R语言vegan包使用教程
更新时间:2023-07-18 22:13:01 阅读量: 实用文档 文档下载
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
MultivariateAnalysisofEcologicalCommunitiesinR:vegantutorial
JariOksanenFebruary8,2013
Abstract
ThistutorialdemostratestheuseofordinationmethodsinRpack-agevegan.ThetutorialassumesfamiliaritybothwithRandwithcommunityordination.Packagevegansupportsallbasicor-dinationmethods,includingnon-metricmultidimensionalscaling.Theconstrainedordinationmethodsincludeconstrainedanalysisofproximities,redundancyanalysisandconstrainedcorrespondenceanalysis.Packageveganalsohassupportfunctionsfor ttingen-vironmentalvariablesandforordinationgraphics.
Contents
1Introduction
2Ordination:basicmethod
2.1Non-metricMultidimensionalscaling............2.2Communitydissimilarities..................2.3Comparingordinations:Procrustesrotation........2.4Eigenvectormethods.....................2.5Detrendedcorrespondenceanalysis.............2.6Ordinationgraphics.............
........
3Environmentalinterpretation
3.1Vector tting.........................3.2Surface tting.........................3.3Factors.............................4Constrainedordination
4.1Modelspeci cation......................4.2Permutationtests.......................4.3Modelbuilding........................4.4Linearcombinationsandweightedaverages........4.5Biplotarrowsandenvironmentalcalibration........4.6Conditionedorpartialmodels........
........
1
23358811121414151618192123282930
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
1INTRODUCTION
5Dissimilaritiesandenvironment
5.1adonis:MultivariateANOVAbasedondissimilarities5.2Homogeneityofgroupsandbetadiversity......5.3Manteltest.......................5.4Protest:Procrustestest................
............
323233353636363839
6Classi cation
6.1Clusteranalysis........................6.2Displayandinterpretationofclasses............6.3Classi edcommunitytables.................
1Introduction
Thistutorialdemonstratestypicalwork owsinmultivariateordinationanalysisofbiologicalcommunities.Thetutorial rstdiscussesbasicun-constrainedanalysisandenvironmentalinterpretationoftheirresults.Thenitintroducesconstrainedordinationusingconstrainedcorrespon-denceanalysisasanexample:alternativemethodssuchasconstrainedanalysisofproximitiesandredundancyanalysiscanbeused(almost)similarly.Finallythetutorialdescribesanalysisofspecies–environmentrelationswithoutordination,andbrie ytouchesclassi cationofcommu-nities.
Theexamplesinthistutorialaretested:ThisisaSweavedocument.Theoriginalsource lecontainsonlytextandRcommands:theiroutputandgraphicsaregeneratedwhilerunningthesourcethroughSweave.However,youmayneedarecentversionofvegan.Thisdocumentwasgeneretatedusingveganversion2.0-6andRversion2.15.1(2012-06-22).
Themanualcoversordinationmethodsinvegan.Itdoesnotdis-cussmanyothermethodsinvegan.Forinstance,thereareseveralfunc-tionsforanalysisofbiodiversity:diversityindices(diversity,renyi,fisher.alpha),extrapolatedspeciesrichness(specpool,estimateR),speciesaccumulationcurves(specaccum),speciesabundancemodels(rad-fit,fisherfit,prestonfit)etc.NeitherisvegantheonlyRpack-ageforecologicalcommunityordination.BaseRhasstandardstatisticaltools,labdsvcomplementsveganwithsomeadvancedmethodsandpro-videsalternativeversionsofsomemethods,andade4providesanalter-nativeimplementationforthewholegammeofordinationmethods.
Thetutorialexplainsonlythemostimportantmethodsandshowstypicalwork ows.Iseeordinationprimarilyasagraphicaltool,andIdonotshowtoomuchexactnumericalresults.Instead,therearesmallvignettesofplottingresultsinthemarginsclosetotheplacewhereyouseeaplotcommand.Isuggestthatyourepeattheanalysis,trydi erentalternativesandinspecttheresultsmorethoroughlyatyourleisure.Thefunctionsareexplainedonlybrie y,anditisveryusefultocheckthecor-respondinghelppagesforamorethoroughexplanationofmethods.Themethodsalsoareonlybrie yexplained.Itisbesttoconsultatextbookonordinationmethods,ormylectures,for rmertheoreticalbackground.
