数学论文:多媒体辅助教学在初中几何教学中的应用

更新时间:2023-12-09 15:40:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

多媒体辅助教学在初中几何教学中的应用

随着经济的发展,教学理念转变,社会对新型人才的需求,从而形成了新的教学模式—多媒体辅助教学模式。因为多媒体CAI技术在教学中的越来越多的应用与课件技术的日臻熟练,所以多媒体信息技术已经不再是“电子黑板”的概念了,它以强大的功能,大量的信息及生动直观的影像和快捷的连接方式和超越时空的变幻,已经越来越受教师的欢迎,已经成为主要的教学手段,并逐步取代传统的教学方式。相对于传统的几何教学方法,多媒体信息技术具有很大的优势,取而代之以成为了历史的必然趋势,就其优势我认为有以下几点: 一、利用多媒体教学创设情境,激发求知欲。

所谓情境是指在教学过程中教师有目的地引入或创设具有一定情绪色彩的形象的场境,以引起学生一定的态度体验,从而帮助学生理解教材,使学生心理机能得到发展,情境的创设可以使学生与问题之间架设起一座“桥梁”,情境的创设不但可以吸引学生的注意力,增加学生的 学习兴趣,还能有效的引导学生分析和探索问题,产生解决问题的动力和方法,使学生更好的建构自己的知识体系。

传统的几何教学中,只凭教师口头的说教和黑板上呆板的板书是很难体现出情境创设中的悬疑性、惊诧性和疑虑效果,也就是说不可能产生强烈的轰动效果和视觉反差,不能给学生留下难忘印象而引起学生的注意。而多媒体信息技术就能很好的解决这个问题,多媒体的多彩的图像,动态的影像和声音,可以使创设的情境更生动逼真接近生活,使原本抽象的几何概念,更接近实际,更能体现几何概念的实用性,有利于问题的解决。

计算机具有特殊的声、光、色、形,通过图像的翻滚、闪烁、定格、色彩变化及声响效果等给学生以新异的刺激感受。运用计算机辅助教学,向学生提供直观、多彩、生动的形象,可以使学生多种感官同时受到刺激,激发学生学习的积极性。例如:在教学初中几何第二册“轴对称图形”这一课时,就可以应用多媒体的鲜艳色彩、优美图案,直观形象地再现事物,给学生以

如见其物的感受。教师可以用多媒体设计出多幅图案:如:等腰三角形、飞机、几幅古建筑图片等,一一显示后,用红线显现出对称轴,让学生观察。图像显示模拟逼真,渲染气氛,创造意境,使学生很快掌握了轴对称图形的特点,有助于提高和巩固学习兴趣,激发求知欲,调动学生积极性。

再例如:在讲授“垂直”这一章概念时,教师可以让学生观看一段大型比赛的跳水录像,出示问题:当选手入水时,水花的大小说明什么?

所有学生几乎同时说出来:“不垂直”水花就大,“垂直”水花就小。 教师问:“什么叫垂直呢?”

接着教师讲解了有关垂直的概念。

这节课几乎没有费什么力气,就完整的进行下来了,几乎所有的学生都明白了什么叫“垂直”,可见这样的情景给学生留下多么深刻的印象。

实验心理学家赤瑞特拉认为:人一般可以记住阅读内容的50%,自己听到内容的20%,自己看到内容的30%,在交流过程中自己所说的内容的70%。我可以通过多媒体的强大的文字、声音、图像和动画技术,创设出各种情景氛围,而且是传统教学中的教具和语言无法企及的生动、逼真和引人入胜。

二、利用多媒体辅助教学,化静为动,感知知识的形成过程

美国国家教育委员会在《人人关心:数学教育的未来》的报告中指出:“实在说来,没有一个人能教数学,好的老师不是在教数学,而是激发学生自己去学数学”,“只有当学生通过自己的思考,建立起自己的数学理解力时,才能真正学好数学。”“学生要想牢固地掌握数学就必须用内心的创造与体验来学习数学。”

皮亚杰的“建构”的观点是与“活动”的观点有紧密的联系学生主动建构知识体系必须掌握“活”的几何概念,这就必须使学生在几何学习充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学活动,教育家斯腾伯格认为在教学过程中应视为交往过程,要注重交往的

改进,特别强调学生个性的“自我实现”。传统的几何教学中的教具运用,并不能使抽象的几何概念真正的形象化、具体化。而多媒体技术可以使几何概念真正“活”起来。

比如用《几何画板》讲解《直线和圆的位置关系》可以使直线转动,产生与已知圆的相离、相切、相交的各种动态的位置关系,并在旁边显示圆的半径(R),并动态的显示圆心到直线的距离(d),学生们可以一目了然的动态的了解到直线与圆的位置关系,与圆的半径(R)与圆心到直线的距离 的数量关系,使学生在观察实验的同时,推出圆的位置关系,与圆的半径与圆心到直线的距离之间的关系, 相离<=>RR = d 相交<=>d

学生的脑海里只要一提到直线和圆的位置关系,就想到旋转着图像。

类似这样的课件还有《垂直平分线的性质》、《平行四边形的判定》、《圆和圆的位置关系》等。

三、利用多媒体辅助教学,可以激发学生学习兴趣,提高学生的学习能力和创新能力。 学生的学习能力和创新能力,来源于对周围的事物的理解和对知识的观察和分析,现代教育观点认为学生学习知识的过程和发现这个知识的过程是一样的。而传统的教学方法是很难提供给学生足够的空间和足够的时间,使学生自己建构知识体系,而多媒体技术可以无限的提供给学生学习的空间和相对宽裕的学习时间。

