Feynman motives of banana graphs
更新时间:2023-08-10 00:34:01 阅读量: 工程科技 文档下载
- feynman推荐度:
- 相关推荐
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
FEYNMANMOTIVESOFBANANAGRAPHS
PAOLOALUFFIANDMATILDEMARCOLLI
arXiv:0807.1690v2 [hep-th] 16 Jul 2008Abstract.Weconsiderthein nitefamilyofFeynmangraphsknownasthe“bananagraphs”andcomputeexplicitlytheclassesofthecorrespondinggraphhypersurfacesintheGrothendieckringofvarietiesaswellastheirChern–Schwartz–MacPhersonclasses,usingtheclassicalCremonatransformationandthedualgraph,andablowupformulaforcharacteristicclasses.Weoutlinetheinterestingsimilaritiesbetweentheseoperationsandwegiveformulaeforconesobtainedbysimpleoperationsongraphs.Weformulateapositivityconjectureforcharacteristicclassesofgraphhypersurfacesanddiscussbrie ythee ectofpassingtononcommutativespacetime.1.IntroductionSincetheextensivestudyof[15]revealedthesystematicappearanceofmultiplezetavaluesastheresultofFeynmandiagramcomputationsinperturbativequantum eldthe-ory,thequestionof ndingadirectrelationbetweenFeynmandiagramsandperiodsofmotiveshasbecomearich eldofinvestigation.TheformulationofFeynmanintegralsthatseemsmostsuitableforanalgebro-geometricapproachistheoneinvolvingSchwingerandFeynmanparameters,asinthatformtheintegralacquiresdirectlyaninterpretationasaperiodofanalgebraicvariety,namelythecomplementofahypersurfaceinaprojectivespaceconstructedoutofthecombinatorialinformationofagraph.Thesegraphhyper-surfacesandthecorrespondingperiodshavebeeninvestigatedinthealgebro-geometricperspectiveintherecentworkofBloch–Esnault–Kreimerandmorerecently,fromthepointofviewofHodgetheory,inand[26].Inparticular,thequestionofwhetheronlymotivesofmixedTatetypewouldariseinthequantum eldtheorycontextisstillunsolved.Despitethegeneralresultofwhichshowsthatthegraphhypersur-facesaregeneralenoughfromthemotivicpointofviewtogeneratetheGrothendieckringofvarieties,theparticularresultsof[15]andpointtothefactthat,eventhoughthevarietiesthemselvesareverygeneral,thepartofthecohomologythatsupportstheperiodofinteresttoquantum eldtheorymightstillbeofthemixedTateform.Onecomplicationinvolvedinthealgebro-geometriccomputationswithgraphhyper-
surfacesisthefactthatthesearetypicallysingular,withasingularlocusofsmallcodi-mension.Itbecomesthenaninterestingquestioninitselftoestimatehowsingularthegraphhypersurfacesare,acrosscertainfamiliesofFeynmangraphs(thehalfopenladdergraphs,thewheelswithspokes,thebananagraphsetc.).Sincethemaingoalistode-scribewhathappensatthemotiviclevel,onewantstohaveinvariantsthatdetecthowsingularthehypersurfaceisandthatarealsosomehowadaptedtoitsdecompositionintheGrothendieckringofmotives.Inthispaperweconcentrateonaparticularexampleandillustratesomegeneralmethodsforcomputingsuchinvariantsbasedonthetheoryofcharacteristicclassesofsingularvarieties.
Partofthepurposeofthepresentpaperistofamiliarizephysicistsworkinginpertur-bativequantum eldtheorywithsometechniquesofalgebraicgeometrythatareusefulintheanalysisofgraphhypersurfaces.Thus,wetryasmushaspossibletospellouteverythingindetailandrecallthenecessarybackground.
1
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
2ALUFFIANDMARCOLLI
In§1,webeginbyrecallingthegeneralformoftheparametricFeynmanintegralsforascalar eldtheoryandtheconstructionoftheassociatedprojectivegraphhypersurface.WerecalltherelationbetweenthegraphhypersurfaceofaplanargraphandthatofthedualgraphviathestandardCremonatransformation.Wethenpresentthespeci cexampleofthein nitefamilyof“bananagraphs”.Weformulateapositivityconjectureforthecharacteristicclassesofgraphhypersurfaces.
Fortheconvenienceofthereader,werecallin§2somegeneralfactsandresults,bothabouttheGrothendieckringofvarietiesandmotives,andaboutthetheoryofcharacteristicclassesofsingularalgebraicvarieties.Weoutlinethesimilaritiesanddi erencesbetweentheseconstructions.
In§3wegivetheexplicitcomputationoftheclassesintheGrothendieckringofthehypersurfacesofthebananagraphs.Weconcludewithageneralremarkontherelationbetweentheclassofthehypersurfaceofaplanargraphandthatofadualgraph.
In§4weobtainanexplicitformulafortheChern–Schwartz–MacPhersonclassesofthehypersurfacesofthebananagraphs.We rstproveageneralpullbackformulafortheseclasses,whichisnecessaryinordertocomputethecontributiontotheCSMclassofthecomplementofthealgebraicsimplexinthegraphhypersurface.Theformulaisthenobtainedbyassemblingthecontributionoftheintersectionwiththealgebraicsimplexandofitscomplementviainclusion–exclusion,asinthecaseoftheclassesintheGrothendieckring.
Wegivethen,in§5,aformulafortheCSMclassesofconesonhypersurfacesandusethemtoobtainformulaeforgraphhypersurfacesobtainedfromknownonebysimpleoperationsonthegraphs,suchasdoublingorsplittinganedge,andattachingsingle-edgeloopsortreestovertices.
Finally,in§6,welookatthedeformationsofordinaryφ4theorytoanoncommutativespacetimegivenbyaMoyalspace.Welookattheribbongraphsthatcorrespondtotheoriginalbananagraphsinthisnoncommutativequantum eldtheory.Weexplaintherelationbetweenthegraphhypersurfacesofthenoncommutativetheoryandoftheoriginalcommutativeone.WeshowbyanexplicitcomputationofCSMclassesthatinnoncommutativeQFTthepositivityconjecturefailsfornon-planarribbongraphs.
Acknowledgment.The rstauthorispartiallysupportedbyNSAgrantH98230-07-1-0024.ThesecondauthorispartiallysupportedbyNSFgrantDMS-0651925.WethanktheMax–Planck–InstituteandFloridaStateUniversity,wherepartofthisworkwasdone.WealsothankAbhijnanRejforexchangesofnumericalcomputationsofCSMclassesofgraphhypersurfaces.
1.1.ParametricFeynmanintegrals.Webrie yrecallsomewellknownfacts(cf.§6-2-3of[23],§18of[9],and§6of[27])abouttheparametricformofFeynmanintegrals.
Givenascalar eldtheorywithLagrangianwritteninEuclideansignatureas
2
wheretheinteractionpartisapolynomialfunctionofφ,aone-particle-irreducible(1PI)FeynmangraphofthetheoryisaconnectedgraphΓwhichcannotbedisconnectedbyremovingasingleedge,andwiththefollowingproperties.AllverticesinV(Γ)havevalenceequaltothedegreeofoneofthemonomialsintheLagrangian.ThesetofedgesE(Γ)=Eint(Γ)∪Eext(Γ)consistsofinternaledgeshavingtwoendverticesandexternaloneshavingonlyonevertex.AFeynmangraphwithoutexternaledgesiscalledavacuumbubble.
