传质分离过程习题答案

更新时间:2023-10-23 17:43:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第二章习题

1. 计算在0.1013MPa和378.47K下苯(1)-甲苯(2)-对二甲苯(3)三元系,当x1 = 0.3125、x2 =0.2978、x3 =0.3897时的K值。汽相为理想气体,液相为非理想溶液。并与完全理想系的 K值比较。已知三个二元系的wilson方程参数(单位: J/mol ): λ12-λ11=-1035.33; λ12-λ22=977.83 λ23-λ22=442.15; λ23-λ33=-460.05 λ13-λ11=1510.14; λ13-λ33=-1642.81

在T =378.4 K时液相摩尔体积(m3/kmol)为:

=100.91×10 -3 ;

=177.55×10 -3 ;

=136.69×10 -3

安托尼公式为(ps:Pa ; T:K ): 苯:1n =20.7936-2788.51/(T-52.36); 甲苯:1n

=20.9065-3096.52/(T-53.67);

对 -二甲苯:1n

=20.989 1-3346.65/(T-57.84);

解:

由Wilson方程得:

Vl2Λ12=Vl1exp[-(λ12-λ11)/RT]

177.55?103 =100.91?103×exp[-(1035.33)/(8.314×378.47)]=2.4450

Λ21=0.4165 Λ13=0.8382 Λ31=1.2443 Λ23=0.6689 Λ32=1.5034 lnγX1=1-ln(Λ12X2+Λ13X3)-[

1X3X??21X2X??31] 1??12X2??13X31?21?X2?X3?23X1?31?X2?32?X3=0.054488 γ1=1.056

同理,γ2=1.029; γ3=1.007

lnP1S=20.7936-2788.51/(378.47-52.36)=12.2428, P1S=0.2075Mpa lnP2S=20.9062-3096.52/(378.47-53.67)=11.3729, P2S=0.0869Mpa lnP3S=20.9891-3346.65/(378.47-57.84)=10.5514, P3S=0.0382Mpa 作为理想气体实际溶液,

?1PS1K1=

P=2.16, K2=0.88, K3=0.38003

若完全为理想系,

PS1K1=P=2.0484 K2=0.8578 K3=0.3771

1

2. 在361K和4136.8kPa下,甲烷和正丁烷二元系呈汽液平衡,汽相含甲烷0.60387%( mol ),与其平衡的液相含甲烷0.1304%。用R-K 方程计算

.50.42748R2?Tc21和Ki值。

解:a11=

pc1=3.222MPa ? dm6 ? k0.5 ? mol-2

.50.42748R2?Tc22a22=

pc2=28.9926 MPa?dm6?k0.5?mol-2

0.08664R2?Tc1b1=

pc1=0.0298 dm3mol-1

.50.42748R2?Tc22b2=

pc2=0.0806 dm3mol-1

其中Tc1=190.6K, Pc1=4.60Mpa Tc2=425.5K, Pc2=3.80Mpa 均为查表所得。

a12=√a11?a22=9.6651MPa?dm6?k0.5?mol-2 液相:

a=a11x12+2a12x1x2+a22x22 =3.22×0.13042+2×9.6651×0.1304×0.8696+28.9926×0.86962 =24.1711 b=b1x1+b2x2=0.0298×0.1304+0.0806×0.8696=0.0740 由R-K方程: P=RT/(V-b)-a/[T0.5V(V+b)]

0.0083145?36124.1711l0.5llV?0.0740361V(V?0.0740) mmm4.1368=-

解得 Vml=0.1349

ln?1=ln[V/(V-b)]+[bi/(V-b)]-2Σyiaij/bmRT1.5*ln[(V+b)/V]+abi/b2RT1.5{ [ln[(V+b)/V]-[b/(V+b)] }-ln(PV/RT)

?l0.13490.0298)?ln?=ln0.1349?0.0740+0.1349?0.0740-

l1(2?(0.1304?3.222?0.8696?9.6651)0.1349?0.07400.13400.0740?0.0083145?3611.5×ln()+ 24.1711?0.02980.1347?0.07400.13490.07402?0.0083145?3611.5×[ln() 0.07404.1368?0.1349-0.1347?0.0740]-ln0.0083145?361

=1.3297

?l?1=3.7780

2

?l?l??2同理ln=-1.16696, 2=0.3113

汽相:a = 3.222×0.603872+2×9.6651×0.60387×0.39613+28.9926×0.396132 = 10.3484

b=0.0298×0.60387+0.0806×0.39613=0.0499

0.0083145?36110.3484v0.5vvV?0.0499361V(V?0.0499) mmm由4.1368=-

vV得m=0.5861

0.58610.0298lnΦ=ln(0.5861?0.0499)+0.5861?0.0499-

v12?(0.60387?3.222?0.39613?9.66510.5861?0.049910.3484?0.0298?ln()?0.58610.0499?0.0083145?3611.50.04992?0.0083145?3611.5

