A Transforming Metal Nanocomposite with Large Elastic Strain, Low

更新时间:2023-03-20 03:57:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

A Transforming Metal Nanocomposite with Large Elastic Strain, LowModulus, and High StrengthShijie Hao et al.

Science 339, 1191 (2013);

DOI: 10.1126/science.1228602

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for yourcolleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained byfollowing the guidelines here.

The following resources related to this article are available online at

(this information is current as of September 13, 2014 ):

Updated information and services, including high-resolution figures, can be found in the onlineversion of this article at:

/content/339/6124/1191.full.html

Supporting Online Material can be found at:

/content/suppl/2013/03/07/339.6124.1191.DC1.html

A list of selected additional articles on the Science Web sites related to this article can befound at:

/content/339/6124/1191.full.html#related This article cites 27 articles, 6 of which can be accessed free:

/content/339/6124/1191.full.html#ref-list-1 This article has been cited by 1 articles hosted by HighWire Press; see:/content/339/6124/1191.full.html#related-urls This article appears in the following subject collections:Materials Science

/cgi/collection/mat_sci

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright2013 by the American Association for the Advancement of Science; all rights reserved. The title Science is aregistered trademark of AAAS.

Downloaded from on September 13, 2014

REPORTS

initiallyalignedwiththisdirectionemittedpurecircularlypolarizedphotonsandremainedin-variantunderscattering.Theirsuperpositions,ontheotherhand,becameentangledwiththescat-teredphotonpolarization.Statesthatareinvariantundercouplingtotheenvironmentareofinterest,notonlybecauseoftheirimportanceinthequan-tummeasurementprocessbutalsobecauseoftheirpotentialuseforquantumcontrolpurposes.Invariantstatescanspandecoherence-freesub-spacesinwhichquantuminformationcanbeprotected(21).Itwouldbethereforeinterestingtosearchformulti-spinstatesthatareinvariantunderphotonscattering,anddetection,byusinglargerarraysoftrappedions.

ReferencesandNotes

1.W.H.Zurek,Rev.Mod.Phys.75,715(2003).2.Thismechanismisdifferentthantheprocessof

ein-selectionindecoherencetheory,inwhichthemutualinteractionbetweenaquantumsystem,ameasurement

3.4.5.6.7.8.9.10.11.12.13.14.15.16.

apparatus,andtheirenvironmentresultsintheemergenceofapreferredbasis(1).

C.J.Myattetal.,Nature403,269(2000).

M.Bruneetal.,Phys.Rev.Lett.77,4887(1996).

M.S.Chapmanetal.,Phys.Rev.Lett.75,3783(1995).M.Mei,M.Weitz,Phys.Rev.Lett.86,559(2001).D.A.Kokorowski,A.D.Cronin,T.D.Roberts,D.E.Pritchard,Phys.Rev.Lett.86,2191(2001).R.Ozerietal.,Phys.Rev.Lett.95,030403(2005).H.Uysetal.,Phys.Rev.Lett.105,200401(2010).N.Akerman,S.Kotler,Y.Glickman,R.Ozeri,Phys.Rev.Lett.109,103601(2012).

D.B.Hume,T.Rosenband,D.J.Wineland,Phys.Rev.Lett.99,120502(2007).

A.H.Myersonetal.,Phys.Rev.Lett.100,200502(2008).A.Keselman,Y.Glickman,N.Akerman,S.Kotler,R.Ozeri,NewJ.Phys.13,073027(2011).

B.B.Blinov,D.L.Moehring,L.M.Duan,C.Monroe,Nature428,153(2004).

J.Volzetal.,Phys.Rev.Lett.96,030404(2006).N.Akerman,S.Kotler,Y.Glickman,A.Keselman,R.Ozeri,App.Phys.B,10.1007/s00340-011-4807-6(2011).

MaterialsandmethodsareavailableassupplementarymaterialsonScienceOnline.

18.Cohen-Tannoudji,ClaudeandDiu,BernardandLaloe,

Frank,QuantumMechanics(Wiley-Interscience2006),Vol.2,p.1048.

19.M.A.Nielsen,I.L.Chuang,QuantumComputationand

QuantumInformation(CambridgeUniv.Press,Cambridge,2000).