Inperturbativequantum eldtheory,theFeynmanintegralsassociatedtotheloopnumberexpansionofthee ectiveactionforascalar eldtheoryarelabeledbythe1PI(1.1)L(φ)=1φ2+Lint(φ),
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES3
Feynmangraphsofthetheory,eachcontributingacorrespondingintegraloftheform(1.2)U(Γ,p)=Γ(n D /2)
ΨΓ(t)D/2VΓ(t,p)n D /2dt1···dtn.
wherethesumisoverallthespanningtreesTofΓ.ThefunctionVΓ(t,p)isarationalfunctionoftheform
PΓ(t,p)(1.4)VΓ(t,p)=Heren=#Eint(Γ)isthenumberofinternaledgesofthegraphΓ,D∈Nisthespacetimedimensioninwhichthescalar eldtheoryisconsidered,and =b1(Γ)isthenumberofloopsinthegraph,i.e.therankofH1(Γ,Z).ThefunctionΨΓisapolynomialofdegree =b1(Γ).ItisgivenbytheKirchho polynomial te,(1.3)ΨΓ(t)=T Γe/∈E(T)
(4π)(n 1)D/2 PΓ(p,t) n+D(n 1)/2ωnσn
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
4ALUFFIANDMARCOLLI
thisassumption.However,forthealgebro-geometricargumentsthatconstitutethemaincontentofthispaper,the1PIconditionisnotstrictlynecessary.
1.2.Feynmangraphs,varieties,andperiods.ThegraphpolynomialΨΓ(t)of(1.3)alsoadmitsadescriptionasdeterminant(1.11)ΨΓ(t)=detMΓ(t)
n i=1ofan × -matrixMΓ(t)associatedtothegraph([27],§3and[9],§18),oftheform(1.12)(MΓ)kr(t)=tiηikηir,
afterchoosinganorientationoftheedges.
NoticehowtheresultisindependentofthechoiceoftheorientationoftheedgesandofthechoiceofthebasisofH1(Γ,Z).Infact,achangeoforientationinagivenedgeresultsinachangeofsigntooneofthecolumnsofthematrixηki,whichiscompensatedbythechangeofsigninthecorrespondingrowofthematrixηir,sothatthedeterminantdetMΓ(t)isuna ected.Similarly,achangeinthechoiceofthebasisofH1(Γ,Z)hasthee ectofchangingMΓ(t)→AMΓ(t)A 1forsomeA∈GL( ,Z)andthedeterminantisagainunchanged.
ThegraphhypersurfaceXΓisbyde nitionthezerolocusoftheKirchho polynomial,(1.14)XΓ={t=(t1:...:tn)∈Pn 1|ΨΓ(t)=0}.
SinceΨΓishomogeneous,itde nesahypersurfaceinprojectivespace.
Thedomainofintegrationσnde nesacycleintherelativehomologyHn 1(Pn 1,Σn),whereΣnisthealgebraicsimplex(theunionofthecoordinatehyperplanes,see(1.16)below).TheFeynmanintegral(1.2),(1.9)thencanbeviewed([11],[10])astheevaluationofanalgebraiccohomologyclassinHn 1(Pn 1 XΓ,Σ Σ∩XΓ)onthecyclede nedbyσn.Inthissense,itcanbeviewedastheevaluationofaperiodofthealgebraicvarietygivenbythecomplementofthegraphhypersurface.Tounderstandthenatureofthisperiod,oneisfacedwithtwomainproblems.Oneiseliminatingdivergences(regularizationandrenormalizationofFeynmanintegrals),andtheotherisunderstandingwhatkindofmotivesareinvolvedinthepartofthehypersurfacecomplementPn 1 XΓthatisinvolvedintheevaluationoftheperiod,hencewhatkindoftranscendentalnumbersoneexpectsto ndintheevaluationofthecorrespondingFeynmanintegrals.Adetailedanalysisoftheseproblemswascarriedoutin[11].Theexamplesweconcentrateoninthispaperarenotespeciallyinterestingfromthemotivicpointofview,sincetheyareexpressibleintermsofpureTatemotives(cf.[10]),buttheyprovideuswithanin nitefamilyofgraphsforwhichallcomputationsarecompletelyexplicit.
1.3.DualgraphsandCremonatransformation.Inthecaseofplanargraphs,thereisaninterestingrelationbetweenthehypersurfaceofthegraphandtheoneofthedualgraph.Thiswillbeespeciallyusefulintheexplicitcalculationweperformbelowinthespecialcaseofthebananagraphs.Werecallithereinthegeneralcaseofarbitraryplanargraphs.wherethen× -matrixηikisde nedintermsoftheedgesei∈E(Γ)andachoiceofabasisforthe rsthomologygroup,lk∈H1(Γ,Z),withk=1,..., =b1(Γ),bysetting +1edgeei∈looplk,sameorientation (1.13)ηik= 1edgeei∈looplk,reverseorientation 0otherwise,
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES5
thoughweseeinLemma1.2belowthatitiswellde nedalsoonthegeneralpointofΣn,itslocusofindeterminaciesbeingonlythesingularitysubschemeofΣn.
LetG(C)denotetheclosureofthegraphofC.ThenG(C)isasubvarietyofPn 1×Pn 1withprojections
(1.17)G(C)????π2 π1 ?? ? CPn 1______Pn 1ThestandardCremonatransformationofPn 1isthemap 1(1.15)C:(t1:···:tn)→.tnThisisaprioride nedawayfromthealgebraicsimplexofcoordinateaxes n 1ti=0} Pn 1,(1.16)Σn={(t1:···:tn)∈P|i
ingcoordinates(s1:···:sn)forthetargetPn 1,thegraphG(C)hasequations
(1.18)t1s1=t2s2=···=tnsn.
Inparticular,thisdescribesG(C)asacompleteintersectionofn 1hypersurfacesinPn 1×Pn 1withequationstisi=tnsn,fori=1,...,n 1.
Proof.Theequations(1.18)clearlycutoutG(C)overtheopensetU Pnwhereallt-coordinatesarenonzero.Sinceeverycomponentofaschemede nedbyn 1equationshascodimension≤n 1,itsu cestoshowthatequations(1.18)de neasetofcodimension>n 1overthecomplementofU.Nowassumethatatleastoneofthet-coordinatesequal0.Withoutlossofgenerality,supposetn=0.Intersectingwiththelocusde nedby(1.18)determinesthesetwithequations
t1s1=···=tn 1sn 1=tn=0,
whichhascodimensionn>n 1,aspromised.
ItisnothardtoseethatthevarietyG(C)hassingularitiesincodimension3.Itisnonsingularforn=2,3,butsingularforn≥4.
TheopensetUasaboveisthecomplementofthedivisorΣnof(1.16).TheinverseimageofΣninG(C)canbedescribedeasily.Itconsistsofthepoints
((t1:···:tn),(s1:···:sn))
suchthat
{i|ti=0}∪{j|sj=0}={1,...,n}.
Thislocusconsistsof2N 2componentsofdimensionn 2:onecomponentforeachnonemptypropersubsetIof{1,...,n}.ThecomponentcorrespondingtoIisthesetofpointswithti=0fori∈Iandsj=0forj∈I.
Thesituationforn=3iswellrepresentedbythefamouspictureofFigure1.Thethreezero-dimensionalstrataofΣ3areblownupinG(C)asweclimbthediagramfromthelowerlefttothetop.Thepropertransformsoftheonedimensionalstrataareblowndownaswedescendtothelowerright.Thehorizontalrationalmapisanisomorphismbetweenthecomplementsofthetriangles.TheinverseimageofΣ3consistsof23 2=6components,asexpected.
