备战2014年数学中考————吉林省2009年初中毕业暨高中招生考试题及答案
更新时间:2023-08-13 15:00:01 阅读量: IT计算机 文档下载
吉林省2009年初中毕业生学业考试
数 学 试 卷
一、填空题(每小题2分,共20分)
1.数轴上A、B两点所表示的有理数的和是.
0 1 2 3
(第1题)
2.计算(3a)·a
3.为鼓励大学生创业,某市为在开发区创业的每位大学生提供货款150 000元,这个数据用科学记数法表示为 元.
4.不等式2x 3 x的解集为.
5.如图,点A关于y轴的对称点的坐标是 6.方程
2
5
3
1的解是 . x 2
(第5题)
7.若a 5,b 2,且ab 0,则a b .
8.将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O为圆心,则 ACO
B
A
B
(第9题) (第10题) (第8题)
9.如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE,如果CB 1,那么OE的长为 .
10.将一张矩形纸片折叠成如图所示的形状,则 ABC度. 二、单项选择题(每小题3分,共18分)
xy 2y
的结果是( ) 2
x 4x 4xxyyA. B. C. D.
x 2x 2x 2x 2
11.化简
12.下列图案既是轴对称图形,又是中心对称图形的是( )
A. B. C. D. 13.下列几何体中,同一个几何体的主视图与俯视图不同的是( )
正方体 圆锥 球 圆柱
A.
B. C. D.
14.A种饮料B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( ) A.2(x 1) 3x 13 B.2(x 1) 3x 13 C.2x 3(x 1) 13 D.2x 3(x 1) 13
15.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
A.中位数 B.众数 C.平均数 D.极差
16.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是( ) A2cm
60P Q
(第16题)
B C D.2cm 三、解答题(每小题5分,共20分)
17.在三个整式x 2xy,y 2xy,x中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.
18.在一个不透明的盒子里,装有三个分别写有数字6, 2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率: (1) 两次取出小球上的数字相同;
(2) 两次取出小球上的数字之和大于10.
19.如图,AB AC,AD BC于点D,AD AE,AB平分 DAE交DE于点F,请你写出图中三对全等三角形,并选取其中一对加以证明. ..
E
A
B D C
(第19题)
20.如图所示,矩形ABCD的周长为14cm,E为AB的中点,以A为圆心,AE长为半径画弧交AD于点F.以C为圆心,CB长为半径画弧交CD于点G.设AB xcm,
222
BC ycm,当DF DG时,求x,y的值.
G
(第20题)
四、解答题(每小题6分,共12分)
21.下图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:
电脑 电视机
35%
冰箱 热水器 洗衣机 注意:将答案写在横线上 ..
(第21题)
(1)第一季度购买的“家电下乡”产品的总台数为 ; (2)把两幅统计图补充完整.
22.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F, 使DF AD,连接BC、BF. (1)求证:△CBE∽△AFB;
BE5CB
(2)当的值. 时,求
FB8AD
F
B (第22题)
五、解答题(每小题7分,共14分)
23.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知 =36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
C
(第23题)
k
的图象与直线y x m在第一象限交于点P,A、B为(6,2)x
直线上的两点,点A的横坐标为2,点B的横坐标为3.D、C为反比例函数图象上的两点,
24.如图,反比例函数y 且AD、BC平行于y轴.
(1)直接写出k,m的值; (2)求梯形ABCD的面积.
六、解答题(每小题8分,共16分)
(第24题)
25.A、B两地相距45千米,图中折线表示某骑车人离A地的距离y与时间x的函数关系.有一辆客车9点从B地出发,以45千米/时的速度匀速行驶,并往返于A、B两地之间.(乘客上、下车停留时间忽略不计)
(1)从折线图可以看出,骑车人一共休息 次,共休息 小时; (2)请在图中画出9点至15点之间客车与A地距离y随时间x变化的函数图象; (3)通过计算说明,何时骑车人与客车第二次相遇.
9 10 11 12 13 14 15
(第25题)
x/时
26.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),将长方形ABCDCE=2cm,
绕着点C顺时针旋转 角,将长方形EFGH绕着点E逆时针旋转相同的角度. (1)当旋转到顶点D、H重合时,连接AG(如图②),求点D到AG的距离; (2)当 45°时(如图③),求证:四边形MHND为正方形.
