PSⅡ传来的电子,与质子结合;还原的质醌将电子传给 Cytb6/f 复合体,并释放2个质子到膜腔内,质醌的这种反复进行的氧化还原反应和跨膜转移质子称为PQ穿梭或PQ循环。这对类囊体膜内外建立质子梯度起着重要的作用。
40.细胞色素b6/f复合体 (cytochrome b6/f complex,Cyt b6/f) 连接PSⅠ与PSⅡ两个光系统的中间电子载体系统,含有Cyt f、Cyt b6(2个,为电子传递循环剂)和(Fe-S)R,主要催化PQH2的氧化和PC的还原,并把质子从类囊体膜外间质中跨膜转移到膜内腔中。因此Cyt b6/f复合体又称PQH2·PC氧还酶。
41.铁氧还蛋白(ferrdoxin,Fd) 存在于类囊体膜表面的蛋白质。通过它的2铁-2硫活性中心中的铁离子的氧化还原来传递电子,是光合电子传递链的分岔点。
42.Rieske铁硫蛋白(Fe-S)R 由Rieske发现的非血红素的Fe蛋白质,它是Cyt b6/f复合体中的电子传递-
生物
体。
43.铁氧还蛋白-NADP+还原酶(ferrdoxin-NADP+reductase,FNR) 存在于类囊体膜表面的蛋白质,也是光合电子传递链的末端氧化酶,接收Fd传来的电子和基质中的H+,还原NADP+为NADPH。
44.聚光色素复合体(light harvesting pigment complex,LHC),为色素与蛋白质结合的复合体,它接受光能,并把光能传给反应中心。
45.质蓝素(plastocyanin,PC) 位于类囊体膜内侧表面的含铜的蛋白质,氧化时呈蓝色,是介于Cyt b6/f复合体与PSⅠ之间的电子传递成员。通过蛋白质中铜离子的氧化还原变化来传递电子。
46.非环式电子传递(noncyclic electron transport) 指水中的电子经PSⅡ与PSⅠ一直传到NADP+的电子传递途径。
47.环式电子传递(cyclic electron transport) 一般指PSⅠ中电子经Fd、PQ、Cytb6/f等电子递体返回到PSⅠ的循环电子传递途经。
48.假环式电子传递(pseudocyclic electron transport) 指水中的电子经PSⅡ与PSⅠ传给Fd后再传给O2的电子传递途径。
49.光合磷酸化(photosynthetic phosphorylation,photophosphorylation) 光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应。
50.非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生ATP的反应。在反应中,体系除生成ATP外,同时还有NADPH的产生和氧的释放。
51.环式光合磷酸化(cyclic photophosphorylation) 与环式电子传递偶联产生ATP的反应。环式光合磷酸化是非光合放氧生物光能转换的唯一形式,主要在基质片层内进行。
52.假环式光合磷酸化(pseudocyclic photophosphorylation) 与假环式电子传递偶联产生ATP的反应。此种光合磷酸化既放氧又吸氧,还原的电子受体最后又被氧所氧化。
53.腺苷三磷酸酶(adenosine triphosphatase,ATPase) 一类催化腺苷三磷酸(ATP)水解生成腺苷二磷酸(ADP)与无机磷酸(Pi)的酶,简称ATP酶。在一定的生理条件下,ATPase可催化ADP和Pi合成ATP,因此ATP酶又可以称ATP合酶(ATP synthase)。叶绿体、线粒体、微粒体与细胞膜都有ATP酶,它们是参与能量代谢的关键酶。不同来源的ATPase基本上有相同的结构,均由两个蛋白复合体组成,一个是突出在膜表面的亲水性的F1,这是合成或水解ATP的部位;另一个是嵌于膜内的疏水性的F0,这是质子转移的通道。在叶绿体内称为CF1-CF0,在线粒体内为MF1-F0,分别位于叶绿体中的类囊体膜或线粒体的内膜上。其中的CF1和F1部分被称为偶联因子(coupling factor)。
54.质子动力势(proton motive force,pmf) 是电化学势差与法拉第常数的比值(pmf=△μH+/F = 0.0238RT△pH+△E),其单位为电势(V)。质子动力势是磷酸化反应、以及其它离子、分子跨膜转移的推动力。
55.解偶联剂(uncoupler) 能消除类囊体膜或线粒体内膜内外质子梯度,解除磷酸化反应与电子传递之间偶联的试剂。如二硝基酚、NH4+等,这些试剂可以增加类囊体膜对质子的透性或增加偶联因子渗漏质子的能力,其结果是消除了跨膜的H+电化学势,电子传递仍可进行,甚至速度更快,但磷酸化作用不再进行。
56.二氯苯基二甲基脲(dichlorophenyl dimethylures ,DCMU) 一种除草剂,商品名为敌草隆(diuron),光合电子传递抑制剂,抑制PSⅡ的QB到PQ的电子传递,因而也是非环式光合磷酸化与假环式光合磷酸化的抑制剂。
57.光能转化效率 (efficiency of light energy conversion) 光合产物中所贮存的化学能占光合作用所吸收的有效辐射能的百分率。
58.C02碳同化(C02 assimilation) 植物利用光反应中形成的同化力(NADPH和ATP)将C02转化成稳定的碳水化合物的过程,称为C02同化、光合碳同化或碳同化。
59.卡尔文循环(Calvin cycle) 美国生物化学家、植物生理学家卡尔文和本森等从1946年起利用14C同位素示踪技术和纸层析技术,研究了小球藻、栅列藻等植物光合作用中二氧化碳同化过程。发现碳同化的初级
正在阅读:
现代植物生理学(李合生)课后题答案06-12
八年级英语下册 Lesson 11 Amazing Plants导学案(新版)冀教版04-16
2015年弋阳县中小学教师招聘考试资格审查结果及面试入闱人员名单01-22
感谢压力作文600字07-09
修改生产安全事故报告和调查处理条例罚款处罚暂行规定部分条款的04-23
商场的装修是一件很复杂的系统工程01-22
三年级语文课应该怎么上01-22
品管圈圈名07-05
某绿化广场施工组织设计方案01-22
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 合生
- 生理学
- 课后
- 植物
- 答案
- 现代
- Blind Estimation of Direct Sequence Spread Spectrum Signals in Multipath
- 2020年会计从业资格证考试题库:会计基础每日一练(1月9日)
- AspenPlus应用基础-流体输送
- 暑假补习班学生安全协议书
- 初级会计实务不能不会的194个分录
- 2012-2013学年度第一学期三年级英语水平测试题(2)
- 2010网上购物调研报告
- 粤教版三年级品德与社会第二次月考试卷
- GB50057-2010 建筑物防雷设计规范
- 汕头超声电子审计制度
- 西门子PLC S7-300、400硬件描述和硬件组态 第五章
- 中国农业大学生物学院生物化学 第02章二三节
- 大学英语精读第一册5.8.10单元翻译答案
- 09-10-2高数2-B答案(1)
- 羊妈咪养胃讲堂:上班族最佳养胃时间表
- 3503-J413管道静电接地测试记录
- 郑商所结算业务(折抵、充抵、质押)
- 学生心理辅导案例
- 2011年广东高考英语听说考试题型分析备考2策略
- 在住宅设计中应用质量功能展开_QFD_的探讨