20.M.B.Plenio,S.Virmani,put.7,

1(2007).

21.D.A.Lidar,I.L.Chuang,K.B.Whaly,Phys.Rev.Lett.81,

2594(1998).Acknowledgments:Y.G.andS.K.haveequallycontributedtothiswork.WethankN.DavidssonandD.Stamper-Kurnforusefulcommentsonthemanuscript.Wegratefully

acknowledgethesupportbytheIsraeliScienceFoundation,theMinervaFoundation,theGerman-IsraeliFoundationforscientificresearch,theCrownPhotonicsCenter,andM.KushnerSchnur,Mexico.

SupplementaryMaterials

/cgi/content/full/339/6124/1187/DC1MaterialsandMethodsFigs.S1toS4

3September2012;accepted2January201310.1126/science.1229650

17.

ATransformingMetalNanocompositewithLargeElasticStrain,LowModulus,andHighStrength

ShijieHao,1LishanCui,1*DaqiangJiang,1XiaodongHan,2*YangRen,3*JiangJiang,1

YinongLiu,4ZhenyangLiu,1ShengchengMao,2YandongWang,5YanLi,6XiaobingRen,7,8XiangdongDing,7ShanWang,1CunYu,1XiaobinShi,1MinshuDu,1FengYang,1YanjunZheng,1ZeZhang,2,9XiaodongLi,10DennisE.Brown,11JuLi7,12*

Freestandingnanowireshaveultrahighelasticstrainlimits(4to7%)andyieldstrengths,

butexploitingtheirintrinsicmechanicalpropertiesinbulkcompositeshasproventobedifficult.Weexploitedtheintrinsicmechanicalpropertiesofnanowiresinaphase-transformingmatrix

basedontheconceptofelasticandtransformationstrainmatching.ByengineeringthemicrostructureandresidualstresstocouplethetrueelasticityofNbnanowireswiththepseudoelasticityofaNiTishape-memoryalloy,wedevelopedaninsitucompositethatpossessesalargequasi-linear

elasticstrainofover6%,alowYoung’smodulusof~28gigapascals,andahighyieldstrengthof~1.65gigapascals.Ourelasticstrain-matchingapproachallowstheexceptionalmechanicalpropertiesofnanowirestobeexploitedinbulkmaterials.tischallengingtodevelopbulkmaterialsthatexhibitalargeelasticstrain,alowYoung’smodulus,andahighstrengthbecauseoftheintrinsictrade-offrelationshipsamongtheseprop-erties(1,2).AlowYoung’smodulusinasingle-phasematerialusuallymeansweakinteratomicbondingandthuslowstrength.Becauseoftheinitiationofdislocationactivityand/orearlyfail-urecausedbystructuralflaws,theelasticstrainofbulkmetalsisusuallylimitedtolessthan1%.Becausefreestandingnanowireshaveultrahighelasticstrainlimits(4to7%)andyieldstrengths(3–9),itisexpectedthatcompositesmadewithnanowireswillhaveexceptionalmechanicalprop-erties.However,theresultsobtainedsofarhavebeendisappointing(10),primarilybecausethein-trinsicmechanicalpropertiesofnanowireshavenotbeensuccessfullyexploitedinbulkcomposites(10–12).AtypicalexampleistheNbnanowire–Cumatrixcomposite,inwhichthenanowiresare

nanowires,asillustratedinFig.1A.Second,SIMTanddislocationsliparefundamentallydifferentprocessesattheatomicscale.Whereastheinelasticshearstrainbetweentwoadjacentatomicplanesapproaches100%afterdislocationslip(17),theatomic-levelinelasticortransformationstrainis~10%afterSIMTintypicalSMAssuchasNiTi(16).Therefore,inelasticstrainincompatibilities(whichmustbecompensatedforbytheelasticstrainfieldtomaintaincohesion)aremuchmilderattheSMA-nanowireinterfacethanattypicaldislocation–piled-upinterfaces.

