实验一 MATLAB系统的传递函数和状态空间表达式的转换 - 图文

更新时间:2023-10-22 16:23:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

实验一 MATLAB系统的传递函数和状态空间表达式的转换

一、

实验目的

1、学习多变量系统状态空间表达式的建立方法;

2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数之间相互转换的方法;

3、掌握相应的MATLAB函数。 二、

实验原理

设系统的模型如式(1.1)所示:

?x'?Ax?Bu x?R'' u?R’’’ y?RP (1.1) ??y?Cx?D其中A为nXn维系统矩阵、B为nXm维输入矩阵、C为pXn维输出矩阵,D为直接传递函数。系统的传递函数和状态空间表达式之间的关系如式(1.2)所示

G(s)=num(s)/den(s)=C (SI-A)-1 B+D (1.2)

式(1.2)中,num(s)表示传递函数的分子阵,其维数是pXm,den(s)表示传递函数的按s降幂排列的分母。

表示状态空间模型和传递函数的MATLAB函数如下:

函数ss(state space的首字母)给出了状态空间模型,其一般形式是: sys=ss(A,B,C,D)

函数tf(transfer function的首字母)给出了传递函数,其一般形式是: G=tf(num,den)

其中num表示传递函数中分子多项式的系数向量(单输入单输出系统),den表示传递函数中分母多项式的系数向量。

函数tf2ss给出了传递函数的一个状态空间实现,其一般形式是: [A,B,C,D]=tf2ss(num,den)

函数ss2tf给出了状态空间模型所描述系统的传递函数,其一般形式是: [num,den]=ss2tf(A,B,C,D,iu)

其中对于多输入系统,必须确定iu的值。例如,若系统有三个输入u1,u2,u3,则iu必须是1、2、或3,其中1表示u1,2表示u2,3表示u3。该函数的结果是第iu个输入到所有输出的传递函数。 三.实验步骤及结果

1、应用MATLAB对下列系统编程,求系统的A、B、C、D阵,然后验证传递函数是相同的。

?2s?1?G(s)= ???s^2?5s?3?程序和运行结果:

s3+4s2+5s+1

num=[0 0 2 1;0 1 5 3];

den=[1 4 5 1];

[A,B,C,D]=tf2ss(num,den) A = -4 -5 -1

1 0 0 0 1 0 B = 1

0 0

C =0 2 1 1 5 3

D =0

0

A=[-4 -5 -1;1 0 0;0 1 0]; A=[-4 -5 -1;1 0 0;0 1 0]; B=[1;0;0];

C=[0 2 1;1 5 3]; D=[0;0];

[num1,den1]=ss2tf(A,B,C,D,1)

num1 = 0 0.0000 2.0000 1.0000

0 1.0000 5.0000 3.0000 den1 =1.0000 4.0000 5.0000 1.0000

2、给定系统G(s)=s^2?4s?5和状态空间模型

程序和运行结果: num=[0 1 4 5];

den=[1 6 11 6]; sys=tf(num,den)

Transfer function: s^2 + 4 s + 5

s^3?6s^2?11s?6,求系统的零极点增益模型

---------------------- s^3 + 6 s^2 + 11 s + 6

>> sys1=tf2zp(num,den)

sys1 = -2.0000 + 1.0000i -2.0000 - 1.0000i

>> [A,B,C,D]=tf2ss(num,den) A =6 -11 -6

1 0 0 0 1 0 B =1 0 0

C =1 4 5 D =0

实验2 状态空间模型系统仿真及状态方程求解

一、实验目的

1、熟悉线性定常离散与连续系统的状态空间控制模型的输入方法; 2、熟悉系统模型之间的转换功能;

3、利用MATLAB对线性定常系统进行动态分析。

二、实验原理

函数step(sys)给出了系统的单位阶跃响应曲线,其中的sys表示贮存在计算机内的状态空间模型,它可以由函数sys=ss(A,B,C,D)得到。

函数impulse(sys)给出了系统的单位脉冲响应曲线。

函数[y,T,x]=Isim(sys,u,t,x0)给出了一个状态空间模型对任意输入的响应,x0是初始状态。

函数c2d将连续系统状态空间描述转化为离散系统状态空间形式,其一般形式为:[G,H]=c2d(A,B,T),其中的T是离散化模型的采样周期。

函数d2c将离散系统状态空间描述转化为连续系统状态空间描述,其一般形式为:sysc=d2c(sysd,Method),其中的Method默认值为‘zoh’方法,即带零阶保持器的z变换。

函数dstep(G,H,C,D)给出了离散系统的单位阶跃响应曲线。

三、实验步骤及结果 程序和运行结果:

T=0.5s时

T=1s时

T=2s时

A=[0 1 0;-2 -3 0;-1 1 -3]; B=[0;0;1]; C=[1 1 1]; D=1;

[G1 H1]=c2d(A,B,0.5)

G1 =0.8452 0.2387 0 -0.4773 0.1292 0 -0.3326 0.0508 0.2231

H1 = 0

0 0.2590

>> dstep(G1,H1,C,D,1) >> dstep(G1,H1,C,D,1) >> [G2 H2]=c2d(A,B,1)

G2 =0.6004 0.2325 0 -0.4651 -0.0972 0 -0.3795 -0.0614 0.0498

H2 =0

0 0.3167

>> dstep(G2,H2,C,D,1)

>> [G3 H3]=c2d(A,B,2) [G3 H3]=c2d(A,B,2)

G3 =0.2524 0.1170 0

-0.2340 -0.0987 0 -0.2182 -0.0853 0.0025

H3 =0

0 0.3325

>> dstep(G3,H3,C,D,1)

程序和运行结果:

Z域仿真图形:

连续域仿真图形:

程序:

G=[0 1;-0.16 1]; H=[1;1]; C=[1 1]; D=0; u=1;

dstep(G,H,C,D,u) sysd=ss(G,H,C,D,0.05) a = x1 x2 x1 0 1 x2 -0.16 1 b = u1 x1 1 x2 1 c = x1 x2 y1 1 1 d = u1 y1 0 Sampling time: 0.05 Discrete-time model.

本文来源:https://www.bwwdw.com/article/6f6f.html

Top