Ofcoursethesituationiscompletelysymmetric:thealgebraicsimplex(1.16)maybe 1 1(Σn)=π2(Σn).embeddedinthetargetPnaswell(withequationisi=0).Onehasπ1
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
6ALUFFIAND
MARCOLLI
Figure1.TheCremonatransformationinthecasen=3.
LetSn Pn 1bethesubschemede nedbytheideal
(1.19)ISn=(t1···tn 1,t1···tn 2tn,...,t1t3···tn,t2···tn).
TheschemeSnisthesingularitysubschemeofthedivisorwithsimplenormalcrossingsΣnof(1.16),givenbytheunionofthecoordinatehyperplanes.WecanplaceSninboththesourceandtargetPn 1.Finally,letLbethehyperplanede nedbytheequation(1.20)L={(t1:···:tn)∈Pn 1|t1+···+tn=0}.
Wethencanmakethefollowingobservations.
Lemma1.2.LetC,G(C),Sn,andLbeasabove.
(1)SnisthesubschemeofindeterminaciesoftheCremonatransformationC.
(2)π1:G(C)→Pn 1istheblow-upalongSn.
(3)LintersectseverycomponentofSntransversely.
(4)ΣncutsoutadivisorwithsimplenormalcrossingsonL.
Proof.(1)Noticethatthede nition(1.15)oftheCremonatransformation,whichisaprioride nedonthecomplementofΣnstillmakessenseonthegeneralpointofΣn.Thus,theindeterminaciesofthemap(1.15)arecontainedinthesingularitylocusSnofΣnde nedby(1.19).ItconsistsinfactofallofSnsinceafter‘clearingdenominators’,thecomponentsofthemapde ningCgivenin(1.15)canberewrittenas:
(1.21)(t1:···:tn)→(t2···tn:t1t3···tn:···:t1···tn 1),
sothatoneseesthattheindeterminaciesarepreciselythosede nedbytheideal(1.19).
(2)Using(1.21),themapπ1:G(C)→Pnmaybeidenti edwiththeblow-upofPnalongthesubschemeSnde nedbytheidealISnof(1.19).Thegeneratorsofthisidealare
thepartialderivativesoftheequationofthealgebraicsimplex.Thus,SnisthesingularitysubschemeofΣn.Itconsistsoftheunionoftheclosureofthedimensionn 2strataofΣn.Again,notethatthesituationisentirelysymmetrical:wecanplaceSninthetargetPnaswell,andviewπ2astheblow-upalongSn.
(3)and(4)areimmediatefromthede nitions.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES
7
dual graph
dual graph
Figure2.Dualgraphsofdi erentplanarembeddingsofthesamegraph.
GivenaconnectedplanargraphΓ,onede nesitsdualgraphΓ∨by xinganembeddingofΓinR2∪{∞}=S2andconstructinganewgraphinS2thathasavertexineachcomponentofS2 ΓandoneedgeconnectingtwosuchverticesforeachedgeofΓthatisinthecommonboundaryofthetworegionscontainingthevertices.Thus,#E(Γ∨)=#E(Γ)and#V(Γ∨)=b0(S2 Γ).Thedualgraphisingeneralnon-unique,sinceitdependsonthechoiceoftheembeddingofΓinS2,seee.g.Figure2.Werecallhereawellknownresult(seee.g.[10],Proposition8.3),whichwillbeveryusefulinthefollowing.
Lemma1.3.SupposegivenaplanargraphΓwith#E(Γ)=n,withdualgraphΓ∨.Thenthegraphpolynomialssatisfy 1 1te)ΨΓ∨(t (1.22)ΨΓ(t1,...,tn)=(1,...,tn),
e∈E(Γ)
hencethegraphhypersurfacesarerelatedbytheCremonatransformationCof(1.15),(1.23)C(XΓ∩(Pn 1 Σn))=XΓ∨∩(Pn 1 Σn).
Proof.Thisfollowsfromthecombinatorialidentity ΨΓ(t1,...,tn)=T Γe/∈E(T)te 1=(e∈E(Γ)te)T Γe∈E(T)t e 1=(e∈E(Γ)te)T′ Γ∨e/∈E(T′)te 1 1,...,tn).=(e∈E(Γ)te)ΨΓ∨(t1
Thethirdequalityusesthefactthat#E(Γ)=#E(Γ∨)and#V(Γ∨)=b0(S2 Γ),sothatdegΨΓ+degΨΓ∨=#E(Γ),andthefactthatthereisabijectionbetweencomplementsofspanningtreeTinΓandspanningtreesT′inΓ∨obtainedbyshrinkingtheedgesofTinΓandtakingthedualgraphoftheresultingconnectedgraph.
Writteninthecoordinates(s1:···:sn)ofthetargetPn 1oftheCremonatransfor-mation,theidentity(1.22)gives 1s ΨΓ(t1,...,tn)=(e)ΨΓ∨(s1,...,sn)
e∈E(Γ∨)
fromwhich(1.23)follows.
Wethenhavethefollowingsimplegeometricobservation,whichfollowsdirectlyfromLemma1.2andLemma1.3above.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
8ALUFFIAND
MARCOLLI
Γ3Γ4
Figure3.ExamplesofbananagraphsΓ5
1Corollary1.4.ThegraphhypersurfaceofthedualgraphisXΓ∨=π2(π1(XΓ)),withn 1πi:G(C)→P,fori=1,2,asin(1.17).TheCremonatransformationCrestrictstoa
(biregular)isomorphism
(1.24)C:XΓ Σn→XΓ∨ Σn.
1π2:π1(XΓ Σn)→XΓ∨ Σn.Themapπ2:G(C)→Pn 1of(1.17)restrictstoanisomorphism(1.25)
Noticethattheformula(1.22)canbeusedasasourceofexamplesofcombinatoriallyinequivalentgraphsthathavethesamegraphhypersurface.Infact,thegraphpolynomialΨΓ∨(s1,...,sn)isthesameindependentlyofthechoiceoftheembeddingoftheplanargraphΓintheplane,whilethedualgraphΓ∨dependsonthechoiceoftheembeddingofΓintheplane.Thus,di erentembeddingsthatgiverisetodi erentgraphsΓ∨pro-videexamplesofcombinatoriallyinequivalentgraphswiththesamegraphhypersurface.Thishasdirectconsequences,forexample,onthequestionofliftingtheConnes–KreimerHopfalgebraofgraphs[17]atthelevelofthegraphhypersurfacesortheirclassesintheGrothendieckringofmotives.Anexplicitexampleofcombinatoriallyinequivalentgraphswiththesamegraphhypersurface,obtainedasdualgraphsofdi erentplanarembeddingsofthesamegraph,isgiveninFigure2.
Weseeadirectapplicationofthisgeneralresultforplanargraphsin§3.1below,wherewederivearelationbetweentheclassesintheGrothendieckring.Ingeneral,thisrelationaloneistooweaktogiveexplicitformulae,buttheexampleweconcentrateoninthenextsectionshowsafamilyofgraphsforwhichacompletedescriptionofboththeclassintheGrothendieckringandtheCSMclassfollowsfromthespecialformthattheresultofCorollary1.4takes.
