110kv变电站电气部分设计 - secret
更新时间:2024-04-25 07:53:01 阅读量: 综合文库 文档下载
第一部分.设计说明书
第一章:毕业设计任务书 一、 设计题目
110KV降压变电站部分的设计 二、 所址概况
1、 地理位置及地理条件的简述
变电所位于某城市, 地势平坦,交通便利,空气污染轻微,区平均海拔200米,最高气温40℃,最低气温-18℃,年平均气温14℃,最热月平均最高气温30℃,土壤温度25℃。
三、系统情况如下图
220KV 80km 75km с Xc=0.04 Sj=1000MVA 4×240MVA 2×120MVA cosΨ=0.06 Xd″=0.167 110KV 4×200MW ∽ (1×200MW) 2×30km 10KV 待设变电所 注:括号内为最小1、主变压
- 1 -
四、负荷情况:
电压 负荷 名称 乡镇变1 乡镇变2 35KV 汽车厂 砖厂 乡区变 纺织厂1 10KV 纺织厂2 纺织厂3 加工厂 材料厂 4300 5000 1000 700 800 600 700 800 0.88 0.85 0.9 0.89 0.88 0.88 0.9 0.9 2 1 3 1 2 1 1 2 架空 架空 架空 电缆 架空 架空 架空 架空 7 11 5 3 7 4 5 2 每回最大负荷(KW) 6000 7000 功率因数 0.9 0.92 回路数 1 1 供电方式 架空 架空 线路长度(km) 15 8 五、设计任务
1、 负荷分析及主变压器的选择。 2、 电气主接线的设计。
3、 变压器的运行方式以及中性点的接地方式。 4、 无功补偿装置的形式及容量确定。
5、 短路电流计算(包括三相、两相、单相短路) 6、 各级电压配电装置设计。 7、 各种电气设备选择。 8、 继电保护规划。
9、 主变压器的继电保护整定计算。 六、 设计目的
- 2 -
总体目标
培养学生综合运用所学各科知识,独立分析各解决实际工程问题的能力。
第二章:负荷分析
一、 负荷分类及定义
1、 一级负荷:中断供电将造成人身伤亡或重大设计损坏,且难以挽回,
带来极大的政治、经济损失者属于一级负荷。一级负荷要求有两个独立电源供电。
2、 二级负荷:中断供电将造成设计局部破坏或生产流程紊乱,且较长时
间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。二级负荷应由两回线供电。但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。
3、 三级负荷:不属于一级和二级的一般电力负荷。三级负荷对供电无特
殊要求,允许较长时间停电,可用单回线路供电。
二、 本设计中的负荷分析
市镇变1、2:市镇变担负着对所辖区的电力供应,若中断供电将会带来大面积停电,所以应属于一级负荷。
煤矿变:煤矿变负责向煤矿供电,煤矿大部分是井下作业,例如:煤矿工人从矿井中的进出等等,若煤矿变一旦停电就可能造成人身死亡,所以应属一级负荷。
- 3 -
化肥厂:化肥厂的生产过程伴随着许多化学反应过程,一旦电力供应中止了就会造成产品报废,造成极大的经济损失,所以应属于一级负荷。
砖厂:砖厂的生产过程与电的联系不是非常紧密,若终止电力供应,只会造成局部破坏,生产流程混乱,所以应属于三级负荷。
镇区变:镇区变担负着对所辖区域的电力供应,若中止镇区变的电力供应,将会带来大面积停电,带来极大的政治、经济损失,所以应属于一级负荷。
机械厂:机械厂的生产过程与电联系不是非常紧密,若中止供电,不会带来太大的损失,所以应属于二级负荷。
纺织厂1、2:若中断纺织厂的电力供应,就会引起跳线,打结,从而使产品不合格,所以应属于二级负荷。
农药厂:农药厂的生产过程伴有化学反应,若停电就会造成产品报废,应属于一级负荷。
面粉厂:若中断供电,影响不大,所以应属于三级负荷。 耐火材料厂:若中断供电,影响不大,所以应属于三级负荷。 三、 35KV及10KV各侧负荷的大小 1、 35KV侧:
ΣP1=6000+7000+4500*2+4300*2+5000=35600KW ΣQ1=6000*0.48+7000*0.426+4500*0.62*2+4300*0.54*2+ 5000*0.62=19186Kvar 2、 10KV侧:
ΣP2=1000*3+800*2+700+800*2+600+700+800*2=9800KW ΣQ2=1000*3*0.48+700*0.512+800*0.512*2+800*0.54*2+
- 4 -
600*0.54+700*0.48+800*0.48*2=4909.6Kvar ΣP=ΣP1+ΣP2=35600KW+9800KW=45400KW ΣQ=ΣQ1+ΣQ2=19186+4909.6=24095.6Kvar 所以:ΣS=(454002+24095.62)1/2=51398KVA 考虑线损、同时系数时的容量: ΣS2=51398*0.8*1.05=43174.3KVA
第三章 主变压器的选择
(参考资料:《电力工程电气设计手册》电器一次部分,第五章:主变压器选择) 一、主变台数的确定
对于大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。此设计中的变电所符合此情况,故主变设为两台。 二、主变容量的确定
1、主变压器容量一般按变电所建成后5-10年的规划负荷选择,并适当考虑到远期10-20年负荷发展。对城郊变电所,主变压器容量应与城市规划相结合。
2、根据变电所所带负荷的性质和电网结构来确定主变压器的容量。对于有重要负荷的变电所,应考虑到当一台主变压器停运时,其余变压器容量在计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对一般性变电所,当一台主变压器停运时,其余变压器容量应能保证全部负荷的70%-80%。此变
- 5 -
电所是一般性变电所。
有以上规程可知,此变电所单台主变的容量为: S=ΣS2*0.8=43174.3*0.8=34539.48KVA 所以应选容量为40000KVA的主变压器。 三、主变相数选择 1、主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。
2、当不受运输条件限制时,在330KV及以下的发电厂和变电所,均应采用三相变压器。
社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。 四、主变绕组数量
1)、在具有三种电压的变电所中,如通过主变压器各侧的功率均达到该变压器容量的15%以上,或低压侧虽无负荷,但在变电所内需装设无功补偿装备时,主变压器宜采用三绕组变压器。
根据以上规程,计算主变各侧的功率与该主变容量的比值: 高压侧:K1=(35600+9800)*0.8/40000=0.9>0.15 中压侧:K2=35600*0.8/4000=0.7>0.15 低压侧:K3=9800*0.8/40000=0.2>0.15 由以上可知此变电所中的主变应采用三绕组。 五、主变绕组连接方式
变压器的连接方式必须和系统电压相位一致,否则不能并列运行。电力系
- 6 -
统采用的绕组连接方式只有y和△,高、中、低三侧绕组如何要根据具体情况来确定。
我国110KV及以上电压,变压器绕组都采用Y0连接;35KV亦采用Y连接,其中性点多通过消弧线接地。35KV及以下电压,变压器绕组都采用△连接。
有以上知,此变电站110KV侧采用Y0接线 35KV侧采用Y连接,10KV侧采用△接线 主变中性点的接地方式:
选择电力网中性点接送地方式是一个综合问题。它与电压等级、单相接地短路电流、过电压水平、保护配置等有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、变压器和发电机的运行安全以及对通信线路的干扰。主要接地方式有:中性点不接地、中性点经消弧线圈接地和直接接地。电力网中性点的接地方式,决定了变压器中性点的接地方式。电力网中性点接地与否,决定于主变压器中性点运行方式。
35KV系统,IC<=10A;10KV系统;IC<=30A(采用中性点不接地的运行方式)
35KV:Ic=UL/350=35*(15+8+10*2+7*2+11)/350=6.8A<10A 10KV:Ic=10*(5*3+7*2+4+5+7*2)/350+10*(2*2+3)/10=8.2A<30A 所以在本设计中110KV采用中性点直接接地方式 35、10KV采用中性点不接地方式 六、 主变的调压方式
