植物生理作业答案(09生本)

更新时间:2023-12-06 17:21:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

植物生理学作业

绪论

一. 名词解释:

植物生理学:是研究植物生命活动规律的科学,包括研究植物的生长发育与形态建成,物质与能量转化、信息传递和信号转导等3方面内容。

第一章 植物的水分生理

一. 名词解释

① 质外体途径:是水分通过细胞壁、细胞间隙等没有细胞质部分的移动方式,阻力小,水分移动速度快。

② 共质体途径:是指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。

③ 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 ④ 水分临界期:指植物对水分不足特别敏感的时期。

二. 思考题

1. 将植物细胞分别放在纯水和1 mol·L-1蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?

答:渗透势是由于溶质颗粒的存在,降低了水的自由能;而压力势是指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,是由于细胞壁压力的存在而增加水势的值;水势是衡量水分反应或做功能量的高低,是每偏摩尔体积水的化学势差。所以:

(1)将植物细胞放入纯水中,由于纯水的浓度比细胞内液的浓度低,因此,纯水会向细胞质移动,引起细胞被动吸水,原生质体吸水膨胀,细胞的渗透势升高,压力势是增大,从而细胞的水势上升。

(2)而将植物细胞放入1 mol·L-1蔗糖溶液时结果则相反,植物细胞失水,发生质壁分离,胞内的离子浓度升高,细胞渗透势下降,压力势减少,即细胞水势明显降低。

4. 水分是如何进入根部导管的?水分又是如何运输到叶片的?

答:根系是陆生植物吸水的主要器官,它从土壤中吸收大量水分,以满足植物体的需要。植物根系吸水主要通过质外体途径、跨膜途径和共质体途径相互协调、共同作用,使水分进入根部导管。

而水分的向上运输则来自根压和蒸腾拉力。正常情况下,因根部细胞生理活动的需要,皮层细胞中的离子会不断地通过内皮层细胞进入中柱,于是中柱内细胞的离子浓度升高,渗透势降低,水势也降低,便向皮层吸收水分。根压把根部的水分压到地上部,土壤中的水分便不断补充到根部,形成了根系吸水的动力过程之一。蒸腾作用是水分运输的主要动力。正常生理情况下,叶片发生蒸腾作用,

1

引起水分的散失,从而使叶片细胞、输导组织产主一系列的水势梯度,导致根部被动吸水,水分由根部进入导管,不断从一个细胞传到另一个细胞,直到叶片上。

第二章 植物的矿质营养

一. 名词解释 ①

溶液培养:亦称水培,是在含有全部或部分营养元素的溶液中栽培植物的方法。

大量元素:指植物需要量较大,在植物体内含量较高(>10 mmol·kg-1干重)的元素,C、H、O、N、P、K、Ca、Mg、S、Si。

微量元素:指植物需要量极微, 在植物体中含量较低(< 10 mmol·kg-1干重)的元素, Fe、Mn、B、Zn、Cu、Mo、Cl、Ni。

诱导酶:指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶称为诱导酶。

二. 思考题

1. 植物进行正常的生命活动需要哪些矿质元素?如何用实验方法证明植物生长需要这些矿质元素?

答:植物正常生命活动所需的元素有:①大量元素:N、P、K、Ca、Mg、S、Si等;②微量元素:Cl、Fe、Mn、B、Zn、Cu、Mo、Ni、Na等。

通过用完全和缺素培养的方法可以证明植物生长是否需要这些矿质元素。如研究植物必需的某种矿质元素时,可在人工配成的混合营养液中除去该种元素,观察植物的生长发育和生理性状的变化。如果植物发育正常,表示这种元素是植物不需要的;如果植物发育不正常,但当补充该元素后又恢复正常状态,即可断定该元素是植物必需的。

9. 根部细胞吸收的矿质元素通过什么途径和动力运输到叶片?