A D H G
l B C E F
图① G A
H
F l
C E
图②
A
F C
l C E
图③
(第26题)
七、解答题(每小题10分,共20分)
27.某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AE MN.准备在形如Rt△AEH的四个全等三角形内种植红色花草,在形如Rt△AEH的四个全等三角形内种植黄色花草,在正方形
MNPQ内种植紫色花草,每种花草的价格如下表:
设的长为米,正方形的面积为平方米,买花草所需的费用为元,解答下列问题:
(1)S与x之间的函数关系式为S ;
(2)求W与x之间的函数关系式,并求所需的最低费用是多少元; (3)当买花草所需的费用最低时,求EM的长.
E
F
H
G C
(第27题)
28.如图所示,菱形ABCD的边长为6厘米, B 60°.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A C B的方向运动,点Q以2厘米/秒的速度沿A B C D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设的面积为y平方厘米(这里规定:P、Q运动的时间为x秒时,△APQ与△ABC重叠部分....点和线段是面积为O的三角形),解答下列问题: (1)点P、Q从出发到相遇所用时间是 秒;
(2)点P、当△APQ是等边三角形时x的值是 秒; Q从开始运动到停止的过程中,(3)求y与x之间的函数关系式.
(第28题)
吉林省2009年初中毕业生学业考试数学试卷
参考答案及评分标准
阅卷说明:
1. 评卷采分最小单位为1分,每步标出的是累计分.
2. 考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.
一、填空题(每小题2分,共20分)
1. 1 2.9a 3.1.5×105 4.x>1 5.(5,3)
7
6.x=5 7. 7 8.120 9.7 10.73 二、单项选择题(每小题3分,共18分)
11.D 12.D 13.C 14.A 15.A 16.B 三、解答题(每小题5分,共20分)
17.解:(x 2xy) x 2x 2xy 2x(x y); 或(y 2xy) x (x y);
或(x 2xy) (y 2xy) x y (x y)(x y); 或(y 2xy) (x 2xy) y x (y x)(y x).
说明:选择整式正确得2分,整式加(减)结果正确得1分,因式分解正确得2分,累计5分.
18. 解:
树形图
2 6 2 7 6 2 7 6 2 7
2
2
2
2
2
2
2
2
2
2
2
2
2
2
········································································································································· (2分)
1
. ·························································································· (3分) 3
4
(2)P(两数和大于10)=. ················································································· (5分)
9
19. 解:(1)△ADB≌△ADC、△ABD≌△ABE、△AFD≌△AFE、
··························· (3分) △BFD≌△BFE、△ABE≌△ACD(写出其中的三对即可).
(2)以△ADB≌ADC为例证明.
(1)P(两数相同)=
证明: AD BC, ADB ADC 90°. 在Rt△ADB和Rt△ADC中,
AB AC,AD AD,
························································································· (5分) Rt△ADB≌Rt△ADC. ·
说明:选任何一对全等三角形,只要证明正确均得分.
20. 解:根据题意,得
2x 2y 14,
·············································································································· (3分) x ·
x y y 2
解得
x 4,
···················································································································· (5分)
y 3.
答:x为4,y为3.
说明:不写答不扣分.
四、解答题(每小题6分,共12分) 21.解:(1)500. ········································································································· (1分) (2) 电脑 电视机
35%
20 30 冰箱 热水器 洗衣机
注意:将答案写在横线上
········································································································································· (6分) 说明:第(2)问中每图补对一项得1分,条形图中不标台数不扣分. 22.(1)证明: AE EB,AD DF,
ED是△ABF的中位线,
·········································································································· (1分) ED∥BF, ·
································································································ (2分) CEB ABF, ·
又 C A, ············································································································ (3分) ······························································································ (4分) △CBE∽△AFB, ·(2)解:由(1)知, △CBE∽△AFB,
CBBE5
·········································································································· (5分) .·
AFFB8
又AF 2AD,
CB5
················································································································· (6分) . ·
AD4
五、解答题(每小题7分,共14分)
23. 解:作BE l于点E,DF l于点F. ·························································· (1分)
l
C
DAF 180° BAD 180° 90° 90°, ADF DAF 90 , ADF 36 .