日本数学教育家米川国藏认为数学教育中,学习数学知识的分析问题、解决问题的思想、方法比学习知识本身更为重要。

我认为 几何教学过程中的关键是让学生掌握知识的形成过程,使学生知其然,又知其所以然。运用多媒体教学可以将教学中涉及的事物形象、过程等全部内容再现于课堂,使教学过程形象生动,使难以觉察的东西清晰地呈现在学生的感觉能力可及的范围之内。例如:在教学“角的认识”这一课时,教学生如何画角是一个重要内容。教师用传统的教学方法在黑板上

画给学生看,存在着一定的弊端。如:学生走神,教师画时部分学生不注意看;教师作图时,身体遮挡住部分学生视线等等。而运用多媒体辅助教学,情形就大不一样了。我们可以先用多媒体演示画角的步骤和基本方法,由于用多媒体演示,手段新颖,学生的注意力集中,给学生留下的表象深刻。演示结束后,教师再到黑板上示范画角,最后让学生独立画角。这样的教学过程设计,符合学生的心理需求,使学生对画角方法清楚明了,教学效果好。

布鲁纳提出的发现学习理论,强调学习进程是一种积极的认知过程,提倡知识的发现学习,学生的学习是以自己为主体的积极建构,“探索是教学的生命线”。在多媒体教学中可以提供给学生足够的空间,时间。让学生展开探索的翅膀。

例如在研究《多边形的内角和公式》时,传统教学方法,只能在黑板上画几个图,给学生几个公式,而利用多媒体技术可以给出充分多的图形,让学生在观察中,分析众多图形,并且在分析后得出结论,并可以在更多图形中验证,使学生自己得到正确的公式,在几乎是无限的空间中,研究几何图形,从中分析得出正确的结论,这是传统教学不可能做到的。真正做到陈重穆教授提出的“淡化形式,注重实质”的效果。彻底的摆脱了教学中“烧中段”的教学方式,使学生自己自主的建构知识体系。

多媒体教学可以使教师节省出大量的教书时间,可以使学生在单位时间内,获取最大限度的信息量,争取了更多的思考时间,可以利用图形的颜色和图像的闪烁给学生以暗示,还可以通过平移和旋转使学生了解知识形成的全过程,使学生在发现中掌握知识。还可以利用师生界面进行超级连接,达到师生互动,使学生在互动中,学习动态的,“活”的几何。 四、利用多媒体辅助教学,可以更好的发挥学生在学习中的主体地位。

传统的班级授课制,过于标准化、同步化、集体化,不能很好的适应学生的个别差异,不易发挥学生的全部潜能,不利于培养学生的志趣和发展他们的个性才能。

美国心理学家加德纳认为一个人的智能,不能简单地由智商的高低来衡量,智能是多元的,它包括七种基本能力:语言能力、数学逻辑能力、空间能力、音乐能力、身体运动能力、人

际关系能力。而传统的学校的教育,仅重视语言能力和数学能力的开发,对其他能力的开发未给予足够多的重视,不能用学习成绩衡量学生是否聪明,要看学生能否解决面临的问题,培养合作精神解决实际问题。

多媒体不光可以显示信息,使学生获得知识,它还能帮助学生运用知识和技术,发展智力、才能。我们知道学生的学习客观上存在着一定的差异,承认与尊重个别差异是必要的。多媒体辅助教学就能适应个别化的教学。在教学软件编排中,教师可以针对不同类型的学生,设计各种思路和解题方法,让学生自主选择,培养学生做出决定的能力。这样人机交互,迅速反馈,视听合一。学生由教师单一的讲、书本枯燥的练习,上升到上机操作,与计算机对话,充分调动了学生学习的主动性,提高了学习效率,学习的能力也得到了发展。在多媒体这样的交互环境中学生可以按照自己的学习基础、学习兴趣来选择自己所要学习的内容,这种主动参与性为学生主动性、积极性的发挥创造了很好的条件,能真正体现学生的认知主体作用。 例如,在几何教学中,一题多解问题,在传统课上只有给一种或几种答案,而不可能也没有足够的空间来展示所有的答案,造成对个别学生的学习积极性的打击。然而在多媒体的课件设计中,不但可以把所有的答案给出来,使学生对号入座,还可以把几何的开放型的题目做成动态题目,使学生各尽所能,真正变“选马”为“赛马”,使学生在平等的条件下,竞争着学习,激发他们的好胜心理,变被动学习为主动学习。

还可以利用网络技术,通过师生界面,运用网络技术以多层菜单树的形式,可使学生从整体上把握知识构成的体系,又能明确表达知识体系中各知识点间的层次与相互联系,构建知识网络,只需双击鼠标按钮即可激活其指示部分内容,进入交互的教学系统,足不出户,可实现网上漫游整个几何世界。

利用多媒体技术可以尽量多的展示利用几何知识可以解决的问题的模型,例如,可以用对称的原理解决台球的打球问题,运动中跑道的弯道测量等。

还可以尽量多的创设发现问题情景,比如如何计算多边形的内角和公式,计算多边形的对

本文来源:https://www.bwwdw.com/article/6ec5.html

Top