2
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2ORDINATION:BASICMETHOD
2
Ordination:basicmethod
2.1
Non-metricMultidimensionalscaling
Non-metricmultidimensionalscalingcanbeperformedusingisoMDSfunc-tionintheMASSpackage.Thisfunctionneedsdissimilaritiesasinput.Functionvegdistinvegancontainsdissimilaritieswhicharefoundgoodincommunityecology.ThedefaultisBray-Curtisdissimilarity,nowadaysoftenknownasSteinhausdissimilarity,orinFinlandasSørensenindex.Thebasicstepsare:
>library(vegan)>library(MASS)>data(varespec)
>vare.dis<-vegdist(varespec)>
vare.mds0<-isoMDS(vare.dis)
initialvalue18.026495iter5value10.095483finalvalue10.020469converged
Thedefaultisto ndtwodimensionsandusemetricscaling(cmdscale)asthestartingsolution.Thesolutionisiterative,ascanbeseenfromthetracinginformation(thiscanbesuppressedsettingtrace=F).
TheresultsofisoMDSisalist(itemspoints,stress)forthecon- gurationandthestress.StressSisastatisticofgoodnessof t,anditisafunctionofandnon-linearmonotonetransformationofobserved
dissimilaritiesθ(d)andordinationdistancesd
.nationNmdsspacemapsandobserveditcanhandlecommunitynonlineardissimilaritiesspeciesresponsesnonlinearlyofanyontoshape.ordi-WecaninspectthemappingusingfunctionShepardinMASSpackage,orasimplewrapperstressplotinvegan:
>stressplot(vare.mds0,vare.dis)
FunctionstressplotdrawsaShepardplotwhereordinationdistancesareplottedagainstcommunitydissimilarities,andthe tisshownasamonotonestepline.Inaddition,stressplotshowstwocorrelationlikestatisticsofgoodnessof t.ThecorrelationbasedonstressisR2=1 S2.The“ t-basedR2”isordinationdistancesd
thecorrelationbetweenthe ttedvaluesθ(d)and
,orbetweenthesteplineandthepoints.Thisshouldbelinearevenwhenthe tisstronglycurvedandisoftenknownasthe“linear t”.ThesetwocorrelationsarebothbasedontheresidualsintheShepardplot,buttheydi erintheirnullmodels.Inlinear t,thenullmodelisthatallordinationdistancesareequal,andthe tisa athorizontalline.Thissoundssensible,butyouneedN 1dimensionsforthenullmodelofNpoints,andthisnullmodelisgeometricallyimpossi-bleintheordinationspace.Thebasicstressusesthenullmodelwhereallobservationsareputinthesamepoint,whichisgeometricallypossible.Finallyawordofwarning:yousometimesseethatpeopleusecorrelationbetweencommunitydissimilaritiesandordinationdistances.Thisisdan-gerousandmisleadingsincenmdsisanonlinearmethod:animproved
3
S= i=j[θ(dij) d ij]2i=jd2
ij
Non metric fit, R2 = 0.99 q
.Linear fit, R2 = 0.943
1qqqqqqq8
qqq
.q
qqe
0qcqnqqqqqqqqqaqqqqqqqqqqqqqqqtsqqqiqqqqqqqqqqqqD6qqqq
qqqqqq .n0qqoqqqqqqqqqqqqqqiqqqqqtanqqqqqqqqqqqqqqqqqqqqqidqqqqqqqqqqqqqqqqqqqqqqrO4q.qq0qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqq2qqqqqqqqqqqqqqqqqqqqq.0qqqqqqqq
qqqqqqqqq
qqqqqqqqqqqqqqqqqqq
0.20.40.60.8
Observed Dissimilarity
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2.1Non-metricMultidimensionalscaling2ORDINATION:BASICMETHOD
4
5
.014
7
2
.016
13
6
18
22
15
4
2
20
m0
25
i.D023
11
3
24
19
2
12
2
.0 27
28
109
4.0 21
0.6 0.4 0.2
0.00.20.4
Dim1
5
Cla.phy.0Cet.islDic.pol
Cla.ste24
2
11
Cla.chl
Pin.syl12Bar.lyc
Cla.cer
10Poh.nut
Pti.cil
21
9
Cla.bot
Dic.sp
Emp.nig
Vac.vit0
.04Cla.ran19Pol.pilCet.eri6Cla.criCla.unc23Cla.graPel.aphCet.niv
Cal.vul13Cla.corCla.def20Ple.sch28Bet.pub2
S318Cla.fimCla.sp15
Vac.myrLed.pal16DCla.arbCla.coc22M7Pol.jun27
N14
Hyl.spl5Ste.sp
Dip.mon
Dic.fusDes.fle5
Vac.uli
.25
0 Cla.ama
Ich.eri
Nep.arc
0.50.00.51.0
NMDS1
ordinationwithmorenonlinearrelationshipwouldappearworsewiththiscriterion.