根据题意,得BE=24mm,DF=48mm. ········································································ (2分) 在Rt△ABE中,sin
BE
, ···················································································· (3分) AB
BE24
·················································································· (4分) 40mm ·
sin36°0.60
DF
在Rt△ADF中,cos ADF , ·········································································· (5分)
AD
DF48
··············································································· (6分) AD 60mm.
cos36°0.80
······························································ (7分) 矩形ABCD的周长=2(40+60)=200mm. ·
24. 解:(1)k=12,m= 4. ······················································································ (2分) AB
(2)把x=2代入y=
12
,得y=6. D(2,6). x
把x=2代入y x 4,得y 2. A(2, 2).
···································································································· (4分) DA 6 ( 2) 8. ·
把x=3代入y x 4,得y= 1, B(3, 1).
······························································································· (6分)
BC 4 ( 1)=5. ·
S梯形ABCD
(5 8) 113
······················································································ (7分) . ·
22
六、解答题(每小题8分,共16分)
25. 解:(1)两.两. ································································································· (2分) (2)
9 10 11 12 13 14 15 x/时
········································································································································· (4分) (3)设直线EF所表示的函数解析式为y kx b. 把E(10,0),F(11,45)分别代入y kx b,得
10k b 0
················································································································· (5分)
11k b 45
k 45,解得
b 450.
·························································· (6分) 直线EF所表示的函数解析式为y 45x 450. ·把y 30代入y 45x 450,得
············································································································ (7分) 45x 450 30. ·2
x 10.
3答:10点40分骑车人与客车第二次相遇. ···································································· (8分) 说明:第(3)问时间表达方式可以不同,只要表达正确即可得分,不写答不扣分. 26.解:(1) CD CE DE 2cm, △CDE是等边三角形.
········································································································· (1分) CDE 60°. ·
ADG 360° 2 90° 60° 120°.
A K G
H
F B
l E
图②
A
B F
又AD DG 1cm,
························································································ (2分) DAG DGA 30°. ·
如图②作DK AG于点K.
11
DK DG cm.
22
1
························································································· (4分) 点D到AG的距离为cm. ·
2
(2) 45°
NCE NEC 45°,
·············································································································· (5分) CNE 90°. ·
DNH 90°
D H 90°,
··························································································· (6分) 四边形MHND是矩形. ·又CN NE,
············································································································· (7分) DN NH, ·
··························································································· (8分) 矩形MHND是正方形. ·
七、解答题(每小题10分,共20分)
27.解:(1)x (4 x)或2x 8x 16. ································································ (2分) (2)W 60 4S△AEB 80(S正方形EFGN-S正方形MNPQ)+120S正方形MNPQ =60 4
2
2
2
2
1
··················································· (4分) x(4 x) 80[x2 (4 x)2 x2] 120x2.
2
=80x 160x 1280. ····································································································· (5分) 配方,得
W 80(x 1)2 1200. ·································································································· (6分)
·············································································· (7分) 当x 1时,W最小值 1200元. ·(3)设EM a米,则MH (a 1)米. 在Rt△EMH中,
a2 (a 1)2 12 32,
解得a
a 0,
a
EM米. ························································································· (10分) 28. 解:(1)6.··········································································································· (1分) (2)8. ·························································································································· (3分) (3)①当0≤x 3时,
Q3
P3
Q2
B
Q
1
y S△APQ 13
112
AP·AQ·sin60 x·2x· x. ····································· (5分) 112222
②当3≤x 6时,
y S△APQ=12
1AP2 P2Q22
1AP2·CQ2·sin60 21 x·(12-2x·)22
=2
x . ·········································································································· (7分) ③当6≤x≤9时,设P3Q3与AC交于点O. (解法一)
过Q3作Q3E∥CB,则△CQ3E为等边三角形.
Q3E CE CQ3 2x 12. Q3E∥CB. △COP3∽△EOQ3
OCCP3x 61
,OEEQ32x 122
11
OC CE (2x 12),
33y S△AQP3
S△ACP3-S△COP3
11
CP3·AC·sin60° OC·CP3·sin60°
22
111 (x 6)·6 (2x 12)(x 6) .
22232
2x x ····················································································· (10分) 62
(解法二)
如右图,过点O作OF CP3于点F,OG CQ3,于点G, 过点P3作P3H DC交DC延长线于点H.