答:根部细胞吸收矿质元素的途径是:1. 离子吸附在根部细胞表面。2. 离子进入根的内部。 3. 离子通过被动扩散或主动运输进入导管或管胞。矿质元素同样通过根压和蒸腾拉力,随着水分运输到叶片。

15.引起嫩叶发黄和老叶发黄的分别是什么元素?请列表说明。 所缺 最早 具体病症

2

临界浓度:是获得最高产量的最低养分浓度。

元素 氮(N) 表现在 老叶 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。 叶片由深绿色转为紫铜色,叶脉(尤其是叶柄)呈黄中带紫色。花芽形成困难,开花小而少且色淡,导致果实发育不良,甚至提早枯萎凋落 植株矮小,茎杆柔软易倒伏。叶片常皱缩,老叶由叶尖沿着叶边出现黑褐色斑色,叶周围变黄,而中部及叶脉搏仍呈绿色 植株生长不旺盛。老叶由下至上从叶缘至中央渐失绿变白,叶脉上出现各色斑点,最后全叶变黄 嫩叶绿且皱缩,叶缘上卷并有白色条纹,花朵受阻,新叶难以展开或呈病状扭曲 嫩叶从叶脉开始黄化,最后直至全叶发黄,根系发育不正常。 幼芽幼叶缺绿发黄,甚至变为黄白色,而下部叶片仍为绿色。缺铁过甚或过久时,叶脉也缺绿,全叶白化 磷(P) 老叶 钾(K) 镁(Mg) 钙(Ca) 硫(S) 铁(Fe) 老叶 老叶 嫩叶 嫩叶 嫩叶

第三章 植物的光合作用

一. 名词解释

荧光现象:叶绿素溶液在透射光下呈绿色,而在反射光下呈红色的现象。 磷光现象:叶绿素除了在光照时能辐射出荧光之外,当去掉光源后,还能继续辐射出极微弱的红光,它是第一三线态回到基态时所产生的光,这种现象称为磷光现象。

增益效应:在远红光(710nm)条件下,如补充红光(波长650nm),则量子产额大增,比这两种波长的光单独照射的总和还要高,后人把这两种波长的光协同作用而增加光合效率的现象称为增益效应。 聚光色素(天线色素):指没有光化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。聚光色素又叫天线色素。【没有光化学活性,只有收集光能的作用,像漏斗一样把光能聚集起来,传到反应中心色素,绝大多数色素(包括大部分叶绿素a和全部叶绿素b、胡萝卜素、叶黄素)都属于聚光色素,聚光色素又称为天线色素,将吸收到的光能有效的集中到反应中心色素。】 光合链:在类囊体膜上的PSⅡ和PSⅠ之间几种排列紧密的电子传递体完成电子传递的总轨道,称为光合链。

光呼吸:植物的绿色细胞依赖光照,吸收O2和放出CO2的过程,被称为光呼吸。

光补偿点:同一叶子在同一时间内,光合过程中吸收的CO2与光呼吸和呼吸作用过程中放出的CO2等量时的光照强度,称为光补偿点。

二. 思考题

3

2.在光合作用过程中,ATP和NADPH+H+是如何形成的? ATP和NADPH+H+又是怎样被利用的?

答:⑴ATP和NADPH+H+的形成:在植物类囊体膜上,水在光合系统Ⅱ(PSⅡ)中的放氧复合物(OEC)处水裂解后,把H+释放到类囊体腔内,把电子传递到PSⅡ,电子在光合电子传递链中传递时,伴随着类囊体外侧的H+转移到腔内,由此形成了跨膜的H+浓度差,引起了ATP的形成;与此同时把电子传递到PSⅠ去,进一步提高了能位,而使H+还原NADP+为NADPH,此外还放出O2。

⑵ATP和NADPH+H+的利用:在光合作用的碳同化过程中,CO2经过羧化阶段形成了2分子的3--磷酸甘油酸(PGA),紧接着3-磷酸甘油酸被ATP磷酸化,在3--磷酸甘油酸激酶催化下,形成1,3--二磷酸甘油酸(DPGA),然后在

+

3-磷酸甘油醛脱氢酶作用下被NADPH﹢H还原,形成3-磷酸甘油醛。从3--磷酸甘油酸(PGA)到3-磷酸甘油醛过程中,由光合作用生成的ATP和NADPH均被利用掉。