Toverifythishypothesis,weselectedNbnanowirestobecombinedwithaNiTiSMA.TheNiTi-Nbsystemwith~20atomic%Nbun-dergoeseutecticsolidificationintoamicrostruc-tureconsistingoffineNblamellae(18),whichcanbeconvertedintoNbnanowiresthroughse-vereplasticdeformation.Inthisstudy,aningotwithacompositionofNi41Ti39Nb20(atomic%)waspreparedbymeansofvacuuminduction

StateKeyLaboratoryofHeavyOilProcessing,ChinaUni-versityofPetroleum,Beijing102249,China.2InstituteofMicrostructureandPropertiesofAdvancedMaterials,BeijingUniversityofTechnology,Beijing100124,China.3X-raySci-enceDivision,ArgonneNationalLaboratory,Argonne,IL60439,USA.4SchoolofMechanicalandChemicalEngi-neering,TheUniversityofWesternAustralia,Crawley,WA6009,Australia.5StateKeyLaboratoryforAdvancedMetalsandMaterials,UniversityofScienceandTechnologyBeijing,Beijing100083,China.6SchoolofMaterialsScienceandEn-gineering,BeihangUniversity,Beijing100191,China.7StateKeyLaboratoryforMechanicalBehaviorofMaterialsandFrontierInstituteofScienceandTechnology,Xi’anJiaotongUniversity,Xi’an710049,China.8FerroicPhysicsGroup,NationalInstituteforMaterialsScience,Tsukuba,305-0047Ibaraki,Japan.9StateKeyLaboratoryofSiliconMaterials,ZhejiangUniversity,Hangzhou310058,China.10DepartmentofMechanicalEngineering,Uni-versityofSouthCarolina,Columbia,SC29208,USA.11Depart-mentofPhysics,NorthernIllinoisUniversity,DeKalb,IL60115,USA.12DepartmentofNuclearScienceandEngineeringandDepartmentofMaterialsScienceandEngineering,Massachu-settsInstituteofTechnology,Cambridge,MA02139,USA.*Towhomcorrespondenceshouldbeaddressed.E-mail:lishancui63@(L.C.);xdhan@(X.H.);ren@aps.anl.gov(Y.R.);liju@mit.edu(J.L.)

1

I

welldispersedandwellaligned,withstronginter-facialbonding.TheelasticstrainlimitachievedintheNbnanowiresinthistypeofcompositeisonly~1.5%(13,14),farbelowwhatmaybeex-pectedoffreestandingnanowires(3–9).

Tooptimizetheretentionofnanowireprop-ertiesinacomposite,wehypothesizethatthematrixshouldnotdeformviasharpmicroscopicdefectssuchascracksordislocationsbutrathershouldberubberyorgluelike,whichsuggeststheuseofashape-memoryalloy(SMA)asthematrix.TherearetwomaindifferencesbetweenanSMAmatrixandaconventional,plasticallyde-formingmetalmatrix.First,macroscopically,SMAsupportsalargepseudoelasticstrainof~7%bystress-inducedmartensitictransformation(SIMT)(15,16),whichisastrainmagnitudecomparabletonanowireelasticity(3–9).UseofanSMAasthematrixallowsonetomatchthehighpseudo-elasticityoftheSMAwiththehighelasticityof

SCIENCE

VOL339

8MARCH20131191

REPORTS

melting(fig.S1).Macroscopicwiresoftheinsitucomposite(nanowireinsitucompositewithSMA,hereinafterreferredtoasNICSMA)withdiametersof0.3to1.0mmweresubse-quentlyfabricatedbyforging,wire-drawing,andannealing(Fig.1B)(19).Thetypicalmicro-structureofNICSMA(Fig.1,CtoE)consistsofNbnanowiresformedinsituwithameandiameterof60nm,welldispersedandwellalignedintheNiTimatrixalongthewireaxialdirection,withwell-bondedinterfaces.Theselected-areaelectrondiffraction(SAED)pattern(Fig.1F)isindexedtobody-centeredcubicNbandB2-NiTiphases.Thephasecomponentsofthecompositewerefur-thercharacterizedbyhigh-energyx-raydiffrac-tion(HE-XRD)(fig.S2)andenergy-dispersivex-rayspectroscopicanalysis(fig.S3).BothSAEDandHE-XRDdemonstratethattheNbnanowiresarewellorientedwithits[110]directionparalleltothewireaxialdirection.Figure1,GandH,showsthemorphologiesoffreestandingNbnanowiresobtainedbyremovingtheNiTimatrixviaelec-trolyticetching(fig.S4),revealingthattheNbnanowireshavelengthsrangingfrom1to100mmandameanaspectratioexceeding100.