1.4.Anexample:thebananagraphs.Inthispaperweconcentrateonaparticularexample,forwhichwecancarryoutcompleteandexplicitcalculations.Weconsideranin nitefamilyofgraphscalledthe“bananagraphs”.Then-thtermΓninthisfamilyisavacuumbubbleFeynmangraphforascalar eldtheorywithaninteractiontermoftheformLint(φ)=φn.ThegraphΓnhastwoverticesandnparalleledgesbetweenthem,asinFigure3.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES9
AdirectcomputationusingtheMacaulay2program[20]forcharacteristicclassesde-velopedin[4]shows,forthe rstthreeexamplesinthisseriesofgraphsdepictedinFigure3,thefollowinginvariants(see§2forprecisede nitions).
n
t1t2+t2t3+t1t3
t1t3t4+t2t3t4
c(XΓ)
Mil(XΓ)
χ(XΓ)5H3+3H2+3H 4H34t1t2t3t4+t1t2t3t5+5
HereHdenotesthehyperplaneclassandc(XΓ)istheChern–Schwartz–MacPhersonclassofthehypersurfacepushedforwardtotheambientprojectivespace.WealsoshowtheMilnorclass,whichmeasuresthediscrepancybetweentheChern–Schwartz–MacPhersonclassandtheFultonclass,thatis,betweenthecharacteristicclassofthesingularhyper-surfaceXΓ={ΨΓ=0}andtheclassofasmoothdeformation.WealsodisplaythevalueoftheEulercharacteristic,whichonecanreado theCSMclass.ThereadercanpausemomentarilytoconsidertheCSMclassesreportedinthethreeexamplesaboveandnoticethattheysuggestageneralformulaforthisfamilyofgraphs,wherethecoe cientofHkintheCSMclassforthen-thhypersurfaceXΓnisgivenbytheformula nn 1n 1 =ifkiseven k kk 1(1.26) nn 1 +ifkisoddkk
for1<k<n,andn 1fork=1.Thus,forexample,forn≥3theEulercharacteristicχ(XΓn)ofthen-thbananahypersurface tsthepattern
(1.27)χ(XΓn)=n+( 1)n.
ThisisindeedthecorrectformulafortheCSMclassthatwillbeprovedin§4below.Thesamplecasereportedherealreadyexhibitsaninterestingfeature,whichweencounteragaininthegeneralformulaof§4andwhichseemscon rmedbycomputationscarriedoutalgorithmicallyonothersamplegraphsfromdi erentfamiliesofFeynmangraphs,namelytheunexpectedpositivityofthecoe cientsoftheChern–Schwartz–MacPhersonclasses.NoticethatasimilarinstanceofpositivityoftheCSMclassesarisesinanothercaseofvarietieswithastrongcombinatorial avor,namelythecaseoftheSchubertvarietiesconsideredin[7].Atpresentwedonothaveaconceptualexplanationforthispositivityphenomenon,butwecanstatethefollowingtentativeguess,basedonthesparsenumericalandtheoreticalevidencegatheredsofar.
Conjecture1.5.Thecoe cientsofallthepowersHkintheCSMclassofanarbitrarygraphhypersurfaceXΓarenon-negative.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
10ALUFFIANDMARCOLLI
ForthegeneralelementΓninthefamilyofthebananagraphs,thegraphhypersurfaceXΓninPn 1isde nedbythevanishingofthegraphpolynomial
).tn
Thisiseasilyseen,sinceinthiscasespanningtreesconsistofasingleedgeconnectingthetwovertices.Equivalently,onecanseethisintermsofthematrixMΓ(t).
Lemma1.6.Forthen-thbananagraphΓn,thematrixMΓn(t)isoftheform t1+t2 t200···0 t2 t2+t3 t300 0 tt+t t03344 (1.29)MΓn(t)= .00 tt+t0445 ...... ...
0000···tn 1+tn(1.28)ΨΓn=t1···tn(1
Proof.Infact,ifwechooseasabasisofthe rstcohomologyofthegraphΓntheobviousoneconsistingofthe =n 1loopsei∪ ei+1,withi=1,...,n 1,weobtainthatthen×(n 1)-matrixηikisoftheform 10000··· 11000··· .0 1100···ηik= 00 110··· 000 11··· Thus,thematrix(MΓ)rk(t)=itiηriηikhastheform(1.29).Itiseasytocheckthatthisindeedhasdeterminantgivenby(1.28).Infact,from(1.29)oneseesthatthedeterminantsatis es
detMΓn(t)=(tn 1+tn)detMΓn 1(t) t2n 1detMΓn 2(t).
Itthenfollowsbyinductionthatthedeterminantsatis estherecursiverelation
(1.30)detMΓn(t)=tndetMΓn 1(t)+t1···tn 1.
Infact,assumingtheaboveforn 1weobtain
2detMΓn(t)=tndetMΓn 1(t)+t2n 1detMΓn 2(t)+t1···tn 1 tn 1detMΓn 2(t).
ItisthenclearthatdetMΓn(t)=ΨΓn(t),withthelattergivenbytheformula(1.28),
sincethisalsoclearlysatis esthesamerecursion(1.30).
ThedualgraphΓ∨nisjustapolygonwithnverticesandwecanidentifythehypersurfacen 1XΓ∨inPwiththehyperplaneLde nedin(1.20).nWerephraseherethestatementofCorollary1.4inthespecialcaseofthebananagraphs,sinceitwillbeveryusefulinourexplicitcomputationsof§§3and4below.
1Lemma1.7.Then-thbananagraphhypersurfaceisXΓn=π2(π1(L)),withπi:G(C)→n 1P,fori=1,2,asin(1.17).TheCremonatransformationCrestrictstoa(biregular)
isomorphism
(1.31)
(1.32)C:L Σn→XΓn Σn. 1(L Σn)→XΓn Σn.π2:π1Themapπ2:G(C)→Pn 1of(1.17)restrictstoanisomorphism
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES
11
Figure4.Bananagraphswithexternaledges
InordertocomputetheFeynmanintegral(1.9),weviewthebananagraphsΓnnotasvacuumbubbles,butasendowedwithanumberofexternaledges,asinFigure4.Itdoesnotmatterhowmanyexternaledgesweattach.Thiswilldependonwhichscalar eldtheorythegraphbelongsto,buttheresultingintegralisuna ectedbythis,aslongaswehavenonzeroexternalmomenta owingthroughthegraph.
Lemma1.8.TheFeynmanintegral(1.9)forthebananagraphsΓnisoftheform(1.33)U(Γ,p)=Γ((1 D/2)(n 1)+1)C(p)2 1)(n 1) 1
2ωn 1)n,
Proof.Theresultisimmediatefrom(1.9),usingn= +1andthefactthattheonlycut-setforthebananagraphΓnconsistsoftheunionofalltheedges,sothat
PΓ(t,p)=C(p)t1···tn.
Forexample,inthecasewithn=2andD∈2N,D≥4,theintegral(uptoadivergentGammafactorΓ(2 D/2)4π D/2)reducestothecomputationoftheconvergentintegral
((DD/2 2(t(1 t))dt=.(D 3)![0,1]
Ingeneral,apartfrompolesoftheGammafunction,divergencesmayarisefromtheintersectionsofthedomainofintegrationσnwiththegraphhypersurfaceXΓn.
Lemma1.9.TheintersectionofthedomainofintegrationσnwiththegraphhypersurfaceXΓnhappensalongσn∩SninthealgebraicsimplexΣn.
Proof.ThepolynomialΨΓ(t)≥0fort∈Rn+andbytheexplicitform(1.28)ofthepolynomial,onecanseethatzeroswillonlyoccurwhenatleasttwoofthecoordinatesvanish,i.e.alongtheintersectionofσnwiththeschemeofsingularitiesSnofΣn(cf.Lemma3.8below).