7.一般来说,C4植物比C3植物的光合产量要高,试从它们各自的光合特征及生理特征比较分析。 生理特征 C3植物 C4植物 植物类型 典型温带植物 典型热带或亚热带植物 叶结构 无Kranz结构,只有Kranz结构,常具两种叶绿体 有一种叶绿体 叶绿素a/b 2.8±0.4 3.9±0.6 光合特征 C3植物 C4植物 CO2固定酶 Rubisco PEP羧激酶、Rubisco CO2固定途径 只有卡尔文循环 在不同空间分别进行C4途径和卡尔文循环 最初CO2接受体 RuBP PEP CO2固定的最初产PGA OAA 物 光呼吸 高,易测出 低,难测出 8.从光呼吸的代谢途径来看,光呼吸有什么意义? 答:①参与光保护机制:光呼吸释放CO2,消耗过剩的同化力,对光合器官起保护作用,避免产生光抑制;

②持光合作用的正常代谢:Rubisco同时具有羧化和加氧的功能,在有氧条件下,光呼吸消耗了CO2之后,降低了O2/CO2之比,可提高RuBP羧化酶的活性,有利于碳素同化作用的进行。虽然损失一些有机碳,但通过C2循环还可收回75%的碳,避免损失过多。

③消除了乙醇酸的累积所造成的毒害。 ④此过程可以作为丙糖和氨基酸的补充途径。

第四章 植物的呼吸作用

4

一、名词解释

1.呼吸链:电子传递链又称为呼吸链,是呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途经,传递到分子氧的总过程。 2.抗氰呼吸:在氰化物存在下,某些植物呼吸不受抑制,把这种呼吸称为抗氰呼吸。

3.末端氧化酶:位于电子传递途径的末端,能把电子直接传递给分子氧的氧化酶。

二、思考题

1.分析下列措施,并说明它们有什么作用? ⑴将果蔬贮存在低温下;

⑵小麦、水稻、玉米、高粱等粮食贮藏之前要晒干; ⑶给作物中耕松土;

⑷早春寒冷季节,水稻浸种催芽时,常用温水淋种和不时翻种。

答:⑴ 将果蔬贮存在低温下,是通过温度的条件影响植物的呼吸作用。在低温下,抑制了呼吸酶的活性,细胞呼吸速率减慢,从而达到保鲜的作用; ⑵ 小麦、水稻等均属于植物的种子结构,种子是有生命的有机体,不断地进行着呼吸作用。呼吸速率快,会引起有机物的大量消耗;呼吸放出的水分,又会使粮堆湿度增大,粮食“出汗”,呼吸加强;呼吸放出的热量,又使粮温增高,反过来又促使呼吸增强,最后导致发热霉变,使粮食变质变量,因此,可以通过晒干,减少种子的水分,降低呼吸速率,更利于贮藏;还可有效抑制微生物繁殖,确保粮食种子不发热霉变。

⑶ 植物根埋藏在土壤中同样进行呼吸作用,当土壤中O2的浓度降低时,植物的有氧呼吸就会下降,无氧呼吸则增强。因此,及时给作物松土,改善土壤通气条件,可以增加土壤中的含氧量,维持植物正常的有氧呼吸,促进根系发育。

⑷ 早稻浸种催芽时,常用温水淋种和不时翻种,目的就是控制温度和通气,使呼吸顺利进行,预防无氧呼吸,利于种子发芽,为植株的生长打下良好的基础。

2. 植物的光呼吸和暗呼吸有哪些区别?

(1)光呼吸与暗呼吸虽然都是吸收O2释放CO2的过程,但在性质上是两个根本不同的代谢过程。

(2)二者的主要区别如下:a光呼吸:是乙醇酸的氧化分解过程;在叶绿体、过氧化物酶体和线粒体中完成;随O2浓度的升高而增强,而CO2浓度的轻微升高明显抑制光呼吸;仅发生在绿色细胞中,也仅在光下发生;是一个既消耗能量

5

又消耗有机物质的过程。b暗呼吸:是葡萄糖或其他有机物氧化分解过程;在细胞质和线粒体中进行;O2浓度增至一定浓度(20%)后无影响,CO2浓度轻微升高对暗呼吸无影响;发生在所有的活细胞中,在光暗中无间断进行;分解有机物释放的能量和产生 中间物参与各种代谢活动。