《电力工程电气设计手册》(电器一次部分)第五章第三节规定:
调压方式变压器的电压调整是用分解开关切换变压器的分接头,从而改变变压器比来实现的。切换方式有两种:不带电切换,称为无励磁调压,调压范
- 7 -
围通常在+5%以内,另一种是带负荷切换,称为有栽调压,调压范围可达到+30%。
对于110KV及以下的变压器,以考虑至少有一级电压的变压器采用有载调压。
由以上知,此变电所的主变压器采用有载调压方式。 七、 变压器冷却方式选择
参考《电力工程电气设计手册》(电器一次部分)第五章第四节
主变一般的冷却方式有:自然风冷却;强迫有循环风冷却;强迫油循环水冷却;强迫、导向油循环冷却。
小容量变压器一般采用自然风冷却。大容量变压器一般采用强迫油循环风冷却方式。
故此变电所中的主变采用强迫油循环风冷却方式。 附:主变型号的表示方法
第一段:汉语拼音组合表示变压器型号及材料 第一部分:相数 S----三相;D------单相
第二部分:冷却方式 J----油浸自冷; F----油浸风冷; S----油浸水冷;G----干式;N----氮气冷却; FP----强迫油循环风冷却;SP----强迫油循环水冷却 本设计中主变的型号是:SFPSL—40000/110
第四章 无功补偿装置的选择
- 8 -
一、补偿装置的意义
无功补偿可以保证电压质量、减少网络中的有功功率的损耗和电压损耗,同时对增强系统的稳定性有重要意义。 二、无功补偿装置类型的选择
(参考资料:教材----《电力系统》第五章第四节: 《电力工程电器设计手册》电器一次部分第九章) 1、无功补偿装置的类型
无功补偿装置可分为两大类:串联补偿装置和并联补偿装置。 目前常用的补偿装置有:静止补偿器、同步调相机、并联电容器。 2、常用的三种补偿装置的比较及选择
这三种无功补偿装置都是直接或者通过变压器并接于需要补偿无功的变配电所的母线上。 同步调相机:
同步调相机相当于空载运行的同步电动机在过励磁时运行,它向系统提供无功功率而起到无功电源的作用,可提高系统电压。
装有自动励磁调节装置的同步调相机,能根据装设地点电压的数值平滑地改变输出或汲取的无功功率,进行电压调节。特别是有强行励磁装置时,在系统故障情况下,还能调整系统的电压,有利于提高系统的稳定性。但是同步调相机是旋转机械,运行维护比较复杂。它的有功功率损耗较大。小容量的调相机每千伏安容量的投入费用也较大。故同步调相机宜于大容量集中使用,容量小于5MVA的一般不装设。在我国,同步调相机常安装在枢纽变电所,以便平滑调节电压和提高系统稳定性。
- 9 -
静止补偿器:
静止补偿器由电力电容器与可调电抗并联组成。电容器可发出无功功率,电抗器可吸收无功功率,根据调压需要,通过可调电抗器吸收电容器组中的无功功率,来调节静止补偿其输出的无功功率的大小和方向。静止补偿器是一种技术先进、调节性能、使用方便、经纪性能良好的动态无功功率补偿装置。静止补偿器能快速平滑地调节无功功率,以满足无功补偿装置的要求。这样就克服了电容器作为无功补偿装置只能做电源不能做负荷,且调节不能连续的缺点。与同步调相机比较,静止补偿器运行维护简单,功率损耗小,能做到分相补偿以适应不平衡负荷的变化,对冲击负荷也有较强的适应性,因此在电力系统得到越来越广泛的应用。(但此设备造价太高,不在本设计中不宜采用)。 电力电容器:
电力电容器可按三角形和星形接法连接在变电所母线上。它所提供的无功功率值与所节点的电压成正比。
电力电容器的装设容量可大可小。而且既可集中安装,又可分散装设来接地供应无功率,运行时功率损耗亦较小。此外,由于它没有旋转部件,维护也较方便。为了在运行中调节电容器的功率,也可将电容器连接成若干组,根据负荷的变化,分组投入和切除。
综合比较以上三种无功补偿装置后,选择并联电容器作为无功补偿装置。
三、无功补偿装置容量的确定 (根据现场经验)
现场经验一般按主变容量的10%--30%来确定无功补偿装置的容量。 此设计中主变容量为40000KVA
故并联电容器的容量为:4000KVA—12000KVA为宜,在此设计中取12000KVA。
- 10 -
四、并联电容器装置的分组
(参考资料:《电力工程电气设计手册》电气一次部分 第九章第四节) 1、分组原则
1)、并联电容器装置的分组主要有系统专业根据电压波动、负荷变化、谐波含量等因素确定。
2)、对于单独补偿的某台设备,例如电动机、小容量变压器等用的并联电容器装置,不必分组,可直接与设备相联接,并与该设备同时投切。
对于110KV—220KV、主变代有载调压装置的变电所,应按有载调压分组,并按电压或功率的要求实行自动投切。
3)、终端变电所的并联电容器设备,主要是为了提高电压和补偿变压器的无功损耗。此时,各组应能随电压波动实行自动投切。投切任一组电容器时引起的电压波动不应超过2.5%。 2、分组方式
1)、并联电容器的分组方式有等容量分组、等差容量分组、带总断路器的等差容量分组、带总断路器的等差级数容量分组。 2)、各种分组方式比较
a、等差容量分组方式:由于其分组容量之间成等差级数关系,从而使并联电容器装置可按不同投切方式得到多种容量组合。既可用比等容量分组方式少的分组数目,达到更多种容量组合的要求,从而节约了回路设备数。但会在改变容量组合的操作过程中,会引起无功补偿功率较大的变化,并可能使分组容量较小的分组断路器频繁操作,断路器的检修间隔时间缩短,从而使电容器组退出运行的可能性增加。因而应用范围有限。
- 11 -
b、带总断路器的等差容量分组、带总断路器的等差级数容量分组,当某一并联电容器组因短路故障而切除时,将造成整个并联电容器装置退出运行。 c、等容量分作方式,是应用较多的分作方式。
综上所述,在本设计中,无功补偿装置分作方式采用等容量分组方式。 五、并联电容器装置的接线
并联电容器装置的基本接线分为星形(Y)和三角形(△)两种。经常使用的还有由星形派生出来的双星形,在某种场合下,也采用有由三角形派生出来的双三角形。
从《电气工程电气设计手册》(一次部分)P502页表9-17中比较得,应采用双星形接线。因为双星形接线更简单,而且可靠性、灵敏性都高,对电网通讯不会造成干扰,适用于10KV及以上的大容量并联电容器组。
中性点接地方式:对该变电所进行无功补偿,主要是补偿主变和负荷的无功功率,因此并联电容器装置装设在变电所低压侧,故采用中性点不接地方式。 六、并联电容器对10KV系统单相接地电流的影响
10KV系统的中性点是不接地的,该变电站采用的并联电容器组的中性点也是不接地的,当发生单相接地故障时,构不成零序电流回路,所以不会对10KV系统造成影响。
第五章 电气主接线的初步设计及方案选择
参考资料:1、《发电厂电气设备》(于长顺主编)第十章
- 12 -
2、《电力工程电气设计手册》(一次部分)第二章 一、电气主接线的概况
1、发电厂和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。它把各电源送来的电能汇集起来,并分给各用户。它表明各种一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。所以电气主接线是发电厂和变电所电气部分的主体,对发电厂和变电所以及电力系统的安全、可靠、经济运行起着重要作用,并对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大影响。 2、在选择电气主接线时的设计依据
1)、发电厂、变电所所在电力系统中的地位和作用 2)发电厂、变电所的分期和最终建设规模 3)、负荷大小和重要性 4)系统备用容量大小
5)系统专业对电气主接线提供的具体资料 3、主接线设计的基本要求 1)、可靠性 2)、灵活性 3)、经济性
4、6-220KV高压配电装置的基本接线
有汇流母线的连线:单母线、单母线分段、双母线、双母分段、增设旁母线或旁路隔离开关等。
无汇流母线的接线:变压器-线路单元接线、桥形接线、角形接线等。
- 13 -
6-220KV高压配电装置的接线方式,决定于电压等级及出线回路数。 二、110KV侧主接线的设计
110KV侧初期设计回路数为2,最终为4回
由《电力工程电气设计手册》第二章第二节中的规定可知: 110KV侧配电装置宜采用单母线分段的接线方式。 110KV侧采用单母线分段的接线方式,有下列优点:
(1)供电可靠性:当一组母线停电或故障时,不影响另一组母线供电; (2)调度灵活,任一电源消失时,可用另一电源带两段母线: (3)扩建方便;
(4)在保证可靠性和灵活性的基础上,较经济。 故110KV侧采用单母分段的连接方式。 三、35KV侧主接线的设计 35KV侧出线回路数为7回