InsitusynchrotronHE-XRD(fig.S5)wascarriedoutonNICSMAatroomtemperature.TheevolutionofthediffractionpeaksforB2-NiTi(211)andB19′-NiTi(001)(fig.S6)indicatesthattheNiTimatrixunderwentanelasticdefor-mationfollowedbySIMTduringtensileload-ing.Figure2Ashowstheevolutionofd-spacingstrainwithrespecttotheappliedmacroscopicstrainfortheNb(220)planeperpendiculartotheloadingdirection,illustratingthattheNbnanowiresexhibitedatensileelasticstrainof4.2%whenembeddedintheSIMTmatrix.ThiselasticstrainlimitoftheNbnanowiresiscom-parabletothatoffreestandingnanowires(3–9).Furthermore,theelasticstrainlimitsofthenano-wiresembeddedintheSIMTmatrixincreasegraduallywithdecreasingnanowirediameter.ThemaximumelasticstrainlimitoftheNbnano-wiresobserved(fig.S7)was6.5%(theredcurveinFig.2A).Incontrast,wefoundthat,whenevertheNiTimatrixdeformedbydislocationslipin-steadofbySIMTaftertheinitialelasticdefor-mation(fig.S8),theelasticstrainlimitsoftheNbnanowiresaregreatlyreducedto~1.3%(theblackcurveinFig.2A).Figure2Bshowsacom-parisonoftheelasticstrainlimitsof(a)Nbnano-wiresinthematrixdeformingbydislocationslip(13,14,20–22),(b)NbnanowiresinthematrixdeformingbySIMT,and(c)somefreestandingnanowires(3–9).

Afterpretreatmentwithatensilestraincy-cleof9.5%,thebulkNICSMAexhibitedalargequasi-linearelasticstrainofover6%,alowYoung’smodulusof~28GPa,andahighyieldstrengthofminimum1.65GPawithinthetem-peraturerangeof15°to50°C(Fig.3,AandB).IncomparisonwithotherknownbulkmetalswithlowYoung’smoduli—forexample,Mg,Al,andTialloysandgummetals(1,2,23,24)—theyieldstrengthofNICSMAissuperior.Figure3,Cand

D,showsgeneralcomparisonsoftheelasticstrainlimit,Young’smodulus,andyieldstrengthofNICSMAandothermetals(1,2,23–25)andhu-manbones(23).NICSMAoccupiesauniquespot

onachartofthemechanicalpropertiesofvariousbulkmaterials(fig.S9)andpossessesgoodcyto-compatibility(figs.S10andS11)andcorrosionre-sistanceinaphysiologicalenvironment(fig.S12).

Fig.1.(A)SchematicofthedesignconceptofNICSMA.Schematictensilestress-straincurvesofahigh-strengthmetallicnanowire(I),anSMA(II),andaNICSMA(III).(B)AcoilofNICSMAwirewithadiameterof0.5mm.(C)Transmissionelectronmicroscopy(TEM)imageofalongitudinalsectionofNICSMAwire.NWindicatesnanowire.(D)ScanningTEMimageofthecrosssectionofNICSMAwire(brightregions,crosssectionsofNbnanowires;darkregions,NiTimatrix).(E)High-resolutionTEMimageoftheinterfacebetweentheNbnanowireandtheNiTimatrix.(F)SAEDpatternfromalongitudinalsectionofNICSMAwire.(G)MacroscopicappearanceofabundleoffreestandingNbnanowires.(H)ScanningelectronmicroscopyimageofthefreestandingNbnanowires.

AB

Fig.2.Elasticstrainlimitsofnanowires.(A)Evolutionofthed-spacingstrainwithrespecttotheappliedmacroscopicstrainfortheNb(220)planeperpendiculartotheloadingdirectionintheNICSMAwiresinwhichtheNiTimatrixdeformedbySIMTanddislocationslip.Thegreencurve(withamaximumstrainof4.2%)correspondstothesampleshowninFig.1with60-nm-diameterNbnanowires.Theredcurve(withamaximumstrainof6.5%)correspondstoadifferentsample(fig.S7),withevennarrowerNbnanowires.(B)Comparisonoftheelasticstrainlimitsof(a)Nbnanowiresembeddedinthematrixdeformingbydislocationslip(13,14,20–22),(b)NbnanowiresembeddedinthematrixdeformingbySIMT,and(c)somefreestandingnanowires(3–9

).