OneproceduretodealwiththissourceofdivergencesistoworkonblowupsofPn 1alongthissingularlocus(cf.[11],[10]).In[26]anotherpossiblemethodofregularizationforintegralsoftheform(1.33)whichtakescareofthesingularitiesoftheintegralonσn(thepoleoftheGammafunctionneedstobeaddressedseparately)wasproposed,basedonreplacingtheintegralalongσnwithanintegralthatgoesaroundthesingularitiesalongthe bersofacirclebundle.Ingeneral,thistypeofregularizationproceduresrequiresadetailedknowledgeofthesingularitiesofthehypersurfaceXΓtobecarriedout,andthatisoneofthereasonsforintroducinginvariantsofsingularvarietiesinthestudyofgraphhypersurfaces. withthefunctionoftheexternalmomentagivenbyC(p)=(Pv)2,withvbeingeither oneofthetwoverticesofthegraphΓnandPv=e∈Eext(Γn),t(e)=vpe.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
12ALUFFIANDMARCOLLI
2.CharacteristicclassesandtheGrothendieckring
Inordertounderstandthenatureofthepartofthecohomologyofthegraphhy-persurfacecomplementthatsupportstheperiodcorrespondingtotheFeynmanintegral(ignoringdivergenceissuesmomentarily),onewouldliketodecomposePn 1 XΓintosimplerbuildingblocks.Asin§8of[11],thiscanbedonebylookingattheclass[XΓ]ofthegraphhypersurfaceintheGrothendieckringofmotives.Oneknowsbythegeneralre-sultofBelkale–Brosnam[8]thatthegraphhypersurfacesgeneratetheGrothendieckring,hencetheyarequitearbitrarilycomplexasmotives,butonestillneedstounderstandwhetherthepartofthedecompositionthatisrelevanttothecomputationoftheFeynmanintegralmightinfactbeofaveryspecialtype,e.g.amixedTatemotiveastheevidencesuggests.Thefamilyofgraphsweconsiderhereisverysimpleinthatrespect.Infact,onecanseeveryexplicitlythattheirclassesintheGrothendieckringarecombinationsofTatemotives(cf.theformula(3.13)below).OnecanseethisalsobylookingattheHodgestructure.Forthegraphhypersurfacesofthebananagraphsthisisdescribedin§8of[10].
Herewedescribetwowaysofanalyzingthegraphhypersuracesthroughanadditiveinvariant,oneasaboveusingtheclass[XΓ]intheGrothendieckring,andtheotherusingthepushforwardoftheChern–Schwartz–MacPhersonclassofXΓtotheChowgroup(orhomology)oftheambientprojectivespacePn 1.Whilethe rstdoesnotdependonanambientspace,thelatterissensitivetothespeci cembeddingofXΓintheprojectivespacePn 1,henceitmightconceivablycarryalittlemoreinformationthatisusefulinrelationtothecomputationoftheFeynmanintegralonPn 1 XΓ.Werecallherebelowafewbasicfactsaboutbothconstructions.Thereaderfamiliarwiththesegeneralitiescanskipdirectlytothenextsection.
2.1.TheGrothendieckring.LetVKdenotethecategoryofalgebraicvarietiesovera eldK.TheGrothendieckringK0(VK)istheabeliangroupgeneratedbyisomorphismclasses[X]ofvarieties,withtherelation
(2.1)[X]=[Y]+[X Y],
forY Xclosed.Itismadeintoaringbytheproduct[X×Y]=[X][Y].
Anadditiveinvariantisamapχ:VK→R,withvaluesinacommutativeringR,satisfyingχ(X)=χ(Y)ifX~=Yareisomorphic,χ(X)=χ(Y)+χ(X Y)forY Xclosed,andχ(X×Y)=χ(X)χ(Y).TheEulercharacteristicistheprototypeexampleofsuchaninvariant.AssigninganadditiveinvariantwithvaluesinRisequivalenttoassigningaringhomomorphismχ:K0(VK)→R.
LetMKbethepseudo-abeliancategoryof(Chow)motivesoverK.WewritetheobjectsofMKintheform(X,p,m),withXasmoothprojectivevarietyoverK,p=p2∈End(X)aprojector,andm∈ZaccountingforthetwistbypowersoftheTatemotiveQ(1).LetK0(MK)denotetheGrothendieckringofthecategoryMKofmotives.Theresultsof[19]showthat,forKofcharacteristiczero,thereexistsanadditiveinvariantχ:VK→K0(MK).ThisassignstoasmoothprojectivevarietyXtheclassχ(X)=
[(X,id,0)]∈K0(MK),whileforXageneralvarietyitassignsacomplexW(X)inthecategoryofcomplexesoverMK,whichishomotopyequivalenttoaboundedcomplexwhoseclassinK0(MK)de nesthevalueχ(X).Thisde nesaringhomomorphism(2.2)χ:K0(VK)→K0(MK).
IfLdenotestheclassL=[A1]∈K0(VK)thenitsimageinK0(MK)istheLefschetzmotiveL=Q( 1)=[(Spec(K),id, 1)].SincetheLefschetzmotiveisinvertibleinK0(MK),itsinversebeingtheTatemotiveQ(1),theringhomomorphism(2.2)inducesa
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES13
ringhomomorphism
(2.3)χ:K0(VK)[L 1]→K0(MK).
Thus,inthefollowingwecaneitherregardtheclasses[XΓ]ofthegraphhypersurfacesintheGrothendieckringofvarietiesK0(VK)or,underthehomomorphism(2.2),aselementsintheGrothendieckringofmotivesK0(MK).Wewillnolongermakethisdistinctionexplicitinthefollowing.
2.2.CSMclassesasameasureofsingularities.TheChernclassofanonsingularcompletevarietyVisthe‘totalhomologyChernclass’ofitstangentbundle.Wewritec(V):=c(TV)∩[V] toindicatetheresultofapplyingtheChernclassofthetangentbundleofVtothefundamentalclass[V] ofV.(Weusethenotation[V] ratherthanthemorecommon[V]inordertoavoidanyconfusionwiththeclassofVintheGrothendieckgroup.)
Theclassc(V)residesnaturallyintheChowgroupA V.Forthepurposeofthispaper,thereaderwillmissnothingbyreplacingA Vwithordinaryhomology.
TheChernclassofavarietyVisaclassofevidentgeometricsigni cance:forex-ample,thedegreeofitszero-dimensionalcomponentagreeswiththetopologicalEulercharacteristicofV.ThisfollowsessentiallyfromthePoincar´e-Hopftheorem: c(TV)∩[V] =χ(V).
ItisnaturaltoaskwhetherthereareanalogsoftheChernclassde nedforpossiblysingularvarieties,forwhichatangentbundleisnotnecessarilyavailable.
Somewhatsurprisingly,one ndsthatthereareseveralpossiblede nitions,each‘natu-ral’fordi erentreasons,andallagreeingwitheachotherinthenonsingularcase.IfXisacompleteintersectioninanonsingularvarietyV,itisreasonabletoconsidertheFultonclassc(TV)cvir(X):=
behavesastheclassofa‘virtualtangent
bundle’toX.Itsde nitioncaninfactbeextended(andinmorethanoneway)toarbitraryvarieties,see§4.2.6in[18].
Theclasscvir(X)isinasenseuna ectedbythesingularitiesofX:forahypersurfaceXinanonsingularvarietyV,itisdeterminedbytheclassofXasadivisorinV.
Amuchmorere nedinvariantistheChern-Schwartz-MacPherson(CSM)classofX,whichdependsmorecruciallyonthesingularitiesofX,andwhichwewilluseasameasureofthesingularitiesbycomparisonwithcvir(X).
