2010年内蒙古鄂尔多斯

更新时间:2024-03-16 13:20:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

12999数学网 www.12999.com

2010年鄂尔多斯市初中毕业升学考试

数 学

注意事项:

1. 本试题满分120分,考试用时120分钟. 答题前将密封线内的项目填写清楚.

2. 考试结束后将试卷按页码顺序排好,全部上交. 题号 得分 一 二 19 20 21 22 三 23 24 25 26 总分 1~10 11~18 一、选择题(本大题10个小题,每小题3分,共30分.每小题给出的四个选项中只有一个是正确的,请把正确选项填在下面的选项栏内) 题号 选项 1 2 3 4 5 6 7 8 9 10 1.如果a与1互为相反数,则a等于( ). A.2 B.?2 C.1 D.?1 2.如图,数轴上的点P表示的数可能是( ). A.5

B.-?5

C.?3.8

D.?10 3.下列计算正确的是( ). A.a?2a?3a C.(a3)2?a9

23第2题图

326

a?a B.a?D.a3?a4?a?1(a?0)

4.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是

( ).

(俯视图) 第4题图

A. B.

C. D.

5.用折纸的方法,可以直接剪出一个正五边形.折纸过程如图所示,则??等于( ). A.108? B.90? C.72° D.60°

第5题图

第 1 页 共 12 页

12999数学网 www.12999.com

6.如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y(米)与时间x(分)关系的是( ).

A. B.

第6题图

C.

D.

7.如图,在ABCD中,E是BC的中点,且?AEC??DCE,则下列结论不正确的是( ). ...A.S△ADF?2S△EBF

?C.四边形AECD是等腰梯形

1DF 2D.?AEB??ADC

B.BF?第7题图

8.已知二次函数y??x2?bx?c中函数y与自变量x之间的部分对应值如右表所示,点A(x1,y1),B(x2,y2)在函数

的图象上,当o?x1?1. ,2?x2?3时,y1与y2的大小关系正确的是( )A.y1≥y2

B.y1?y2

C.y1?y2

D.y1≤y2

?a?1(a≤b)?9.定义新运算:a?b??a,则函数y?3?x的图象大致是( ).

?(a?b且b?0)??bA.

B.

C.

第9题图

D.

10.某移动通讯公司提供了A、B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误的..是( ).

A.若通话时间少于120分,则A方案比B方案便宜20元 B.若通话时间超过200分,则B方案比A方案便宜

C.若通讯费用为60元,则B方案比A方案的通话时间多 D.若两种方案通讯费用相差10元,则通话时间是145分或185分

第10题图

第 2 页 共 12 页

12999数学网 www.12999.com

二、填空题(本大题8个小题,每小题3分,共24分) 11.在函数y?x?2中,自变量x的取值范围是__________.

12.把3??3a?2(a?1)?化简得_________.

13.“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为140元的运动服,打折后他比按原价购买节省了________元. 14.为参加“初中毕业升学体育考试”,小亮同学在练习掷实心球时,测得5次投掷的成绩分别为:8,8.2,8.5,8,8.6(单位:m),这组数据的众数、中位数依次是___________. 15.如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒??照这样的规律继续摆下去,第n个图形需要__________根小棒(用含n的代数式表示).

第15题图

2x?m?3的解是正数,则m的取值范围为________. x?217.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径为50cm.小红同学为了在“圣

16.已知关于x的方程

诞”节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是______度.

O1

第17题图

PO2

第18题图

18.如图,⊙O1和⊙O2的半径分别为1和2,连接O1O2,交⊙O2于点P,O1O2?5,若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切_________次.

三、解答题(本大题8个小题,共66分,解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)

?1?(1)计算:?2?3?27????(π?2)0;

?3?2?1

第 3 页 共 12 页

12999数学网 www.12999.com

a2?b2?2ab?b2?(2)先化简:再求值:2??a??,其中a?2?1,b?1.

a?ab?a?

20.(本小题满分7分)

近年来,随着经济的快速发展,我市城市环境不断改观,社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来我市观光的首选景点作了一次抽样调查,调查结果图表如下:

(1)此次共调查了多少人?并将上面的图表补充完整.

(2)如果将上表制成扇形统计图,那么“恩格贝”所对的圆心角是多少度?

(3)该旅行社预计6月份接待外地来我市的游客2 500人,请你估算一个首选去成陵观光的约有多少人?