VOL339

SCIENCE

11928MARCH2013

REPORTS

Fig.3.TypicalmacroscopicmechanicalpropertiesofNICSMA.(A)Tensilestress-straincurvesofapre-treatedNICSMAat15°,30°,and50°C.sS,yieldstrength;E,Young’smodulus;ee,elasticstrainlimit.(B)Cyclictensilestress-straincurvesofapretreatedNICSMAatroomtemperature.(C)Comparisonoftheyieldstrengthsandelasticstrainlimitsofdif-ferentmaterials.(D)ComparisonoftheyieldstrengthsandYoung’smoduliofdifferentmaterials.

A

B

C

D

AC

D

B

E

Fig.4.MicroscopicresponsesofNICSMArevealedbyinsitusynchrotronHE-XRD.(A)Evolutionofthed-spacingstrainforNb(220)andB2-NiTi(211)planesperpendiculartotheloadingdirectionduringthepretreat-ment.(Inset)Themacroscopicstress-straincurveofthepretreatment.(B)EvolutionofthediffractionpeaksofNb(220),B2-NiTi(211),andB19′-NiTi(001)duringthepretreatment.(C)Evolutionofthed-spacingstrainforNb(220)planeperpendiculartotheloadingdirectionduringthesubsequenttensilecycle.(Inset)Thecyclicstress-straincurve.(D)

tiveintensityoftheB19′-NiTi(001)diffractionpeakduringthesubsequenttensilecycle.TherelativeintensityisdefinedastheratiooftheintegratedareaoftheB19′-NiTi(001)diffractionpeakatagivenappliedstraintothatoftheB19′-NiTi(001)diffractionpeakatthemaximumappliedstrain.(E)EvolutionofthediffractionpeaksofNb(220),B2-NiTi(211),andB19′-NiTi(001)duringthesubsequenttensilecycle.TheB2-versus-B19′peakintensitychangescontinuously,indicatingcontinuousSIMTthroughoutthetensileloading.VOL339

8MARCH2013

SCIENCE1193

REPORTS

InsitusynchrotronHE-XRDwasusedtocharacterizethedeformationandphasetransfor-mationevolutionsoftheNbnanowiresandtheNiTimatrix,duringthepretreatment(Fig.4A,inset)andthesubsequenttensilecycle(Fig.4C,inset).Afterthepretreatment,theNbnanowiressustainedanelasticcompressivestrainof–1.4%(pointD),whereastheNiTimatrixsustainedanelastictensilestrainof1%(pointE)(Fig.4A).ThereisalsosomeretainedB19′phaseinthematrix(Fig.4B).Theseresultscanbeunderstoodasfollows.Uponremovalofthepretreatmentload,theplasticallydeformedNbnanowires(AtoBinFig.4A)hinderedtherecoveryoftheNiTimatrixbecauseoftheB19′→B2transfor-mation(15,16),whichcausedlargeresidualstrainsinthenanowiresandtheSMAwithsomeretainedB19′phase.Thisdemonstratesthatstrongcouplingbetweenthenanowiresandthematrixtookplaceduringthepretreatment.Inthesubse-quenttensilecycle(Fig.4C),theelasticstrainachievedintheNbnanowireswasupto5.6%(AtoB),consistingofthepreexistingelasticcompressivestrainof–1.4%(OtoB)andanelastictensilestrainof4.2%(OtoA).TheNiTimatrixwentthroughcontinuousSIMTthrough-outthetensileloadingandexhibitedanultralowtangentialeffectivemodulus(Fig.4,DandE)ratherthanundergoinganinitialelasticdefor-mationfollowedbyanabruptSIMTtransition,aswouldoccurinamonolithicSMA(16).ThecontinuousSIMTcanbeascribedtothecontri-butionofthepreexistinginternaltensilestressandtheretainedB19′phaseinthematrix.Uponunloading,theNiTimatrixunderwentareversetransformationfromthestress-inducedmartens-itetotheparentphase(Fig.4,DandE),in-troducingasmallhysteresisinthestress-straincurveresultingfromenergydissipationduringtheprocess.TheexperimentalevidencepresentedabovedemonstratesthattheNbnanowiresex-periencedanultrawideelasticstrainof4.2%–(–1.4%)=5.6%,whichcloselymatchesthephasetransformationstrainof~7%ofNiTi.ThismatchingofelasticandtransformationstrainsresultsintheextraordinarypropertiesofNICSMA.