Thenameoftheclassretainssomeofitshistory.Inthemid-60s,M.-H.Schwartz([29],[30])introducedaclassextendingtosingularvarietiesPoincar´e-Hopf-typeresults,bystudyingtangentframesemanatingradiallyfromthesingularities.IndependentlyofSchwartz’work,GrothendieckandDeligneconjecturedatheoryofcharacteristicclasses ttingatightfunctorialprescription,andintheearly70sR.MacPhersonconstructedaclasssatisfyingthisrequirement([25]).ItwaslaterprovedbyJ.-P.BrasseletandM.-H.Schwartz([14])thattheclassesagree.
InthispaperwedenotetheChern-Schwartz-MacPhersonclassofasingularvarietyXsimplybyc(X)(thenotationcSM(X)isfrequentlyusedintheliterature).c(NXV)
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
14ALUFFIANDMARCOLLI
Thepropertiessatis edbyCSMclassesmaybesummarizedasfollows.Firstofall,c(X)mustagreewithitsnamesakewhenXisacompletenonsingularvariety:thatis,c(X)=c(TX)∩[X] inthiscase.Secondly,associatewitheveryvarietyXanabeliangroupF(X)of‘constructiblefunctions’:elementsofF(X)are niteintegerlinearcombinationsoffunctions1Z(de nedby1Z(p)=1ifp∈Z,1Z(p)=0ifp∈Z),forsubvarietiesZofX.TheassignmentX→F(X)iscovariantlyfunctorial:foreverypropermapY→Zthereisapush-forwardf :F(Y)→F(X),de nedbytakingtopologicalEulercharacteristicof bers.Moreprecisely,forW Yaclosedsubvariety,onede nesf (1W)=χ(W∩f 1(p)),andextendsthisde nitiontoF(Y)bylinearity.
GrothendieckandDeligneconjecturedtheexistenceofauniquenaturaltransformationc fromthefunctorFtothehomologyfunctorsuchthatc (1X)=c(TX)∩[X] ifXisnonsingular.MacPhersonconstructedsuchatransformationin[25].TheCSMclassofXisthende nedtobec(X):=c (1X).Resolutionofsingularitiesincharacteristiczeroimpliesthatthetransformationisunique,andinfactdeterminesc(X)foranyX.
AsanillustrationofthefactthattheCSMclassassemblesinterestinginvariantsofavariety,applythepropertyjustreviewedtotheconstantmapf:X→{pt}.Inthiscase,thenaturalitypropertyreadsf c (1X)=c f (1X),thatis,
f c(X)=c (χ(X)1pt)
(usingthede nitionofpush-forwardofconstructiblefunction).Takingdegrees,thisshowsthat c(X)=χ(X),
preciselyasinthenonsingularcase:thedegreeoftheCSMclassofa(possibly)singularvarietyequalsitstopologicalEulercharacteristic.
Itfollowsthat,ifXisahypersurfacewithoneisolatedsingularity,thenthedegreeoftheclass
Mil(X):=c(X) cvir(X)
equals(uptoasign)theMilnornumberofthesingularity.
Forhypersurfaceswitharbitrarysingularities,asthegraphhypersurfacesweconsiderinthepresentpapertypicallyare,thedegreeoftheCSMclassequalsParusi´nski’sgener-alizationoftheMilnornumber,[28].TheclassMil(X)iscalled‘Milnorclass’,andhasbeenstudiedrathercarefullyforXacompleteintersection,[13].
Forahypersurface,theMilnorclasscarriesessentiallythesameinformationastheSegreclassofthesingularitysubschemeofX(see[5]).Inthissense,itisameasureofthesingularitiesofthehypersurface.Forexample,thelargestdimensionofanonzerotermintheMilnorclassequalsthedimensionofthesingularlocusofX.
Thegraphhypersurfacesinthispaperarehypersurfacesofprojectivespace,henceitisconvenienttoviewtheCSMclassandtheMilnorclassofXasclassesinprojectivespace.Thispushforwardisunderstoodinthetablein§1.4,andwillbeoftenunderstoodintheexplicitcomputationsof§4.
2.3.CSMclassesversusclassesintheGrothendieckring.CSMclassesarede nedin[25]byrelatingthemtoadi erentclass,called‘Chern-Matherclass’,bymeansofalocalinvariantofsingularitiesknownasthe‘localEulerobstruction’.Asnotedabove,oncetheexistenceoftheclasseshasbeenestablished,thentheircomputationmaybeperformedbysystematicuseofresolutionofsingularitiesandcomputationsofEulercharacteristicsof bers.
Thefollowingdirectconstructionstreamlinessuchcomputations,byavoidinganycom-putationoflocalinvariantsorofEulercharacteristics.Thisisobservedin[1]and[2],whereitisusedtoprovideanalternativeproofoftheGrothendieck-Deligneconjecture,andas
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES15
HerethebundleTWi( logEi)isthedualofthebundle 1Wi(logEi)ofdi erentialformsonWiwithlogarithmicpolesalongEi.Eachterm
(2.4)νi c(TWi( logEi))∩[Wi] thebasisofageneralizationofthefunctorialityofCSMclassestopossiblynon-propermorphisms.GivenavarietyX,letZibea nitecollectionoflocallyclosed,nonsingularsubvarietiessuchthatX= iZi.Foreachi,letνi:Wi→Zi ZipullsbacktoadivisorwithnormalcrossingsEionWi.Then νi c(TWi( logEi))∩[Wi] .c(X)=i
computesthecontributionc(1Zi)totheCSMclassofXduetothe(possibly)non-compact
subvarietyZi.
Wewillusethisformulationintermsofdualsofsheavesofformswithlogarithmicpolestoobtaintheresultsof§4below.
Byabuseofnotation,wedenotebyc(Z)∈A Vtheclasssode ned,foranylocallyclosedsubsetZofalargeambientvarietyV.Withthisnotioninhand,notethatifY Xare(closed)subvarietiesofV,then
c(X)=c(Y)+c(X Y),
wherepush-forwardsare,asusual,understood.Thisrelationisveryreminiscentofthebasicrelation(2.1)thatholdsintheGrothendieckgroupofvarieties(see§2.1).Atthesametime,CSMclassessatisfya‘productformula’analogoustothede nitionofproductintheGrothendieckring([24],[1]).
Moreover,CSMclassessatisfyan‘embeddedinclusion-exclusion’ly,ifX1andX2aresubvarietiesofavarietyV,then
c(X1∪X2)=c(X1)+c(X2) c(X1∩X2).
Thisisclearbothfromtheconstructionpresentedaboveandfromthebasicfunctorialityproperty.
Inshort,thereisanintriguingparallelbetweenoperationsintheGrothendieckgroupofvarietiesandmanipulationsofCSMclasses.Thisparallelcannotbetakentoofar,sincethe‘embedded’Chern-Schwartz-MacPhersontreatedhereisnotaninvariantofisomorphismclasses.
Example2.1.LetZ1andZ2be,respectively,alinearlyembeddedP1andanonsingularconicinP2.DenotingbyHthehyperplaneclassinP2,we nd
c(Z1)=(H+2H2)·[P2] andc(Z2)=(2H+2H2)·[P2]
whileofcourse[Z1]=[Z2]asclassesintheGrothendieckgroup.
Thus,inparticular,theCSMclassc(X)doesnotde neanadditiveinvariantinthesenseof§2.1anddoesnotfactorthroughtheGrothendieckgroup,astheexampleaboveshows.