0.5861?0.04990.04994.1368?0.5861)?0.58610.5861?0.0499]-ln(0.0083145?361) ×[ln

(=0.0334942 故Φ

v1=1.0341

?l?l??2同理,ln=-0.522819, 2=0.5928

v?l?11故K1=y1/x1=0.60387/0.1304=4.631 ( K1=/Φ)

1?0.60387K2=y2/x2=1?0.1304=0.4555

3. 乙酸甲酯(1)-丙酮(2)-甲醇(3)三组分蒸汽混合物的组成为y1=0.33,y2=0.34,y3=0.33(摩尔分率)。汽相假定为理想气体,液相活度系数用Wilson方程表示,试求50℃时该蒸汽混合物之露点压力。

解:由有关文献查得和回归的所需数据为: 【P24例2-5,2-6】 50℃时各纯组分的饱和蒸气压,kPa

P1S=78.049 P2S=81.848 P3S=55.581 50℃时各组分的气体摩尔体积,cm3/mol V1l=83.77 V2l=76.81 V3l=42.05

由50℃时各组分溶液的无限稀释活度系数回归得到的Wilson常数: Λ11=1.0 Λ21=0.71891 Λ31=0.57939 Λ12=1.18160 Λ22=1.0 Λ32=0.97513 Λ13=0.52297 Λ23=0.50878 Λ33=1.0

(1) 假定x值, 取x1=0.33,x2=0.34,x3=0.33。按理想溶液确定初值 p=78.049×0.33+81.8418×0.34+55.581×0.33=71.916kPa (2) 由x和Λij求γi 从多组分Wilson方程

3

lnγi=1-ln∑

?(x?jj?1c?ijcxk?kj)-

k?1?x?jj?1ckj

x1?21x2x??12x2??13x3+ ?21x2?x2??23x3+

得lnγ1=1-ln(x1+Λ12x2+Λ13x3)-[1?31x3?31x1??32x2?x3 =0.1834

故γ1=1.2013

同理,γ2=1.0298 γ3=1.4181 (3) 求Ki

?ipisKi=?ViL(p?pis)?exp??pRT??

83.77(71.96?78.049)?10?31.2013?78.04971.9168.314?323.16K1=exp=1.3035

同理K2=1.1913 K3=1.0963

(4) 求∑xi

0.330.340.33∑xi=1.3035+1.1713+1.0963=0.8445

整理得 x1=0.2998 x2=0.3437 x3=0.3565

在p=71.916kPa内层经7次迭代得到:x1=0.28964, x2=0.33891, x3=0.37145 (5) 调整p

?ViL(p?pis)???ipxiexp?RT??? p=

si =p

?Kxii

=71.916(1.3479×0.28964+1.18675×0.33891+1.05085×0.37145) =85.072kPa 在新的p下重复上述计算,迭代至p达到所需精度。 最终结果:露点压力85.101kPa 平衡液相组成:

x1=0.28958 x2=0.33889 x3=0.37153

4. 一液体混合物的组分为:苯0.50;甲苯0.25;对-二甲苯0.25(摩尔分数)。分别用平衡常数法和相对挥发度法计算该物系在100kPa时的平衡温度和汽相组成。假设为完全理想物系。 解:(1) 平衡常数法

因为汽相、液相均为完全理想物系,故符合乌拉尔定律pyi=pisxi

yipisx而Ki=i=p

设T为80℃时 ,由安托尼公式(见习题1)求出格组分的饱和蒸汽压。

4

pss=101.29kPa, ps12=38.82kPa, p3=15.63kPa

y1?y2?y3=K1x1

+K2x2

+K3x3

pss1x?p2ps31x2?x3 =ppp

101.29?0.5?38.82?0.25?15.63?0. =10010010025

=0.64<1

故所设温度偏低,重设T为95℃时

pss=176.00kPa, ps12=63.47kPa, p3=27.01kPa

y1?y2?y3=1.11>1

故所设温度偏高,重设T为91.19℃,

pssps1=160.02kPa, p2=56.34kPa, 3=23.625kPa

y1?y2?y3=1.0000125≈1

故用平衡常数法计算该物系在100kPa时的平衡温度为91.19℃

ps1x160.021?0.5汽相组成:y1=K1x1=p=100=0.8001

ps2x56.342?0.25 y2=K2x2=p=100=0.1409 ps3x23.625y3?0.253=K3x3=p=100=0.059

(2)相对挥发度法

?y11i?(由于是理想混合物,所以

y)/(x1x)yy1i?ii, 得?1i(x1/xi)pS1S对于理想混合物,得?1i=P2

设T为80℃时,

psSs1=101.29kPa, p2=38.82kPa, p3=15.63kPa

故?12=2.61, ?13=6.48, y2=y1/5.22, y3=y1/12.96

因为

y1?y2?y3=1,故y1=0.788

5

本文来源:https://www.bwwdw.com/article/6guf.html

Top