景点 成陵 响沙湾 恩格贝 七星湖 巴图湾 频数 116 84 63 37 频率 29% 25% 21% 15.75% 9.25%

第20题图

21.(本小题满分6分)

如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.

(1)求这三条线段能组成三角形的概率(画出树状图); (2)求这三条线段能组成直角三角形的概率.

第21题图

第 4 页 共 12 页

12999数学网 www.12999.com

22.(本小题满分8分)

,E为CD的中点,EF∥AB交BC于如图,在梯形ABCD中,AD∥BC,?C?90°点F.

(1)求证:BF?AD?CF;

,BC?7,且BE平分?ABC时,求EF的长. (2)当AD?1 第22题图 23.(本小题满分7分)

某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(2≈1.4,3≈1.7)

(1)求出树高AB;

(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.

第23题图

第 5 页 共 12 页

12999数学网 www.12999.com

24.(本小题满分9分)

??BE?,BD∥CE,连接AE并延长交BD于D. 如图,AB为⊙O的直径,劣弧BC求证:(1)BD是⊙O的切线;

·AD. (2)AB?AC

第24题图

25.(本小题满分10分)

在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.

(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?

(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.

2第 6 页 共 12 页

12999数学网 www.12999.com

26.(本小题满分11分)

如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA?15,OC?9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点. (1)求N点、M点的坐标;

(2)将抛物线y?x2?36向右平移a(0?a?10)个单位后,得到抛物线l,l经过N点,求抛物线l的解析式;

(3)①抛物线l的对称轴上存在点P,使得P点到M,N两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.

第26题图

第 7 页 共 12 页

12999数学网 www.12999.com

2010年鄂尔多斯市初中毕业升学考试

数学试题参考答案及评分说明

(一)阅卷评分说明

1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期予以复查,防止前后期评分标准宽严不一致. 2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.

3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).

4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分. 5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.

6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准

一、选择题(本大题10个小题,每小题3分,共30分) 题 号 选项 1 C 2 B 3 D 4 D 5 B 6 D 7 A

8 C 9 B 10 D 二、填空题(本大题8个小题,每小题3分,共24分) 11.x≥2 12.a?5 13.28 14.8,8.2 16.m??6且m??4

17.18(18°)

18.3

15.4n?1

三、解答题(本大题8个小题,共66分) 19.(本小题满分8分)

?1?(1)计算:?22?3?27????(π?2)0

?3?解:原式=?4?3?3 ············································································· 3分(一处正确给1分) ??10. ····································································································································4分

?1a2?b2?2ab?b2?(2)先化简:再求值:2??a??,其中a?2?1,b?1.

a?ab?a?(a?b)(a?b)(a?b)2解:原式= ····················································· 2分(一处正确给1分) ?a(a?b)a=

1 ·······································································································································3分 a?b?12 ···················································································································4分 ?2?1?1220.(本小题满分7分)

第 8 页 共 12 页

12999数学网 www.12999.com

景点 成陵 响沙湾 恩格贝 七星湖 巴图湾

频数 116 100 84 63 37 频率 29% 25% 21% 15.75% 9.25% 解:(1)84?21%?400(人).答:共调查了400人. ····················································2分 400?25%?100(人),补充图表如下 ····························································· 4分(各1分) (2)360°?21%?75.6°.答:“恩格贝”所对的圆心角是75.6°. ·································6分 (3)2500?29%?725(人).答:首选去成陵的人数约725人. ···································7分 21.(本小题满分6分) 解:(1)树状图:

··························································3分

P(组成三角形)?42··········································································································5分 ?.·

631(2)P(组成直角三角形)?. ································································································6分

622.(本小题满分8分) (1)证法一: 如图(1),延长AD交FE的延长线于N,

??NDE??FCE?90°,?DEN??FEC, DE?EC,图(1)

?△NDE≌△FCE. ············································································································3分 ?DN?CF. ·························································································································4分 ?AB∥FN,AN∥BF,?四边形ABFN是平行四边形. ·············································5分 ?BF?AD?DN?AD?FC. ···························································································6分

??1??BEF.??1??2,??2??BEF. (2)解:?AB∥EF,?EF?BF. ··························································································································7分

?EF?AD?CF?AD?BC1?7??4. ········································································8分 22(1)证法二:如图(2)