由《电力工程电气设计手册》第二章第二节中的规定可知:
当35—63KV配电装置出线回路数为4—8回,采用单母分段连接,当连接的电源较多,负荷较大时也可采用双母线接线。 故35KV可采用单母分段连接也可采用双母线连接。 四、10KV侧主接线的设计 10KV侧出线回路数为12回
由《电力工程电气设计手册》第二章第二节中的规定可知: 当6—10KV配电装置出线回路数为6回及以上时采用单母分段连接 故10KV采用单母分段连接
- 14 -
五、主接线方案的比较选择
由以上可知,此变电站的主接线有两种方案
方案一:110KV侧采用单母分段的连接方式,35KV侧采用单母分段连接,10KV侧采用单母分段连接。
方案二:110KV侧采用单母分段的连接方式,35KV侧采用双母线连接,10KV侧采用单母分段连接。 此两种方案的比较
方案一 110KV侧采用单母分段的连接方式,供电可靠、调度灵活、扩建方便,35KV、10KV采用单母分段连线,对重要用户可从不同段引出两个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常母线供电不间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。
方案二虽供电更可靠,调度更灵活,但与方案一相比较,设备增多,配电装置布置复杂,投资和占地面增大,而且,当母线故障或检修时,隔离开关作为操作电器使用,容易误操作。
由以上可知,在本设计中采用第一种接线,即110KV侧采用单母分段的连接方式,35KV侧采用单母分段连线,10KV侧采用单母分段连接。 六、主接线中的设备配置 1、隔离开关的配置
(1)中小型发电机出口一般应装设隔离开关:容量为220MW及以上大机组与双绕组变压器为单元连接时,其出口不装设隔离开关,但应有可拆连接点。
(2)在出线上装设电抗器的6—10KV配电装置中,当向不同用户供电的两回线共用一台断路器和一组电抗器时,每回线上应各装设一组出线隔离开关。
- 15 -
(3)接在发电机、变压器因出线或中性点上的避雷器不可装设隔离开关。 (4)中性点直接接地的普通型变压器均应通过隔离开关接地;自藕变压器的中性点则不必装设隔离开关。 2、接地刀闸或接地器的配置
(1)为保证电器和母线的检修安全,35KV及以上每段母线根据长度宜装设1—2组接地刀闸或接地器,每两接地刀闸间的距离应尽量保持适中。母线的接地刀闸宜装设在母线电压互感器的隔离开关和母联隔离开关上,也可装于其他回路母线隔离开关的基座上。必要时可设置独立式母线接地器。
(2)63KV及以上配电装置的断路器两侧隔离开关和线路隔离开关的线路宜配置接地刀闸。 3、电压互感器的配置
(1)电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。电压互感器的配置应能保证在运行方式改变时,保护装置不得失压,同期点的两侧都能提取到电压。
(2)6—220KV电压等级的每组母线的三相上应装设电压互感器。
旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感器的情况和需要确定。
(3)当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器。 (4)当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置。
(5)发电机出口一般装设两组电压互感器,供测量、保护和自动电压调整装置需要。当发电机配有双套自动电压调整装置,且采用零序电压式匝间保护时,
- 16 -
可再增设一组电压互感器。 4、电流互感器的配置
(1)凡装有断路器的回路均应装设电流互感器其数量应满足测量仪表、保护和自动装置要求。
(2)在未设断路器的下列地点也应装设电流互感器:发电机和变压器的中性点、发电机和变压器的出口、桥形接线的跨条上等。
(3)对直接接地系统,一般按三相配置。对非直接接地系统,依具体要求按两相或三相配置。
(4)一台半断路器接线中,线路—线路串可装设四组电流互感器,在能满足保护和测量要求的条件下也可装设三组电流互感器。线路—变压器串,当变压器的套管电流互感器可以利用时,可装设三组电流互感器。 5、避雷器的装置
(1)配电装置的每组母线上,应装设避雷器,但进出线装设避雷器时除外。 (2)旁路母线上是否需要装设避雷器,应视在旁路母线投入运行时,避雷器到被保护设备的电气距离是否满足要求而定。
(3)220KV及以下变压器到避雷器的电气距离超过允许值时,应在变压器附近增设一组避雷器。
(4)三绕组变压器低压侧的一相上宜设置一台避雷器。 (5)下列情况的变压器中性点应装设避雷器
1)直接接地系统中,变压器中性点为分级绝缘且装有隔离开关时。
2)直接接地系统中,变压器中性点为全绝缘,但变电所为单进线且为单台变压器运行时。
- 17 -
3)接地和经消弧线圈接地系统中,多雷区的单进线变压器中性点上。 (6)发电厂变电所35KV及以上电缆进线段,在电缆与架空线的连接处应装设避雷器。
(7)SF6全封闭电器的架空线路侧必须装设避雷器。 (8)110—220KV线路侧一般不装设避雷器。
第六章 各级配电装置的配置
(参考资料:《发电厂电气设备》 于长顺 主编)
发电厂和变电站主接线中,所装开关电器、载留导体以及保护和测量电器等设备,按一定要求建设而成的电工建筑物,称为配电装置。它的作用是接受电能和分配电能,所以它是发电厂和变电所的重要组成部分。 一、配电装置的要求
(1) 配电装置的设计和建设,应认真贯彻国家的技术经济政策和有关
规程的要求,特别注意应节约用地,争取不占或少占良田。
(2) 保证运行安全和工作可靠。设备要注意合理选型,布置应力求整
齐、清晰。
(3) 便于检修、操作和巡视。 (4) 便于扩建和安装。
(5) 在保证上述条件下,应节约材料,减少投资。
- 18 -
二、配电装置的分类及使用范围
配电装置按电气设备装置的地点,可分为屋内配电装置和屋外配电装置;按组装的方式,可分为在现场组装而成的装配式配电装置,以及在制造厂将开关电器等按接线要求组装成套后运至现场安装用的成套配电装置。
屋内配电装置是将电气设备安装在屋内,它的特点是占地面积小,运行维护和操作条件较好,电气设备受污秽和气候条件影响较小;但需建造房屋,投资较大。
屋外配电装置是将电气设备装置在屋外,它的特点是土建工程量小,投资小,建造工程短,易扩建,但占地面积大,运行维护条件较差,易受污秽和气候条件影响。
在发电厂和变电所中,一般35KV及以下的配电装置采用屋内配电装置,110KV及以上的配电装置多采用屋外配电装置。但110KV及以上的配电装置,在严重污秽地区,如海边和化工厂区或大城市中心,当技术经济合理时,也可采用屋内配电装置。
成套配电装置一般布置在屋内,特点是结构精密,占地面积小,建设期短,运行可靠,维护方便,但耗用钢材较多,造价较高。目前我国生产的3—35KV各种成套配电装置,在发电机和变电站中已广泛应用。
由以上各种方案比较得:
在本设计中,10KV采用屋内配电装置,手车式高压开关柜 35KV采用屋内配电装置,手车式高压开关柜 110KV采用屋外半高型配电装置
- 19 -
第七章 短路电流的目的及结果
一、短路电流计算的目的
在变电所和发电厂的电气设计中,短路电流计算是一个重要环节。计算的目的是选择主接线,比较各种接线方案:选择电气设备,校验设备提供依据,为继电保护整定计算提供依据等。
二、计算结果 短路 (3)d 电压 I″(KA) ich(KA) d(2) I″(KA) ich(KA) d(1.1) I″(KA) ich(KA) d(1) I″(KA) ich(KA) 110kv 35kv 10kv
2.70 6.88 2.335 5.943 2.903 7.388 3.036 7.272 3.434 8.741 8.779 22.349 第八章 电气设备选择
- 20 -
一、电气设备选择的概述 1、选择的原则
1)、应满足正常运行、检修、短路、和过电压情况下的要求,并考虑远景发展。 2)、应按当地环境条件校核。 3)、应力求技术先进和经济合理 4)、与整个工程的建设标准应协调一致。 5)、同类设备应尽量减少种类。
6)、选用的新产品均应具有可靠的实验数据。 2、设备的选择和校验。
1、电气设备和载流导体选择的一般条件 (1)按正常工作条件选择
A.额定电压:所选电气设备和电缆的最高允许工作电压,不得低于装设回路的最高运行电压Ue≥Uew.