第五章 植物体内有机物的代谢

一、名词解释

1. 初生代谢物:糖类、脂肪、核酸和蛋白质等是初生代谢的产物,我们称

之为初生代谢物。

2. 次生代谢产物(secondary metabolites):植物体由糖类等有机物代谢衍生

出来的物质,如萜类、酚类和含氮次生化合物等。

第六章 植物体内有机物的运输

一、名词解释

1. 韧皮部装载:是指光合产物从叶肉细胞到筛分子-伴胞复合体的整个过程。

2. 韧皮部卸出:是指装载在韧皮部的同化产物输出到库的接受细胞的过程。

3. 配置:是指源叶中新形成同化产物的代谢转化。

4. 分配:是指新形成同化产物在各种库之间的分布。

二、思考题

1. 木本植物怕剥皮而不怕空心,这是什么道理?可是杜仲树皮(我国特产中药)剥去后,植物仍正常生长,清查资料了解详情。 答:

树皮的作用除了能防寒防暑防止病虫害之外,主要是为了运送养料。在植物的皮里有一层叫做韧皮部的组织,韧皮部里有无数细细的筛管,这些筛管连通了根部,将茎叶中通过光合作用产生的养料传输给根部供给其生存,使大树能正常生长。如果韧皮部收损,树皮被大面积剥掉,新的韧皮部来不及长出,树根部就会由于得不到有机养分而死亡。

树干里则有无数细细的导管,利用蒸腾作用和毛细作用从下往上把养料和水份吸收供给大树,这就是很多老树烂芯了依然能够存活的原因,因为它的树干并没有全都烂光,并没有完全失去运输水分的功能;

6

因此,剥树皮剥走的不仅是一棵树的树皮,而是整棵树的生命,树皮对树的生死是十分重要的。

而杜仲树具有自生能力。杜仲剥皮后树皮再生的原理是:一般选取健壮的树体,在生长季节(5-7月)进行环剥皮,环剥处主干的原形成层完全遭到破坏,失去细胞分生作用。如果剥皮处在剥皮后随即用塑料布进行保护,则木质部表层(创伤面)的未成熟木质细胞在数天内形成愈伤组织,并逐渐向外加厚,形成木栓组织。在木栓组织达到一定厚度后,处于木栓层及木质部之间的细胞则具有了形成层细胞的功能,即向外分生木栓层,向内分生木质部。这里的关键是,剥皮后能否及时对创伤面进行保温处理(例如包扎塑料布等),以使创伤面未成熟木质细胞保持活性,能够及时形成愈伤组织。

第七章 细胞信号转导

一、名词解释

1. 跨膜信号转换:信号与细胞表面的受体结合之后,通过受体将信号传递进入细胞内,这个过程称为跨膜信号转换。

2. 信号:对植物体来讲,环境变化就是刺激,就是信号。

3. 受体:是指能够特异地识别并结合信号、在细胞内放大和传递信号的物质。

4. 细胞内受体:位于亚细胞组分如细胞核、液泡膜上的受体叫做细胞内受体。

5. 细胞表面受体:位于细胞表面的受体称之为细胞表面受体。

6. 第二信使:由胞外信号激活或抑制,具有生理调节活性的细胞内因子称之为第二信使。

第八章 植物生长物质

一、名词解释

1. 生长素极性运输:是指生长素只能从植物体的形态学上端向下端运输。 2. 三重反应:由乙烯引起的植物生长特性。即乙烯抑制茎的伸长生长;促进茎和根的横向生长;地上部失去负向重力性生长(偏上生长)。

3. 植物激素,又称内源激素或天然激素,是指一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的微量(? 1μmol. L-1 )有机物。 4. 植物生长调节剂:指一些具有植物激素活性的人工合成物质,从外部施加给植物,只要很微量就能调节、改变植物的生长发育。