IncertainsituationsitishoweverpossibletoestablishasharpcorrespondencebetweenCSMclassesandclassesintheGrothendieckgroup.Forthenextresult,weadopttheratherunorthodoxnotationH rfortheclass[Pr] ofalinearsubspaceofagivenprojectivespace.Thus,1standsfortheclassofapoint,[P0] ,andthenegativeexponentsareconsistentwiththefactthatifHdenotesthehyperplaneclassthenHr·[Pr] =[P0] .
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
16ALUFFIANDMARCOLLI
whereT=[Gm]istheclassofthemultiplicativegroup,see§
3.ThentheclassofXintheGrothendieckgroupofvarietiesequals [X]=aiTi,Proposition2.2.LetXbeasubsetofprojectivespaceobtainedbyunions,intersections,di erencesoflinearlyembeddedsubspaces.Withnotationasabove,assume c(X)=aiH i.
Thus,adoptingavariableT=H 1intheCSMenvironment,andT=TintheGrothendieckgroupenvironment,theclassescorrespondingtosubsetsasspeci edinthestatementwouldmatchprecisely.
Proof.TheformulaholdsforalinearlyembeddedX=Pr,since
c(P)=((1+H)rr+1 Hr+1)·[P] =((1+H)rr+1 Hr+1)·H r=(1+H 1)r+1 1
.T
SinceembeddedCSMclassesandclassesintheGrothendieckgroupbothsatisfyinclusion-exclusion,thisrelationextendtoallsetsobtainedbyordinaryset-theoreticoperationsperformedonlinearlyembeddedsubspaces,andthestatementfollows.
Proposition2.2applies,forexample,tothecaseofhyperplanearrangementsinPN:forahyperplanearrangement,theinformationcarriedbytheclassintheGrothendieckgroupofvarietiesispreciselythesameastheinformationcarriedbytheembeddedCSMclass.Theseclassesre ectinasubtlewaythecombinatoricsofthearrangement.
Inamoregeneralsetting,itisstillpossibletoenhancetheinformationcarriedbytheCSMclassinsuchawayastoestablishatightconnectionbetweenthetwoenvironments.Forexample,CSMclassescanbetreatedwithinaframeworkwithstrongsimilaritieswithmotivicintegration,[3].
Inanycase,oneshouldexpectthat,inmanyexamples,theworkneededtocomputeaCSMclassshouldalsoleadtoacomputationofaclassintheGrothendieckgroup.Thecomputationsin§3and§4inthispaperwillcon rmthisexpectationforthehypersurfacescorrespondingtobananagraphs.
3.Bananagraphsandtheirmotives
Inthissectionwegiveanexplicitformulafortheclasses[XΓn]ofthebananagraph
hypersurfacesXΓnintheGrothendieckring.Theprocedureweadopttocarryoutthe
computationisthefollowing.WeusetheCremonatransformationof(1.17).ConsiderthealgebraicsimplexΣnplacedinthePn 1ontheright-hand-sideofthediagram(1.17).ThecomplementofthisΣninthegraphhypersurfaceXΓnisisomorphictothecomplementof
thesameunionΣninthecorrespondinghyperplaneLinthePn 1ontheleft-hand-sideof(1.17),byLemma1.7above.Sothisprovidestheeasypartofthecomputation,andonethenhastogiveexplicitlytheclassesoftheintersectionsofthetwohypersurfaceswiththeunionofthecoordinatehyperplanes.The nalformulafortheclass[XΓn]hasa
simpleexpressionintermsoftheclassesoftoriTk,withT:=[A1] [A0]theclassofthemultiplicativegroupGm.ThenTn 1istheclassofthecomplementofΣninsidePn 1.
Inthefollowingwelet1denotetheclassofapoint[A0].WeusethestandardnotationLfortheclass[A1]ofthea neline(theLefschetzmotive).Wealsodenote,asabove,byΣntheunionofcoordinatehyperplanesinPn 1andbySnitssingularitylocus.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES17
ThisexpressioncanbethoughtofastakingplaceinalocalizationoftheGrothendieckring,butinfactthisisnotreallynecessaryifwetakethesefractionsasjustshorthandfortheirunambiguousexpansions.
Weintroducethefollowingnotation.SupposegivenaclassCintheGrothendieckringwhichcanbewrittenintheform
(3.2)
(3.3)C=a0[P0]+a1[P1]+a2[P2]+···f(P)=a0+a1P+a2P2+···Tosuchaclassweassignapolynomial
Remark3.1.NoticethattheformalvariablePdoesnotde neanelementintheGrothendieckring,sinceoneseeseasilythatPiPj=Pi+j.Infact,thevariablesPisatisfyadi erentmultiplicationrule,whichwedenoteby andwhichisgivenby(3.4)Pi Pj=Pi+j+Pi+j 1+···+Pj Pi 1 ··· 1
andwhichrecoversinthiswaytheclass[Pi×Pj].ThisfollowsfromLemma3.2,by
converting
each
of
the
twofactorsintothecorrespondingexpressionsinT,multiplyingtheseasclassesintheGrothendieckring,andthenconvertingtheresultbackintermsofthevariablesPi.
Lemma3.2.LetCbeaclassintheGrothendieckringthatcanbewrittenintermsofclassesofprojectivespacesintheform(3.2).OnecanconvertitintoafunctionoftheclassToftheform
(3.5)C=(1+T)f(1+T) f(1)FirstnoticethefollowingsimpleidentityintheGrothendieckring.r 1 Lr+1rrL=(3.1)[P]=.Ti=0
P
andthenreplacingPbytheclass[P]intheexpansionof(3.6)asapolynomialintheformalvariableP.rr
Proof.Theresultisobtainedbysolvingforfin(3.5),whichyieldstheformula(3.6).
Nextwede neanoperationonclassesoftheformC=g(T),whichonecanthinkofas“takingahyperplanesection”.Noticethatliterallytakingahyperplanesectionisnotawellde nedoperationattheleveloftheGrothendieckring,butitdoesmakesenseonclassesthatareconstructedfromlinearlyembeddedsubspacesofaprojectivespace,asisthecaseweareconsidering.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
18ALUFFIANDMARCOLLI
Lemma3.4.Thetransformation
(3.7)H:g(T)→g(T) g( 1)
T,wehave
g(T) g( 1)T 1 1
T=[Pr],
or0ifr=0,sothattheoperation(3.7)indeedcorrespondstotakingahyperplanesection.Theoperationislinearing,viewedasalinearcombinationofclassesofprojectivespaces,soitworksforarbitraryg.
Wethenhavethefollowingpreliminaryresult.
Lemma3.5.TheclassofΣr+1 PrintheGrothendieckringisoftheform
+1
(3.8)[Σ 1 Tr+1
r+1]=(1+T)r
1
T Tr +Tr 2 Tr 3+···±1.
Proof.TheclassofthecomplementofΣr+1inPristhetorusclassTr.Infact,thecomplementofΣr+1consistsofall(r+1)-tuples(1: :···: ),whereeach isanonzeroelementoftheground eld.ItthenfollowsdirectlythattheclassofΣr+1hastheform(3.8),usingtheexpression(3.1)fortheclass[Pr].OnethenappliesthetransformationHof(3.7)toobtain
[L∩Σ (1+T)r+1 1 Tr+1
r+1]= 1
1 /(T+1)=(1+T)r
T+1
fromwhich(3.9)follows. De nition3.6.ThetraceΣ′r 1ofthealgebraicsimplexΣr+1
Σr+1 P Pristhein-
tersectionofr+1withageneralhyperplane.Itisaunionofr+1hyperplanesinPr 1meetingwithnormalcrossings.