B.额定电流:所选电气设备的额定电流IO,或载流导体的长期允许电流Iy,不得低于装设回路的最大持续工作电流I max 。
计算回路的最大持续工作电流I max 时,应考虑回路在各种运行方式下的持续工作电流,选用最大者。 (2)按短路状态校验 A.热稳定校验:
当短路电流通过被选择的电气设备和载流导体时,其热效应不应超过允许值,
Qd≤Qy,Qd≤I2r t,t=tb+tdf
校验电气设备及电缆(3~6KV厂用馈线电缆除外)热稳定时,短路持续时间一
- 21 -
般采用后备保护动作时间加断路器全分闸时间。 B.动稳定校验:
ich≤idw, Ich≤Idw,
用熔断器保护的电气设备和载流导体,可不校验热稳定;电缆不校验动稳定; (3)短路校验时短路电流的计算条件
所用短路电流其容量应按具体工程的设计规划容量计算,并应考虑电力系统的远景发展规划;计算电路应按可能发生最大短路电流的正常接线方式,而不应按仅在切换过程中可能并列的接线方式;短路的种类一般按三相短路校验;对于发电机出口的两相短路或中性点直接接地系统、自耦变压器等回路中的单相、两相接地短路较三相短路更严重时,应按严重情况校验。 二、110KV侧断路器的选择
在本设计中110KV侧断路器采用SF6高压断路器,因为与传统的断路器相比SF6高压断路器具有安全可靠,开断性能好,结构简单,尺寸小,质量轻,操作噪音小,检修维护方便等优点,已在电力系统的各电压等级得到广泛的应用。
110KV的配电装置是户外式,所以断路器也采用户外式。
从《电气工程电器设备手册》(上册)中比较各种110KVSF6高压断路器的应采用LW11-110型号的断路器。 校验:
LW11-110断路器的具体技术参数如下: 额定电压 最高工作电压 额定电流 额定开断电流 动稳定电流 - 22 -
110KV 123 (145)KV 1600 3150 31.5 40 80 100
热稳定电流(3S) 31.5KA(3S) 40kv 额定关合电流 80KA 100KA 固有分闸时间 ≤40ms 分闸时间 ≤135ms 由上表知:
1.断路器的额定电压为110KV,不小于装设断路器所在电网的额定电压 2.该断路器的最大持续工作电流:
Imax=1.05In=1.05Sn/(31/2Un)=1.05*40000/(31/2*110)=220.4
该断路器的额定电流为1600(最小的),大于通过该断路器的最大持续工作电流220.4。
3.校验断路器的断流能力
此断路器的额定开断电流Iekd=31.5KA 短路电流周期分量:Izk=3.036KA Iekd>Izk 4.此断路器的额定关合电流Ieg=80KA Ich=7.74KA Ieg>Ich 5.动稳定校验
动稳定电流:idw=80KA ich=7.74KA idw>ich 热稳定效应:
Qd=[(I\\\\2+10I2 Z(t/2)+I2zt)/12]*t=[(3.0362+10*3.0362+3.0362)/12]*3=27.65KA2S Ir2t=31.52*3=2976.75>Qd
- 23 -
操作机构,采用气动草操动机构;由《电气工程电气设备手册》(上册)查得应采用CQA-1型电气操动机构。 三、110KV隔离开关的选择 应采用户外型隔离开关
参考《电气工程电气手册》(上册),可知应采用GW5-110G高压隔离开关。此隔离开关技术数据如下: 额定电压 110KV 额定电流 600A 动稳定电流值 动稳定电流值 50KA 72KA 校验:
通过隔离开关的最大持续工作电流为220.4KA
隔离开关的额定电流为600A,大于通过隔离开关的最大持续工作电流。 动稳定校验:
动稳定电流:idw=50KA ich=7.74KA idw>ich 热稳定效应:
Qd=[(I\\\\2+10I2Z(t/2)+I2zt)/12] *t=[(3.0362+10*3.0362+3.0362)/12]*5=44.4KA2S Ir2t=142*5=980>Qd 操动机构:CS17—G
四、敞露母线选择
(参考资料:《发电厂电气设备》于长顺主编)
操动机构 CS17-G 16(4S) 40(5S) 硬母线一般是指配电装置中的汇流母线和电气设备之间连接用的裸硬导体。
- 24 -
硬母线分为敞露式和封闭式两类。 1.线材料和截面形状的选择:
目前母线材料广泛采用铝材,因为铝电阻率较低,有一定的机械强度,质量轻、价格较低,我国铝材的储量丰富。钢虽有较好的性能,但价格贵,我国储备不多。所以只有在一些特殊场合,如工作电流较大,位置特别狭窄,环境对铝材有严重腐蚀的情况下才用铝材。 综上所述,在本设计中母线材料才用铝。
硬母线截面积形状一般有矩形、槽型、和管型。矩形母线散热条件好,有一定的机械强度,便于固定和连接,但集肤效应较大,矩形母线一般只用于35KV及以上,电流在4000A级以下的配电装置中。
槽形母线的机械性能强度较好,集肤效应较小,在4000-8000A时一般 才用槽形母线。
管形母线集肤效应较小,机械强度高,管内可用水或风冷却,因此可用于800A及以上的大电流母线。此外,管形母线表面光滑,电晕放电电压高,因此,110KV以上配电装置中多才用管形母线。
由以上分析知:在本设计中110KV才用槽形母线,35KV、10KV才用矩形母线。
管形母线在支柱绝缘子上放置方式有两种:竖放和平放。平放比竖放散热条件差,允许电流小。三相母线的布置方式有水平布置和垂直布置,水平布置母线竖放时,机械强度差,散热条件好。垂直布置母线竖放时,机械强度和散热条件都较好,但增加了配电装置的高度。
综上,矩形母线在支柱绝缘子上采用水平布置母线竖放。
- 25 -
2.母线截面积选择:
本设计中母线的截面按长期允许电流选择。
按长期允许电流选择时,所选母线截面积的长期允许电流应大于装设回路中最大持续工作电流即,Iy≥Imax Iy=kIye Iy指基准环境条件下的长期允许电流 K指综合校正系数 110KV母线截面选择: Imax=1.05Ie=210.8
从《电力工程电气手册》第八章第一节表8-3中查的应选用载流量为2280(A)的双槽形母线,其参数如下:
h(mm) :75,b(mm):35,t(mm):4,r(mm):6 双槽形导体截面积S(mm2):1040,集肤效应系数:1.012。 35KV母线截面选择:
Imax=1.05Ie=1.05*[40000/(31/2*37.5)]=646.5(A) 10kv母线截面选择:
Imax=1.05Ie=1.05*[40000/(31/2*10.5)]=2309.47(A)
从《电力工程电气手册》第八章第一节 表8-3中查得应选用载流量为692(A)单条竖放的导体,导体尺寸: h*b=50*5(mm*mm)
五、110KV电流互感器选择
由《电气工程电气设备手册》(上册)中比较分析得,在本设计中宜采用LCWB-110(W)型号的电流互感器,技术数据如下:
- 26 -
额定电流 二次组合 准确级准 短时热稳定电流 动稳定电流 10%倍数二次负荷 110KV 600A 0.5 15.8-31.6(KA) 40-80(KA) P/P/P/0.5 此电流互感器为多匝油浸式瓷绝缘电流互感器,其性能符合国际和IEC的有关标准,具有结构严密,绝缘强度高,介质损耗率和局部放电量低,可靠性高以及运行维护简单方便等特点。
Imax=1.05In=1.05Sn/(31/2Un)=1.05*40000/(31/2*110)=220.4KA Ie1=300A, Ie1>Imax
热稳定效验:LH的热稳定能力用热稳定倍数Kr表示。热稳定倍数Kr等于1S内允许通过的热稳定电流与一次额定电流之比。 (KrIe1)2*t≥Qd (KrIe)2*t=(I
热min
/Ie*Ie)2*t=(15.8)2*1=249.64A
Qd=27.65 ∴(KrIe1)2>tQd 符合要求