ReferencesandNotes

1.M.F.Ashby,MaterialsSelectioninMechanicalDesign(Butterworth-Heinemann,Burlington,VT,2005).2.T.Saitoetal.,Science300,464(2003).

3.E.W.Wong,P.E.Sheehan,C.M.Lieber,Science277,1971(1997).

4.T.Zhu,J.Li,Prog.Mater.Sci.55,710(2010).

5.Y.Yue,P.Liu,Z.Zhang,X.Han,E.Ma,NanoLett.11,3151(2011).

6.G.Richteretal.,NanoLett.9,3048(2009).7.L.Tianetal.,NatCommun.3,609(2012).8.K.Kozioletal.,Science318,1892(2007).

9.D.A.Waltersetal.,Appl.Phys.Lett.74,3803(1999).10.Y.Dzenis,Science319,419(2008).

11.P.Podsiadloetal.,Science318,80(2007).

12.J.N.Coleman,U.Khan,Y.K.Gun'ko,Adv.Mater.18,

689(2006).

13.L.Thillyetal.,ActaMater.57,3157(2009).14.V.Vidaletal.,Scr.Mater.60,171(2009).

15.K.Otsuka,C.M.Wayman,Eds.,ShapeMemoryMaterials

(CambridgeUniv.Press,Cambridge,1998).

16.K.Otsuka,X.Ren,Prog.Mater.Sci.50,511(2005).17.S.Ogata,J.Li,S.Yip,Science298,807(2002).

18.M.Piao,S.Miyazaki,K.Otsuka,Mater.Trans.Jpn.Inst.

Met.33,337(1992).

19.SeesupplementarymaterialsonScienceOnline.20.C.C.Ayd ner,D.W.Brown,N.A.Mara,J.Almer,

A.Misra,Appl.Phys.Lett.94,031906(2009).

21.L.Thillyetal.,Appl.Phys.Lett.88,191906(2006).22.C.Scheuerlein,U.Stuhr,L.Thilly,Appl.Phys.Lett.91,

042503(2007).

23.M.Niinomi,M.Nakai,Int.J.Biomater.2011,1(2011).24.M.Niinomi,Metall.Mater.Trans.APhys.Metall.Mater.

Sci.33,477(2002).

25.D.C.Hofmannetal.,Nature451,1085(2008).Acknowledgments:WethankG.H.Wu,H.B.Xu,andY.F.ZhengforvaluablediscussionsonthedeformationmechanismofNICSMA.ThisworkissupportedbythekeyprogramprojectofNationalNaturalScienceFoundationofChina(NSFC)(51231008),theNational973programsofChina(2012CB619400and2009CB623700),andthe

NSFC(51071175,51001119,50831001,and10825419).J.L.alsoacknowledgessupportbyNSFDMR-1008104andDMR-1120901.X.D.H.acknowledgessupportbytheBeijingHigh-levelTalents(PHR20100503),theBeijingPXM201101420409000053,andBeijing211project.

D.E.B.acknowledgessupportbytheInstituteforNanoScience,Engineering,andTechnology(INSET)ofNorthernIllinois

eoftheAdvancedPhotonSourcewassupportedbytheU.S.DepartmentofEnergy,OfficeofScience,undercontractno.DE-AC02-06CH11357.

SupplementaryMaterials

/cgi/content/full/339/6124/1191/DC1MaterialsandMethodsFigs.S1toS12References(26–30)

9August2012;accepted10January201310.1126/science.1228602

TerrestrialAccretionUnderOxidizingConditions

JulienSiebert,1*JamesBadro,2DanieleAntonangeli,1FrederickJ.Ryerson2,3

Theabundanceofsiderophileelementsinthemantlepreservesthesignatureofcoreformation.