Forinstance,Σ′4consistsofthetransversalunionoffourlinesasinFigure5andby(3.9)itsclassis
[Σ′(1+T)3 1
4]=
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES
19
23Figure5.ThetraceΣ′4 PofthealgebraicsimplexΣ4 P
Proof.WeknowbyLemma1.7that
X
Γn Σn~=L ΣnviatheCremonatransformation,withL=Pn 2thehyperplane(1.20).ThishyperplaneintersectsΣntransversely,sothat(3.9)appliesandgives
[L Σn]=[L] [L∩Σn]=Tn 1 ( 1)n 1
T
Thisgivestheformula(3.11).
Wethenhavethefollowingresult..
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
20ALUFFIANDMARCOLLI
Theorem3.10.TheclassintheGrothendieckringofthegraphhypersurfaceXΓnofthebananagraphΓnisgivenby
(3.12)[XΓn]=(1+T)n 1T+1 nTn 2.
Proof.Wewritetheclass[XΓn]intheform
[XΓn]=[XΓn Σn]+[Sn].
UsingtheresultsofLemma3.9andProposition3.7wewritethisas
=Tn 1 ( 1)n 1
T,
fromwhich(3.12)follows.
Theformula(3.12)expressestheclass[XΓn]as
n 2,[XΓn]=[Σ′n] nT
i.e.astheclassoftheunionΣ′nofnhyperplanesmeetingwithnormalcrossings(asinDe nition3.6),correctedbyntimestheclassofann 2-dimensionaltorus.
Example3.11.Inthecasen=3ofFigure3,(3.12)showsthattheclassofthehyper-surfaceXΓ3 P2isequaltotheclassoftheunionoffourtransversallines,minusthree
timesa1-dimensionaltorus,i.e.thatwehave
[XΓ3]=4T+2 3T=T+2=[P1].
Thiscanalsobeseendirectlyfromthefactthattheequation
ΨΓ3=t1t2+t2t3+t1t3=0
de nesanonsingularconicintheplane.
Example3.12.Inthecasen=4ofFigure3,thehypersurfaceXΓ4isacubicsurfacein
P3withfoursingularpoints.TheclassintheGrothendieckringis
[XΓ4]=T2+5T+5.
IntermsoftheLefschetzmotiveL,theformula(3.12)readsequivalentlyas
(3.13)L
InthecontextofparametricFeynmanintegrals,itisthecomplementofthegraphhypersurfaceinPn 1thatsupportstheperiodcomputedbytheFeynmanintegral.Thus,ingeneral,oneisinterestedintheexplicitexpressionforthemotiveofthecomplement.Itsohappensthatintheparticularcaseofthebananagraphstheexpressionfortheclassofthehypersurfacecomplementisinfactsimplerthanthatofthehypersurfaceitself.Corollary3.13.TheclassofthehypersurfacecomplementPn 1 XΓnisgivenby
(3.14)[Pn 1 XΓn]=Tn ( 1)n[XΓn]=Ln 1 n(L 1)n 2.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES21
Proof.TheEulercharacteristicisanadditiveinvariant,henceitdeterminesaringho-momorphismfromtheGrothendieckringofvarietiestotheintegers.Moreover,torihavezeroEulercharacteristic,sothatχ(Tr)=0forallr≥1.Thentheformula(3.14)fortheclassofthehypersurfacecomplementshowsthat
χ(Pn 1 XΓ 1
n)=χ(Tn)+(n 1)χ(Tn 2)+χ(Tn 3) ···±1=( 1)n 1.
Sinceχ(Pn 1)=nweobtain
χ(XΓ1
n)=χ(Pn ) χ(Pn 1 XΓn)=n+( 1)n
asin(1.27).
In§4below,wederivethesameEulercharacteristicformulainadi erentway,fromthecalculationoftheCSMclassofXΓn.
Remark3.15.Noticethat,ifweexpandin(3.12)the rsttermintheform[Pn 1]=Tn 1+nTn 2+...,weseethatthedominanttermin[XΓ2n]isTn .Thisisnotsurprising,
sinceforthebananagraphsthehypersurfacesXΓnarerational.
Remark3.16.ThepreviousremarkexplainstheappearanceofatermnTn 2intheexpression(3.14).Theremainingtermsareanalternatingsumoftori.Thistermcanbeviewedas
(3.15)Tn ( 1)n
T+1,
forg(T)=Tn.AccordingtoLemma3.4,thisistheclassofthehyperplanesectionofthecomplementofthealgebraicsimplexΣn+1inPn.However,howgeometricallyonecanassociateaPntoagraphhypersurfaceXΓn Pn 1isunclear,sothatasatisfactory
conceptualexplanationoftheoccurrenceof(3.15)in(3.14)isstillmissing.
Forcompletenesswealsogivetheexplicitformulaoftheclass(3.14)writtenintermsofclasses[Pr].
Corollary3.17.Intermsofclassesofprojectivespacestheclass[Pn 1 XΓn]isgiven
by
n 1
(3.16)[Pn 1 XΓ
k=0 n+1+2 nn 1 kPk
n]=( 1)[]+n 2
k=0 n 1k+1 ( 1)n 2 k
k[Pk].
Proof.Theformula(3.16)isobtainedeasilyusingthetransformationrulesofLemma3.3togofromexpressionsinTtoexpressionsin[Pr],sothat
(Tn ( 1)n)/(T+1)→ (P 1)(P 1)n ( 1)n
正在阅读:
Feynman motives of banana graphs08-10
黄姓男孩取名10-10
关于面试中自我介绍的重要性及要点12-11
全等三角形的判定2 - 边角边01-26
2020版《衡中学案》高三历史一轮总复习考案12 必修三 第十二单元 西方人文精神的起源及其发展07-26
规模猪场技术托管方案07-26
不同支承型式矩形铝单板强度计算方法的分析07-26
八年级地理上册教学计划正式版07-22
- 1unit 7 how do you make a banana milk shake基础知识分类整理及考点典型例句精讲精析
- 2八年级英语上册-Unit8-How-do-you-make-a-banana-milk-shake-B2练习题
- 32014年秋八年级英语上册 Unit 8 How do you make a banana milk shake?单元综合评价检测
- 4八年级英语上册 Unit 8 How do you make a banana milk shake Section B 3a-self check2导学案
- 5最新人教版初中英语八年级上册Unit 8 How do you make a banana milk shake公开课教学设计
- 6(押题密卷)新八年级英语上册 Unit 8 How do you make a banana milk shake P3学案(无答案)(新版)人教
- CAD三维转二维的详细方法
- 剑桥通用五级考试KET 分类词汇识记表
- 第四届“叶圣陶杯”大赛
- 种子贮藏与加工复习资料
- 2012高考作文分析
- 120急诊急救管理规范
- 90-1B磁力搅拌器和磁力搅拌器价格
- 【高层报告】2010中央经济工作会议解读:我国宏观经济形势和政策取向
- 初中化学1-8单元方程式大全(按单元) 整理 - 副本
- SYBASE常见问题收集整理
- 相似三角形的识别1
- 2011年中级会计考试经济法大纲
- 安徽大学研究生英语期末学位考试通知
- 集团彩铃样稿
- 2021初三英语下册知识点总结
- 新疆高校思政教育主体目前存在主要问题原因和对策
- 04-04 高斯积分法及其应用
- 解除(终止)劳动合同通知书
- 坚持四大发展战略
- 我的职业准备——大学生活最后冲刺