动稳定效验:LH的动稳定能力用动稳定倍数Kr表示。Kd 等于内部允许通过极限电流的峰值与一次额定电流之比。 (Kd21/2Ie1)≥I(3)ch
(Kd21/2Ie1)=21/2*40=56.56KA(按最小动稳定电流计算) ich=7.74KA ∴(Kd21/2Ie1)>ich 符合要求 六、电压互感器的选择
从《电气工程设备手册》(电气一次部分)中比较各种电压互感器后选择JCC系列的电压互感器。
该系列电压互感器为单相、三绕组、串及绝缘,户外安装互感器,适用于交流50HZ电力系统,作电压、电能测量和继电保护用。
- 27 -
型号含义:J:电压互感器,C:串级绝缘,C:瓷箱式。 七、高压开关柜的选择
近年来高压开关柜(简称开关柜)的开发和制造发展的步伐比较快。额定电压有3、6、10、35KV等多种,额定电流可达到3150A,开断电流可达到50KA。 高压开关柜应实现电器和机械的“五防闭锁”,防止误操作,提高安全可靠性,“五防”的具体要求是: 1. 防止误合、误分断路器。 2. 防止带负荷分、合隔离开关。 3. 防止带电挂接地线。 4. 防止带接地线合闸。 5. 防止误入带电间隔。
(一)、35KV侧高压开关柜的选择
从《电气工程电气设备手册》(电气一次部分)第11章中比较各开关柜选择GBC—35型手车式高压开关柜。
GBC—35型手车式高压开关柜系三相交流50HZ单母线系统的户内保护型成套装置。作为接受和分配35KV的网络电能之用。该开关柜为手车结构,采用空气绝缘为主。各相带电体之间绝缘距离不小于30 mm ,只有个别部位相间不足时才设置极间障。开关柜主母线采用矩形铝母线,水平架空装于柜顶,前后可以观察。联络母线一般采用Φ50*5铝管,呈三角形布置在柜的下部。除柜后用钢网遮拦以便观察外,开关柜的下面,柜间及柜的两侧,均采用钢板门或封板中以保护。
GBC—35型手车式高压开关柜技术数据
- 28 -
名称 额定电压 最高工作电压 最大额定电流 额定断开电流 参数 35KV 40.5KV 1000A 16KA 名称 最大关合电流 极限通过电流 2S热稳定电流 额定断流容量 参数 42KA 42KA 16KA 1000MVA 35KV变压器出线开关柜方案选择: Imax=1.05Ie=4000/31/2*38.5=629.8A
电流互感器选择210号方案(具体见一次主接线图) 主要设备:LCZ—35型电流互感器
ZN—35/1000A—12.5KA型真空断路器 CD10I型电磁操作机构 35KV出线开关柜方案选择:
Imax=S/31/2U=7000*(1+5%)/0.92*31/2*37=124A 一次线路选择09号方案
主要设备:LCZ—35型电流互感器
避雷器选择89号方案(具体见一次主接线图) 主要设备:F2-35型避雷器、JS-2型放电记录器 电压互感器选择65号方案(具体见一次主接线图) 主要设备:JDJJ2-35型电压互感器、RN2-35形熔断器 有关设备校验:
ZN—35/1000A—12.5KA型真空断路器
ZN—35/1000A—12.5KA型真空断路器的技术参数如下:
- 29 -
资料参考《电气工程电气设备手册》表4-3-3 额定电压 35KV 最高工作电压 40.5KV 额定电流 630A 1000A
热稳定电流(2S) 8KA 12.5KA 额定关合电流 20KA 32KA 固有分闸时间 ≤0.06S 生产厂家 西安电器设备厂 额定开断电流 8KA 12.5KA 动稳定电流 20KA 32KA 此断路器的额定关合电流Ieg=20KA Ich=7.74KA Ieg>Ich 动稳定校验
动稳定电流: idw=20KA, ich=7.74KA, idw>ich 热稳定效应:
Qd=(I\\\\2+10I2 Z(t/2)+I2zt)/12*t=(3.0362+10*3.0362+3.0362)/12*2=18.4KA2S Ir2t=82*2=128>Qd 校验合格
LCZ-35型电流互感器的校验
从《电气工程电气设备手册》表3-1-1查得参数
额定电流比 20-1000/5 准确级准 0.53(B) 短时热稳定电流 13(1S) (KA) 动稳定电流 42.4 (KA) - 30 -
上表中的动稳定电流、短时热热稳定电流实在额定电流为200KA的情况下取的热稳定校验:LH的热稳定能力用热稳定倍数Kr表示。热稳定倍数Kr等于1S内允许通过的热稳定电流与一次额定电流之比。 (KrIe1)2*t≥Qd
(KrIe)2*t=[(I热min/Ie)*Ie]2*t=(32)2*2=2048A2S
Qd=[(I\\\\2+10I2+I2zt)/12]*t=[(3.0362+10*3.0362+3.0362)*/12]*2=18.4KA2S ∴(KrIe1)2>tQd 符合要求
动稳定校验:LH的动稳定能力用动稳定倍数Kd表示。Kd等于内部允许通过极限电流的峰值与一次额定电流之比。 (Kd21/2Ie1)≥i(3)ch
(Kd21/2Ie1)=21/2*80=113.12KA (按最小动稳定电流计算) ich=7.74KA ∴(Kd21/2Ie1)>ich 符合要求 (二)、10KV侧高压开关柜的选择
从《电气工程电气设备手册》(电气一次部分)第11章中比较各开关柜选择GBC—10型手车式高压开关柜。 技术数据如下:
名称 额定电压 母线系统 参数 3/6/10KV 单母线 名称 额定电流 最高工作电压 参数 630/1000/2500A 3.6 7.2 11.5 10KV变压器出线开关柜方案选择:
一次线路选择14号方案(具体见一次主接线图)
主要设备:LFS—10型电流互感器 ZN3—10型真空断路器
- 31 -
10KV线路出线开关柜方案选择:
Imax=S/(31/2U)=1000*(1+5%)/(0.92*31/2*11)=64.15A 一次线路选择81和53号方案(具体见一次主接线图) 主要设备:LFS—10型电流互感器 ZN3—10型真空断路器
FS3型避雷器 JDZ型电压互感器 RN2型熔断器
有关设备校验: ZN3—10型真空断路器
ZN3—10型真空断路器的技术参数如下: 资料参考《电气工程电气设备手册》表4-3-3
额定电压 10KV
热稳定电流(2S) 20KA 合闸时间 ≤0.1S 固有分闸时间 ≤0.05S 生产厂家 四川电器厂 额定电流 630A 1000A 开断电流 20KA 动稳定电流 50KA 此断路器的额定开断电流Ieg=20KA Ich=7.74KA Ieg>Ich 5、动稳定校验
动稳定电流: idw=50KA, ich=7.74KA, idw>ich 热稳定效应:
Qd=(I\\\\2+10I2Z(t/2)+I2zt)/12*t=(3.0362+10*3.0362+3.0362)/12*2=18.4KA2S Ir2t=202*2=800KA2S>Qd
- 32 -
校验合格
LFS-10型电流互感器的校验
从《电气工程电气设备手册》表3-1-1查得参数
额定电流比 5-1000/5 准确级准 0.53B 热稳定电流 32(KA) (2S) 动稳定电流 80KA 上表中的动稳定电流、短时热稳定电流实在额定电流为200KA的情况下取的.热稳定校验:LH的热稳定能力用热稳定倍数Kr表示。热稳定倍数Kr等于1S内允许通过的热稳定电流与一次额定电流之比。 (KrIe1)2*t≥Qd
(KrIe)2*t=[(I热min/Ie)*Ie]2*t=(32)2*2=2048A2S
Qd=[(I\\\\2+10I2+I2zt)/12]*t=[(3.0362+10*3.0362+3.0362)*/12]*2=18.4KA2S ∴(KrIe1)2>tQd 符合要求
动稳定校验:LH的动稳定能力用动稳定倍数Kd表示。Kd等于内部允许通过极限电流的峰值与一次额定电流之比。 (Kd21/2Ie1)≥i(3)ch