二、问答题

7

8.生长素、赤霉素、细胞分裂素、脱落酸和乙烯在农业生产上有何作用? 答: 植物激素 促进作用 ①促进细胞伸长; ②促进插条生根; ③促进细胞分裂和分化; ④诱导开花结实,单性结实; ⑤性别分化,促进雌花的形成 ⑥低浓度促进生长 ①促进细胞伸长; ②诱导淀粉酶合成; ③打破休眠,促进发芽; ④防止脱落; ⑤代替低温促进开花; ⑥诱导单性结实; ⑦促进黄瓜雄花分化; ⑧促进侧枝生长,打破顶端优势 ①促进细胞分裂; ②诱导花原基形成; ③促进侧芽生长,消除顶端优势; ④促进伤口愈合; ⑤促进果实生长 ①促进花、叶、果脱落; ②促进侧芽生长,块茎休眠; ③促进光合产物运向发育着的种子; ④促进果实产生乙烯,果实成熟; ①三重反应与偏上性反应; ②促成熟(催熟激素); ③促进两性花中雌花的分化; ④诱导次生物质(橡胶乳汁的分泌)的生长; ⑤不定根的形成; 抑制作用 ①控制侧芽生长(保持顶端优势); ②延长休眠; ③防止器官脱落; ④高浓度抑制生长 抑制不定根形成; 生产应用 促进雌花增加,诱导单性结实 生长素

9. 植物激素、植物生长调节剂、植物生长促进剂、植物生长抑制剂和植物生长延缓剂各有什么区别?试各举一例说明。

答:植物生长调节物质可分为两类:一是植物激素;二是植物生长调节剂。 (1)植物激素,又称内源激素或天然激素,是植物体内自行产生的一种生理活性的有机化合物。它可由产生部位或组织运送到其他器官。植物激素包括五大类:生长素(IAA)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(ABA)和乙烯(Eth),这些物质在植物体内含量虽极微,但是作用却很大,是植物生命活动不可缺少的物质。它具有多方面的生理作用,任何一种植物,缺少了这类活性物质,便不能正常生长发育,乃至整个植株枯死。由此可见,植物激素具有三大特征:第一,植物激素都是内生的,故又称为内源激素,是植物生命活动过程中的代谢产物;第二,它能在植物体内移动,不同的植物激素,有不同的器官组织产生后,还转

8

赤霉素①促进麦芽糖化(啤酒生产); ②促进某些植物开花(菠萝、黄瓜),单性结实(葡萄); ③防止脱落:防止离层形成,提高坐果率(应用于保花保果) ①CKT能延长蔬菜的贮存时间; ②CKT可防止果树生理落果; ③组织培养 提高抗逆性 细胞分裂素抑制不定根形成和侧根形成,延缓叶片衰老 脱落酸抑制种子发芽,IAA运输,植株生长 抑制某些植物开花,生长素的转运,茎和根的伸长生长 乙烯①促进次生物质排出(橡胶,漆树); ②促进菠萝开花; ③解除休眠 运到植物体内的其他部位,它们移动的速率和方式,随植物激素的种类而异,也随植物及器官的特征而不同;第三,极低的浓度即具有调节的功能。

(2)植物生物调节剂亦称植物生长调节物质,指那些从外部施加给植物,只要很微量就能调节、改变植物生长发育的化学试剂。除了植物激素从外部施加给植物作为生长调节剂外,更多的植物生长调节剂,是植物体内并不存在的人工合成有机物,主要包括。

一是植物生长促进剂,促进分生组织细胞分裂和分化,促进营养器官的生长和生殖器官的发育,例如与生长素有类似生理效能的吲哚丁酸(IBA)、萘乙酸(NAA)、2,4-D等,与细胞分裂素有类似生理效能的激动素(KT)和6-苄基氨基嘌呤(6-BA)等。

二是植物生长延缓剂,有延缓生长作用,降低茎的伸长而不完全停止茎端分生组织的细胞分裂和侧芽的生长,其作用能被赤霉素恢复,例如矮壮索(CCC)、助壮素(Pix)等。

三是植物生长抑制剂,也有延缓生长的效果,但与生长延缓剂不同,它们主要干扰顶端的细胞分裂,使茎伸长停顿和顶端优势的破坏,其作用不能被赤霉素恢复,例如马来酰肼(MH)、三碘苯甲酸(TIBA)等。