ACB ACD, OF OG.
又CP3 x 6,CQ3, 2x 12 2(x 6),
S△CQP3 S△COP3
1
S△
COQ3 21
S△CP3Q3,3
Q3
G H 3
B
11
CQ3·P3H32
11 (2x 12)(x 6)·322
x 6)2.又S△ACP3
1CP3·AC·sin60°
2
1(x 6) 6 22
x 6).2
y S△
AOP3
S△ACP3 S△
OCP3
2
(x 6) x 6)26
2x x ························································································· (10分) 62
正在阅读:
备战2014年数学中考————吉林省2009年初中毕业暨高中招生考试题及答案08-13
阐述沥青路面基层冷再生技术01-15
《关于印发医疗器械生产质量管理规范检查管理办法(试行)》的通知07-02
部编版人教版一年级下册语文《识字4:猜字谜》教案3套(2019最新审定)12-05
昭通市发展现状材料06-07
45个经典刑法案例08-15
深圳市精神病司法鉴定有效期是多久?10-13
不诚信作文250字03-13
冬天英语小诗歌03-21
观课报告_观课报告范文大全08-01
- 1甘孜州2018年初中毕业暨高中阶段学校招生考试中考数学试卷及答案
- 2甘孜州2018年初中毕业暨高中阶段学校招生考试中考数学试卷及答案
- 3备战2014年数学中考————初中数学竞赛专项训练(6)及答案
- 42011年吉林省英语中考试题与答案
- 5重庆市2017年初中毕业生学业水平暨普通高中招生考试 - 图文
- 62010年重庆市江津区中考数学初中毕业暨高中招生考试数学试卷(wor
- 7吉林省2018年初中毕业生学业水平考试语文试题(word版,含答案)
- 8吉林省2018年初中毕业生学业水平考试语文试题(word版,含答案)
- 9古城中学2011年初中毕业会考及高中招生数学模拟试卷
- 10重庆市2018年初中学业水平暨高中招生考试物理试题(B卷)含答案
- 供应商绩效评价考核程序
- 美国加州水资源开发管理历史与现状的启示
- 供应商主数据最终用户培训教材
- 交通安全科普体验教室施工方案
- 井架安装顺序
- 会员积分制度
- 互联网对美容连锁企业的推动作用
- 互联网发展先驱聚首香港
- 公司文档管理规则
- 机电一体化系统设计基础作业、、、参考答案
- 如何选择BI可视化工具
- 互联网产品经理必备文档技巧
- 居家装修风水的布置_家庭风水布局详解
- 全省基础教育信息化应用与发展情况调查问卷
- 中国石油--计算机网络应用基础第三阶段在线作业
- 【知识管理专题系列之五十八】知识管理中如何实现“场景化协同”
- 网络推广方案
- 中国石油--计算机网络应用基础第二阶段在线作业
- 汽车检测与维修技术专业人才培养方案
- 详解胎儿颈透明层
- 吉林省
- 备战
- 中考
- 试题
- 初中
- 答案
- 高中
- 招生
- 数学
- 毕业
- 2014
- 2009
- 新基连的野望 - .PSP模拟器金手指
- 论左宗棠的义利观——兼谈福州船政局、兰州织呢局的伦理实践
- 现行国家标准规范目录(截止2015年4月9日)
- 6家医院临床生化室间质评结果差异及原因分析
- 基于SPWPM的移相全桥高频链逆变器研究
- 课栈网:如何设置无线路由提高无线BT下载速度
- 2012年二级建造师施工管理重点考试必备
- 水力学与桥涵水文
- 第三章 企业家与创业
- 2009年上海市国民经济和社会发展统计公报
- 人教版七年级生物下册复习提纲
- 乳腺浸润性导管癌钼靶X线表现与C-erbB-2的关系
- 《经纬仪测回法测角多媒体软件》简介
- 恒洁:马桶保养需要注意啥?
- Android面试题大全精心整理
- 2021年中考数学小题专项训练(7)
- 成本会计第4章 辅助生产费用的核算
- “新中式”景观设计初探——以南京夫子庙街巷景观整治为例
- 中国古代名人爱树拾趣
- 医药生物行业周报:谈判药品空间释放,优先审评品种公布