(Kd21/2Ie1)=21/2*80=113.12KA (按最小动稳定电流计算) ich=7.74KA ∴(Kd21/2Ie1)>ich 符合要求
第九章 继电保护规划及整定
一、主变压器保护规划与整定
现代生产的变压器,虽然结构可靠,故障机会较少,但实际运行中仍有可能发生各种类
- 33 -
型故障和异常运行。为了保证电力系统安全连续地运行,并将故障和异常运行对电力系统的影响限制到最小范围,必须根据变压器容量的大小、电压变压器保护的配置原则。 变压器一般应装设以下保护:
1. 变压器油箱内部故障和油面降低的瓦斯保护。 2. 短路保护。 3. 后备保护。
4. 中性点直接接地电网中的变压器外部接地短路时的零序电流保护。 5. 过负荷保护。 一、瓦斯保护
容量为800KVA级以上的油浸式变压器,均应装设瓦斯保护,当有内部故障时产生经微瓦斯后油面下降时保护应瞬时动作于信号,当产生大量瓦斯时,瓦斯保应动作与断开变压器各电源侧断路器。 瓦斯保护装置及整定:
瓦斯继电器又称气体继电器,瓦斯继电器安装在变压器油箱与油枕之间的连接管道中,油箱内的气体通过瓦斯继电器流向油枕。
目前,国内采用的瓦斯继电器有浮筒挡板式和开口杯式两种型式。在本设计中采用开口杯式。
瓦斯保护的整定:
(1)、一般瓦斯继电器气体容积整定范围为250—300m,变压器容量在10000KVA以上时,一般正常整定值为250cm2,气体容积值是利用调节重锤的位置来改变。 (2)、重瓦斯保护油流速度的整定
重瓦斯保护动作的油流速度整定范围为0.6—1.5m/s,在整定流速时均以导油管中的流速为准,而不依据继电器处的流速。
根据运行经验,管中油速度整定为0.6—1.5时,保护反映变压器内部故障是相当灵敏的。但是,在变压器外部故障时,由于穿越性故障电流的影响,在导油管中油流速度约为0.4—0.5。因此,本设计中,为了防止穿越性故障时瓦斯保护误动作,可将油流速度整定在1S左右。 二、纵联差动保护
瓦斯保护只能反应变压器油箱内部的故障,而不能反应油箱外绝缘套管及引出线的故障,因此,瓦斯保护不能作为变压器唯一的主保护,对容量较小的变压器可以在电源侧装设电流- 34 -
速断保护。但是电流速断保护不能保护变压器的全部,故当其灵敏度不能满足要求时,就必须采用快速动作并能保护变压器的全部绕组,绝缘套管及引出线上各种故障的纵联差动保护。 瓦斯保护职能反应变压器油箱内部的故障,而不能反应油箱外绝缘套管及引出线的故障,因此,瓦斯保护不能作为变压器唯一的主保护,对容量较小的变压器可在电源侧装设电流速断保护,但是电流速断保护不能保护变压器的全部,故当灵敏度不能满足要求时,就必须采用快速动作并能保护变压器全部绕组,绝缘套管及引出线上各种故障的纵差动保护。 在本设计中,采用由BCH-2继电器起动的纵联差动保护。
变压器纵联动保护参数计算结果
名称 额定电压 额定电流 110KV 40000/(31/2*110)=209.95KA 电流互感器的接线方式 电流互感器一次电流计算值 确定保护的动作电流: (1)、躲过励磁涌流
IDZ=Kk*Ie=1.3*209.95=272.94A (2)、躲过外部短路时的最大不平衡电流
IDZ=Kk*Ibpmax=Kk*(KTXKfzqKi+△U+△fza)*Idmax =1.3*(1*1*0.1+0.05+0.05)*8790=2285.4A 折算至高压侧得:2285.4*(11/110)=228.5A (3)、躲过电流互感器二次回路断线的最大负荷电流:
IDZ=1.3*Ie=1.3*209.95=272.94A
综上保护基本侧的动作电流为:272.94A
为了防止外部短路引起的过电流和作为变压器差动保护、瓦斯保护的后备,变压器应装设后备保护。后备保护的方案有过电流保护、负荷电压起动的过流保护、负序过电流保护和低阻抗保护等。
31/2*209.95=363.6KA 31/2*599.86=1038.96KA 31/2*2099.5=3636.36KA 各侧数值 38.5KV 40000/(31/2*38.5)=599.7KA 11KV 40000/(31/2*11)=2099.5KA - 35 -
目前,已广泛采用复合电压起动的过流保护作为变压器的后备保护。故在本设计也采用复合电压起动的过流保护。 整定计算: 1. 电流继电器:
电流继电器一次动作电流按躲过变压器额定电流整定: Kk=1.2 Kh=0.85
IDZ=(Kk/Kh)*IBe=1.2/0.85*209.95=296.4A 2. 低电压继电器
对于降压变电站低压继电器一次动作电压,应按最低工作电压整定。 UDZ=Ugmin/KkKh=09*110/1.2*1.15=71.74A 3.负序电压继电器
负序电压继电器的一次动作电压,应按躲过正常运行时的不平衡电流整定取UDZ=0.06 UE=6.6KV
变压器的接地保护:
在中性点直接接地的变压器上,一般应装设反应接地短路的保护作为变压器的后备保护和相邻元件接地短路的后备保护。如果变压器中性点直接接地运行,其接地保护一般采用零序电流保护,保护接于中性点引出线的电流互感器上。所以在本设计中变压器的接地保护采用零序电流保护。 变压器的过负荷保护:
过负荷保护反应变压器对称负荷引起的过流保护。保护用一个电流继电器接于一相电流上,经延时动作于信号。
对于两侧有电源的三绕组降压变压器,三侧均应装设保护。 过负荷保护的动作电流按躲过变压器额定电流整定,即 IDZ=Kk/Kk*IeB 式中Kk取1.05 Kb取0.85
∴高压侧:IDZ=(1.05/0.85)*40000/(31/2*115)=259.35KA 中压侧:IDZ=(1.05/0.85)*40000/(31/2*37.5)=1411.76KA 低压侧:IDZ=(1.05/0.85)*40000/(31/2*10.5)=2852.87KA 二、线路保护的规划: 110KV侧:
- 36 -
距离保护是根据故障点距离保护装置处的距离来确定其动作电流的,较少受运行方式的影响,在110—220KV电网中得到广泛的应用。
故在本设计中,采用三段式阶梯时限特性的距离保护。距离保护的第一段保护范围为本线路长度的80%--85%,T1约为0.1S,第二段的保护范围为本线路全长并延伸至下一线路的一部分,T11约为0.5—0.6S,距离第一段和第二段构成线路的主保护。距离保护的第三段作为相邻线路保护和断路器拒动的远后备保护,和本线路第一段和第二断保护的近后备。 110KV以上电压等级的电网通常均为中性点直接接地电网,在中性点直接接地电网中,当线路发生单相接地故障时,形成单相接地短路,将出线很大的短路电流,所以要装设接地保护。
35KV、10KV侧保护的选用
从《电力装置的继电保护和自动装置设计规范》中查得,在35KV、10KV侧无时限和带时限电流速断保护配合,可作为本线路的主保护,但它不能起远后备保护的作用,为了能对线路起到近后备和对相邻线路起到运后备作用,还必须装设第三套电流保护,即定时限过电流保护。 三、母线保护规划 110KV母线保护规划
110KV—220KV电网中母线保护应用较多的是母联相位比较差动保护,故在本设计中110KV母线保护母采用联相位比较差动保护。 35KV,10KV母线保护规划
35KV,10KV采用的都是单母分段连线,35KV,10KV单母分段连线,一般采用低阻抗的电流差动母线保护,故在本设计中35KV,10KV母线保护采用低阻抗的电流差动母线保护。
第十章 变电所的所用电
变电所的所用负荷很少,主要负荷时变压器的冷却设备以及其它一些用电
- 37 -
负荷。如:强迫油循环冷却装置的油泵,水泵风扇等,采暖通风照明及检修用电等。故一般变电所,所用变压器的容量为50—135KV,中小型变电所所用20KVA即能满足要求。变电所所用接线很简单,一般用一台所用变压器,自变电所中最低以及电压母线引接电源,副边采用380/220中性点直接接地的三相四线制系统,用单母线接线。