第九章 光形态建成

一、名词解释

1. 光形态建成:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,称为光形态建成(即光控制发育的过程)。

2. 暗形态建成:暗中生长的植物表现出黄化特征,茎细而长,顶端呈钩状弯曲,叶片小而呈黄白色,这种现象称为暗形态建成。

3. 光敏色素:是一种对红光和远红光吸收有逆转效应,参与光形态建成、调节植物发育的色素蛋白。在细胞中,光敏色素分布在膜系统、胞质溶胶和细胞核等部位。

4. 向光性:植物生长器官随光的方向而引起生长弯曲的现象。

5. 隐花色素:是指植物细胞中能够感受蓝光和近紫外光区域的光的一种受体(或称吸光色素系统)。

第十章 植物的生长生理

一、名词解释

1. 极性:是植物分化和形态建成中的一个基本现象,它通常是指在器官、组织甚至细胞中在不同的轴向上存在某种形态结构和生理生化上的梯度差异。

2. 生长大周期:植物在不同生育时期的生长速率表现出慢-快-慢的变化规律,呈现“S”型的生长曲线,这个过程称生长大周期。 3. 顶端优势:植物顶端在生长上占有优势的现象。

4. 细胞全能牲:指植物体的每个细胞携带一个完整基因组,并具有发育成完整

9

植株的潜在能力。

5. 向性运动:指外界对植物单向刺激所引起的定向生长运动。 6. 感性运动:指外界对植物不定向刺激所引起的运动。

二、问答题

1.试述光对植物生长的影响。

答:光对植物生长的影响是多方面的,主要有下列几方面:

① 光是光合作用的能源和启动者,为植物的生长提供有机营养和能源; ② 光控制植物的形态建成,即叶的伸展扩大,茎的高矮,分枝的多少、长度。根冠比等都与光照强弱和光质有关; ③ 日照时数影响植物生长与休眠。绝大多数多年生植物都是长日照条件促进生长、短日照条件诱导休眠; ④ 光影响种子萌发,需光种子的萌发受光照的促进,而需暗种子的萌发则受光抑制,此外,一些豆科植物叶片的昼开夜合,气孔运动等都受光的调节。

2. 下列哪些种子在萌发时需要较多的水分?哪些种子需水较少?为什么?

答:种子在萌发时需水量的多少,根据物质的亲水性而定,亲水性越强,所需的水分就越多,而物质的亲水性为蛋白质﹥淀粉﹥脂类。由此可推断,大豆,水稻、玉米和绿豆种子萌发时需水较多;而花生、油菜和芝麻种子萌发时需水不多。

4. 顶端优势的原理在树木、果树和园林植物生产上有何应用?

答:农业生产上,常用消除或维持顶端优势的方法控制作物、果树和花木的生长,以达到增产和控制花木株型的目的。

去顶芽保侧芽,例如:“摘心”、“打顶”,可使植物多分枝、多开花。常用打顶的办法去除顶端优势,以促使侧芽萌发、增加侧枝数目,或促进侧枝生长。例如对果树可使树形开展,多生果枝;对茶树和桑树,多生低部位侧枝便于采摘;对行道树,可扩大遮荫面积。有些化学药剂可以消除顶端优势,增加侧芽生长,提高农作物产量,其作用与剪去顶芽相似,如三碘苯甲酸(简称TIBA)已成功地应用于大豆生产中。这种方法称为化学去顶。

7. 将发芽后的谷种随意播于秧田,几天后根总是向下生长,茎总是向上生长,为什么?有什么生物学意义?

答:植物各部位的生长具有不同的向性。其中,根具有向地性、向水性、向肥性,而茎则具有向光性;引起这些表达性状的不同主要是由于它们生长素分布不均引起的。故根的生长是向下生长,茎的生长是向上生长。

根和茎不同生长态势的生物学意义是:两者既互相促进、互相依赖,又互相矛盾、互相制约的。根系生长需要地上部供给光合产物、生长素和维生素,而茎的生长又需根部吸收的水分、矿质,根部合成的多种氨基酸和细胞分裂素等。这

10

本文来源:https://www.bwwdw.com/article/6bpt.html

Top