Onthebasisofpartitioningexperimentsathighpressure(35to74gigapascals)andhightemperature(3100to4400kelvin),wedemonstratethatdepletionsofslightlysiderophileelements(vanadiumandchromium),aswellasmoderatelysiderophileelements(nickelandcobalt),canbeproducedbycoreformationundermoreoxidizingconditionsthanpreviouslyproposed.Enhancedsolubilityofoxygeninthemetalperturbsthemetal-silicatepartitioningofvanadiumandchromium,precludingextrapolationofpreviousresults.WeproposethatEarthaccretedfrommaterialsasoxidizedasordinaryorcarbonaceouschondrites.Transferofoxygenfromthemantletothecoreprovidesamechanismtoreducetheinitialmagmaoceanredoxstatetothatofthepresent-daymantle,reconcilingtheobservedmantle

vanadiumandchromiumconcentrationswithgeophysicalconstraintsonlightelementsinthecore.hedepletionofsiderophile(i.e.,“iron-loving”)elementsinEarth’smantlerelativetochondritescanconstraintheredoxstateofaccretingmaterialsduringterrestrialaccretionandcoredifferentiation(1–4).Forexample,metal-InstitutdeMinéralogieetdePhysiquedesMilieuxCondensés,UniversitéPierreetMarieCurie,UMRCNRS7590,InstitutdePhysiqueduGlobedeParis,75005Paris,France.2InstitutdePhysiqueduGlobedeParis,UniversitéParisDiderot,75005Paris,France.3LawrenceLivermoreNationalLaboratory,Livermore,CA94551,USA.

*Towhomcorrespondenceshouldbeaddressed.E-mail:julien.siebert@impmc.upmc.fr

1

T

silicatepartitioningexperimentsatatmospher-icpressureindicatethattheobserveddepletionofslightlysiderophileelements(SSEs)suchasVandCrcanonlybeproducedatconditionsmorereducingthanthoserequiredtoaccountfortheabundanceofmoderatelysiderophileelements(suchasNi,Co,andW)orhighlysiderophileele-ments(5).Usingmetal-silicatepartitioncoefficientsobtainedatpressuresupto25GPa,homogeneousaccretionmodelspositthatmetal-silicateequilib-riumtookplaceatthebaseofadeepterrestrialmagmaoceanatasingleoxygenfugacity(fO2)(6–8).However,thepressure-temperature(P-T)

VOL339

SCIENCE

conditionsrequiredtoproducetheobservedde-pletionsforVandCr(atthepresent-dayfO2)requiretemperaturesthatgreatlyexceedthatofthemantleliquidus(2,4,9,10).Suchcondi-tionsarephysicallyinconsistentwiththemagmaoceanhypothesis,wheretheP-Tconditionsatthebaseofamagmaoceannecessarilyliebe-tweenthemantlesolidusandliquidus,therebycreatingarheologicalboundarythatenablesthemetaltopondandequilibratewiththesilicatemelt.TosatisfythisrheologicalconstraintandSSEabundancepatterns,recentmodelsofcorefor-mationconstrainmetal-silicateequilibrationtotheP-TconditionsoftheperidotiteliquidusandinvokeearlyaccretionofhighlyreducedmaterialswithaFeO-poorsilicatecomponent(2,4,10,11).TheseinitiallylowfO2conditions(~IW-4,cor-respondingto4logfO2unitsbelowtheiron-wüstitebuffer)enhancethesiderophilecharacteroftheSSEsattherelevantP-Tconditions.Subsequent,gradualoxidationofthemantleto~IW-2overthecourseofcoreformationisre-quiredtoaccountformoderatelysiderophileele-mentabundancesand,mostimportant,toreachthecurrentmantleFeOcontent[8weightpercent(wt%)FeOinsilicate].Underreducingcon-ditions,siliconislikelytobetheonlylightele-mententeringthecoreinlargeamounts(10–12).ThisscenarioreliesonextensivepressureandtemperatureextrapolationofSSEpartitioningdata,asexistingresultsarerestrictedtorela-

本文来源:https://www.bwwdw.com/article/6jp1.html

Top