大容量变电所,所用电较多,一般装设两台所用变压器,两台所用变压器分别接在变电所最低一级电压母线的不同分段上。
在本设计中,在10KV侧,分别装设两台50KVA的所用变压器。
第二部分.计算说明书
- 38 -
第一章 短路电路计算
在变电所和发电厂的电气设计中,短路电流计算是一个重要环节。计
算的目的是选择主接线,比较各种接线方案;选择电气设备,校验设备提供依据;为继电保护整定计算提供依据等。 一、三相短路计算 解:1.计算各阻抗标值
查222KV及三相双绕组电力变压器技术数据 查不到容量为240MVA变压器的参数 查260MVA变压器的技术数据得:Ud%=14
容量为120MVA的变压器(额定容量为:12000/12000/6000)的阻抗电压(%):
- 39 -
Ud12%=24.7, Ud23%=8.8, Ud31%=14.7 200MW的发电机的电抗标值:
X1*=Xd″*(Sj/Se)=0.167*〔(100*0.86)/800〕=0.018 4*240MVA的变压器:
X2*=(Ud%/100)*(Sj/Sd)=(14/100)*〔100/(260*4)〕=0.0135 75Km线路:X3*=X0L*(Sj/U2p)=0.4*75*(100/2302)=0.057 80Km线路:X4*=X0L*(Sj/U2p)=0.4*80*(100/2302)=0.06 容量为1000MVA的发电机
X5*=Xd″*(Sj/Se)=0.04*(100/1000)=0.004 2*120MVA的变压器:
Ud1%=1/2(Ud12%+Ud31%-Ud23%)=1/2(24.7+14.7-8.8)=15.3 Ud2%=1/2(Ud12%+Ud23%-Ud31%)=1/2(24.7+8.8-14.7)=9.4 Ud3%=1/2(Ud23%+Ud31%-Ud12%)=1/2(8.8+14.7-24.7)=-0.6≈0
∴X6*=X7*=(Ud1%/100)*(Sj/SB)=(15.3/100)*(100/120)=0.1275 X8*=X9*=(Ud2%/100)*(Sj/SB)=(9.4/100)*(100/120)=0.078 30km线路:
X10*=X11*=X0L*(Sj/U2p)=0.4*30*(100/1152)=0.091 SFPSL-40000/110的技术参数: Ud12%=10.5,Ud23%=17.5,Ud31%=6.5
Ud1%=1/2(Ud12%+Ud31%-Ud23%)=1/2(10.5+17.5-6.5)=10.75 Ud2%=1/2(Ud12%+Ud23%-Ud31%)=1/2(10.5+6.5-17.5)=-0.25≈0 Ud3%=1/2(Ud23%+Ud31%-Ud12%)=1/2(17.5+6.5-10.5)=6.75
- 40 -
∴X12*=(Ud1%/100)*(Sj/SB)=(10.75/100)*(100/40)=0.269 X14*=(Ud3%/100)* (Sj/SB)= (6.75/100)* (100/40)=0.169 X13*=0 等值电路图:
4/0.06
3/0.057 2/0.0135
5/0.004
o 6/0.1275 8/0.078 10/0.091
12/0.269
14/0.169
10KV
13/0
35KV
7/0.1275 9/0.078 11/0.091
o 1/0.018
220KV
15/0.064 S1
110KV 18/0.269 17/0.14825 35KV 10KV
S2
16/0.0885 19/0.438 图2
简化得2图(如上)
其中:X15*=X4*+X5*=0.06+0.004=0.064 X16*=X1*+X2*+X3*=0.057+0.0135+0.018=0.0885 X17*=(X6*+X8*+X10*)/2=(0.1275+0.078+0.091)/2=0.014825 X18*=X12*+X13*=0.269
X19*=X12*+X14*=0.269+0.169=0.438
- 41 -
2、110KV侧发生三相短路: 等值电路如下:
解:Y→Δ转化,得:
X20*=X15*+X17*×[ (X17*+X15*)/X16*]=0.064+[0.148(0.064+0.148)/0.0885]=0.319 X21*=X16*+X17*×[(X16*+X17*)/X15*]=0.0885+0.148[(0.0855+0.0148)/0.064]=0.44
Y→Δ转化后的电路如下:
电抗的计算:
Xjs1*=XΣ1*×(SeΣ/Sj)=0.319×(1000/100)=3.19>3 Xjs2*=XΣ2*×(SeΣ/Sj)=0.44×[800/(100×0.86)]=4.1>3 ∴按无限大电源容量计算: I1*=1/XΣ1*=1/0.319=3.13 I2*=1/XΣ2*=1/0.44=2.27
- 42 -
220KV 15/0.064 S1
16/0.0885 S2
图3
220KV S1 S2
20/0.319 21/0.44
图4
Iz1=I1*×Ij=3.13×[100/(31/2×115)]=1.57A Iz2=I2*×Ij=2.27×[100/(31/2×115)]=1.14A Iz=Iz1+I z2=1.57+1.14=2.71
∴冲击电流:Ich=2.25×Iz=2.55×2.71=6.9A 3、35KV侧发生三相短路时的计算: 电路图如下:
简化电路得:
S2
220KV S1
15/0.064 22/0.417 16/0.0885 35KV
S1 S2
220KV 15/0.064 17/0.14825 16/0.0885 18/0.269 35KV
110KV 图5
X22*=0.14825+0.269=0.417 Y→Δ转化如下:
X23*=X15*+X22*[(X15*×X22*)/X16*]=0.064+0.417[(0.064×0.417)/0.0885]=0.783 X24*=X16*+X22*[(X16*×X22*)/X15*]=0.0885+0.417[(0.0885×0.417)/0.064]=1.082
S1 S2 220KV 23/0.783 24/1.082 - 43 -
图6
图7
Xjs1*=XΣ1*×(SeΣ/Sj)=0.783×(1000/100)=7.83>3 Xjs2*=XΣ2*×(SeΣ/Sj)=1.802×[800/(100×0.86)]=10.07>3 ∴按无限大电源容量计算: I1*=1/XΣ1*=1/0.783=1.277 I2*=1/XΣ2*=1/1.082=0.92
Iz1=I1*×Ij=1.277×[100/(31/2×37.5)]=1.99A Iz2=I2*×Ij=0.92×[100/(31/2×37.5)]=1.44A Iz=Iz1+I z2=1.99+1.44=3.43A
∴冲击电流:Ich=2.25×Iz=2.55×3.43=8.75A 4、10KV侧发生三相短路时的计算: 电路图如下:
简化电路如(8-2):
- 44 -
220KV S1 S2
15/0.064 17/0.14825 16/0.0885 19/0.438 110KV 图8-1 220KV S1 S2 15/0.064 25/0.586 16/0.0885 10KV
图8-2
X25*=0.14825+0.438=0.586 Y→Δ转化如下:
X26*=X15*+X25*[(X15*×X25*)/X16*]=0.064+0.586[(0.064×0.586)/0.0885]=1.074 X27*=X16*+X25*[(X16*×X25*)/X15*]=0.0885+0.586[(0.0885×0.586)/0.064]=1.485
S1 S2