过D点作DN∥AB交BC于N,

?AD∥BN,AB∥DN,?AD?BN. ·························· 1分 ?EF∥AB,?DN∥EF. ··············································· 2分 ?△CEF∽△CDN. ························································ 3分

图(2)

第 9 页 共 12 页

12999数学网 www.12999.com

?CECF?. ························································································································4分 DCCNCE1CF1·······················································································5分 ?,??,即NF?CF. ·

DC2CN2??BF?BN?NF?AD?FC. ····························································································6分

23.(本小题满分7分) 解:(1)AB?ACtan30° ·····································································································1分

?12?3.(结果也可以保留一位小数,下同) ?43≈7(米)

3答:树高约7米.·····················································································································2分

(2)①如图(2),B1N?AN?AB1sin45°?43?2······························3分 ≈5(米) ·

2··········································································4分 NC1?NB1tan60°?26?3≈8(米) ·. AC1?AN?NC1?5?8?13(米)

答:树与地面成45°角时影长约13米. ················································································5分 ②如图(2)当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大) ··························································································6分 . AC2?2AB2≈14(米)

答:树的最大影长约14米. ···································································································7分

24.(本小题满分9分)

??BE?, 证明:(1)?CB?····································· 2分 ??1??2,AC??AE,AC?AE, ·

?AB?CE. ········································································· 3分 ?CE∥BD,?AB?BD. ··················································· 4分 ?BD是⊙O的切线. ···························································· 5分 (2)连接CB.

?AB是⊙O的直径,??ACB?90°. ···············································································6分 ??ABD?90°,??ACB??ABD. ···················································································7分 ??1??2,△?ACB∽△ABD. ························································································8分

第 10 页 共 12 页

12999数学网 www.12999.com

ACAB?,?AB2?AD·AC. ························································································9分 ABAD(证法二,连接BE,证明略) ?25.(本小题满分10分)

解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍需资金y万元, 则??x?3y?480 ············································································ 3分(正确一个方程组2分)

?3x?y?400?x?90. ···················································································································4分

y?130?解之得?答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍需资金130万元.

···················································································································································5分 (2)设A类学校应该有a所,则B类学校有(8?a)所,

则??20a?30(8?a)≥210 ································ 7分(正确一个不等式给1分)

(90?20)a?(130?30)(8?a)≤770??a≤3. ··························································································································8分

?a≥1解得??1≤a≤3,即a?1,2,3. ···································································································9分

答:有3种改造方案:

方案一:A类学校1所,B类学校7所; 方案二:A类学校2所,B类学校6所; 方案三:A类学校3所,B类学校5所. ··········································································· 10分 26.(本小题满分11分) 解:如图

(1)?CN?CB?15,OC?9,

······································· 1分 ?ON?152?92?12,?N(12,0). ·又?AN?OA?ON?15?12?3,设AM?x,

································································· 2分 ?32?x2?(9?x)2, ·

?x?4,M(15,4). ···············································································································3分

(2)解法一:设抛物线l为y?(x?a)?36,

则(12?a)?36. ·····················································································································4分 . ··································································································5分 ?a1?6或a2?18(舍去)

22第 11 页 共 12 页

12999数学网 www.12999.com

······························································································6分 ?抛物线l:y?(x?6)2?36. ·

解法二:?x2?36?0,x1??6,x2?6,

··································································4分 0)和(6,0). ·?y?x2?36与x轴的交点为(?6,0)向右平移6个单位到N点, ·由题意知,交点(6,·······························································5分

所以y?x2?36向右平移6个单位得到抛物线l:y?(x?6)2?36. ·································6分 (3)①由“三角形任意两边的差小于第三边”知,P点是直线MN与对称轴x?6的交点,

··············································7分

4??12k?b?0?k?设直线MN的解析式为y?kx?b,则?,解之得?3

?15k?b?4??b??16?y?4x?16.?P(6,?8). ··································································································8分 3mDE4?ACB∽△ABD,??,DE?m. ·②?DE∥OA,△····································9分

912314234?S??m?(9?8?m)??m2?m. ·································································· 10分

233334234?3173?a???0,开口向下,又m?????9,?S有最大值, 32?2?3?42?????3?S最大

2?17?3417289. ··············································································· 11分 ????????3?2?3262第 12 页 共 12 页

本文来源:https://www.bwwdw.com/article/6gj8.html

Top