220KV 26/1.074 27/1.485 10KV 图9 Xjs1*=XΣ1*×(SeΣ/Sj)=1.074×(1000/100)=10.74>3 Xjs2*=XΣ2*×(SeΣ/Sj)=1.485×[800/(100×0.86)]=13.8>3 ∴按无限大电源容量计算: I1*=1/XΣ1*=1/1.074=0.93 I2*=1/XΣ2*=1/1.485=0.67
Iz1=I1*×Ij=0.93×[100/(31/2×10.5)]=5.11A Iz2=I2*×Ij=0.67×[100/(31/2×10.5)]=3.68A Iz=Iz1+I z2=5.11+3.68=8.79A
∴冲击电流:Ich=2.25×Iz=2.55×8.79=22.4A
二.不对称短路电流计算
首先应计算出个元件序电抗的标值,拟定序网络图。根据短路类型求得附加电抗X△*(n),然后在正序网路末端接入附加电抗X△*(n),然后按发生三项短路计算三项短路电流。此三相短路电流就是短路点短路电流的正序分量。将此正序分量乘以110KV母线侧发生接地短路正、负、零序网络图。
Ec - Ec 5/0.004 4/0.06 + 1/0.018 + 3/0.057 6/0.1275 10/0.091 - 45 -
9/0.078 - 8/0.078 7/0.1275 11/0.091 2/0.0135
一、各元件的序电抗 (1)正序电抗
三相短路是对称短路,短路电流只能正序分量。所以,计算三相短路电流时所用各元件的电抗,便是它们的正序分量。把各元件的电抗标么值标于图10中。 (2)负序分相
- 46 -
5/0.004 4/0.06
6/0.1275 10/0.091 9/0.078 1/0.018 3/0.057 8/0.078 7/0.1275 11/0.091 + Ud2 -
2/0.0135 图11 5/0.004 负序网路图17/0.18 13/0.039 16/0.137 12/0.269 15/0.064 2/0.0135 18/0.171 19/0 + Ud0 - 20/0.69 图12 零序网路图
具有静止磁耦合的任何元件,如变压器、电抗器、架空线路、和电缆,在这些元件中,三相电流的相序改变时,并不改变相与相的互感,所以它们的负序电抗与正序电抗相等。 (3)零序电抗
架空线路的零序电抗是正序电抗的三倍,其它一样。 二、两相短路:
两相短路的附加电抗为负序网络总电缆X2Σ,画出负序网图(见上),简化负序网络
S1 S2
220KV 15/0.064 17/0.148 16/0.0885 计算附加电抗:X△*(2)=X2Σ*=(0.064×0.0885)/0.064+0.0885)+0.148=0.185 图13 求正序电流,电路图如下
简化电路如下:
S2 S1 19/0.638 20/0.88 图14
S1 S2
15/0.064 17/0.148 16/0.0885 18/0.185
图15
- 47 -
X19*=0.064+0.148+0.185+[0.064×(0.148+0.185)]/0.0885=0.638 X20*=0.0885+0.148+0.185+[0.0885×(0.148+0.185)]/0.064=0.88 计算电抗:
Xjs1*=X19*×(SeΣ/Sj)=0.638×(1000/100)=6.39>3
Xjs2*=X20*×(SeΣ/Sj)=0.88×[(4×200)/(0.86×100)]=8.19>3 ∴应按无限大容量计算 I1*″=1/0.638=1.567
∴I1″=I1*″×[Sj/(31/2Up)]=1.567×[100/(31/2×115)]=0.787KA I2*″=1/0.88=1.136
∴I2″=I2*″×[Sj/(31/2Up)]=1.136×[100/(31/2×115)]=0.57KA I″=I1″+I2″=0.787+0.57=1.357 短路电流:
I″(2)=m2×I″=31/2×1.357=2.35KA ∴Ich(2)=2.55×2.35=5.98KA 三、单相短路
单相短路的附加电抗为负序网络总电抗X2Σ于零序网络总电抗X0Σ的和。 由上可知:X2Σ=0.185 零序电抗计算(网络图见上):
X0Σ=〔(0.039+0.137)×(0.269+0.169)〕/〔(0.039+0.137)+(0.269+0.169)〕=0.126
X△(0)=X2Σ+X0Σ=0.185+0.126=0.311 根据正序等效原则,求正序电流,等值电路如下:
S1
15/0.064 17/0.148 16/0.0885 21/0.311 - 48 -
S2
图16
简化得:
X22*=0.064+0.148+0.311+[0.064×(0.148+0.311)]/0.0885=0.855 X23*=0.0885+0.148+0.311+[0.0885×(0.148+0.311)]/0.064=1.18
S2 S1
22/0.855 23/1.18
图17
计算电抗:
Xjs1*=X22*×(SeΣ/Sj)=0.855×(1000/100)=8.55>3
Xjs2*=X23*×(SeΣ/Sj)=1.17×[(4×200)/(0.86×100)]=10.98>3 ∴应按无限大容量计算 I1*″=1/0.855=1.17
∴I1″=I1*″×[Sj/(31/2Up)]=1.17×[100/(31/2×115)]=0.587KA I2*″=1/1.88=0.847
∴I2″=I2*″×[Sj/(31/2Up)]=0.847×[100/(31/2×115)]=0.425KA I″=I1″+I2″=0.587+0.425=1.012 短路电流:
I″(2)=m2×I″=31/2×1.012=3.036KA ∴Ich(2)=2.55×3.036=7.74KA 四、两相接地故障
两相接地故障的附加电抗为:
- 49 -
(X2Σ×X0Σ)/(X2Σ+X0Σ)
由上可知:X2Σ=0.185,X0Σ=0.126
∴X△(1.1)=(X2Σ×X0Σ)/ (X2Σ+X0Σ)= (0.185×0.126)/ (0.185+0.126)=0.075 根据正序等效原则,求正序电流,等值电路如下:
S1
15/0.064 17/0.148 16/0.0885 24/0.075
S2
简化得:
X25*=0.064+0.148+0.075+[0.064×(0.148+0.075)]/0.0885=0.448 X26*=0.0885+0.148+0.075+[0.0885×(0.148+0.0.075)]/0.064=0.62
S2 S1
25/0.448 26/0.62
图18
图19
计算电抗:
Xjs1*=X25*×(SeΣ/Sj)=0.448×(1000/100)=4.88>3 Xjs2*=X26*×(SeΣ/Sj)=0.62×[(4×200)/(0.86×100)]=4.2656>3 ∴应按无限大容量计算 I1*″=1/0.448=2.23
∴I1″=I1*″×[Sj/(31/2Up)]=2.23×[100/(31/2×115)]=1.12KA
- 50 -
正在阅读:
东芝CV180调试手册 - 图文05-18
“吃货”贪吃记作文700字07-11
对三电平整流器主电路建模的研究03-29
给妈妈的一封信作文400字07-16
高速冲床的工作原理05-12
戴眼镜真麻烦作文450字06-17
2014-2015学年度第一学期高三级12月月考文科数学试题及答案09-27
硫磺制酸工艺安全标准化评价05-05
心理健康辅导员测试题单选题及答案汇总05-29
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 变电站
- 电气
- 部分
- secret
- 设计
- 110kv