Functionsscoresandordiplotinvegancanbeusedtohandletheresultsofnmds:
>ordiplot(vare.mds0,type="t")
Onlysitescoreswereshown,becausedissimilaritiesdidnothaveinfor-mationaboutspecies.
Theiterativesearchisverydi cultinnmds,becauseofnonlinearre-lationshipbetweenordinationandoriginaldissimilarities.Theiterationeasilygetstrappedintolocaloptimuminsteadof ndingtheglobalop-timum.Thereforeitisrecommendedtouseseveralrandomstarts,andselectamongsimilarsolutionswithsmalleststresses.Thismaybete-dious,butveganhasfunctionmetaMDSwhichdoesthis,andmanymorethings.Thetracingoutputislong,andwesuppressitwithtrace=0,butnormallywewanttoseethatsomethinghappens,sincetheanalysiscantakealongtime:
>vare.mds<-metaMDS(varespec,trace=FALSE)>vare.mds
Call:
metaMDS(comm=varespec,trace=FALSE)
globalMultidimensionalScalingusingmonoMDSData:wisconsin(sqrt(varespec))Distance:bray
Dimensions:2Stress:0.1826
Stresstype1,weakties
Twoconvergentsolutionsfoundafter20tries
Scaling:centring,PCrotation,halfchangescaling
Species:expandedscoresbasedon‘wisconsin(sqrt(varespec))’>plot(vare.mds,type="t")
Wedidnotcalculatedissimilaritiesinaseparatestep,butwegavethe
originaldatamatrixasinput.Theresultismorecomplicatedthanpre-viously,andhasquiteafewcomponentsinadditiontothoseinisoMDSre-sults:nobj,nfix,ndim,ndis,ngrp,diss,iidx,jidx,xinit,is-tart,isform,ities,iregn,iscal,maxits,sratmx,strmin,sf-grmn,dist,dhat,points,stress,grstress,iters,icause,call,model,distmethod,distcall,data,distance,converged,tries,engine,species.Thefunctionwrapsrecommendedproceduresintoonecommand.Sowhathappenedhere?
1.Therangeofdatavalueswassolargethatthedataweresquareroottransformed,andthensubmittedtoWisconsindoublestandardiza-tion,orspeciesdividedbytheirmaxima,andstandsstandardizedtoequaltotals.Thesetwostandardizationsoftenimprovethequal-ityofordinations,butweforgottothinkaboutthemintheinitialanalysis.
4
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2ORDINATION:BASICMETHOD2.FunctionusedBray–Curtisdissimilarities.
3.FunctionrunisoMDSwithseveralrandomstarts,andstoppedei-therafteracertainnumberoftries,orafter ndingtwosimilarcon gurationswithminimumstress.Inanycase,itreturnedthebestsolution.4.Functionrotatedthesolutionsothatthelargestvarianceofsitescoreswillbeonthe rstaxis.5.Functionscaledthesolutionsothatoneunitcorrespondstohalvingofcommunitysimilarityfromthereplicatesimilarity.6.Functionfoundspeciesscoresasweightedaveragesofsitescores,butexpandedthemsothatspeciesandsitescoreshaveequalvari-ances.Thisexpansioncanbeundoneusingshrink=TRUEindis-playcommands.ThehelppageformetaMDSwillgivemoredetails,andpointtoexplanationoffunctionsusedinthefunction.
2.2Communitydissimilarities
Non-metricmultidimensionalscalingisagoodordinationmethodbe-causeitcanuseecologicallymeaningfulwaysofmeasuringcommunitydissimilarities.Agooddissimilaritymeasurehasagoodrankorderrela-tiontodistancealongenvironmentalgradients.Becausenmdsonlyusesrankinformationandmapsranksnon-linearlyontoordinationspace,itcanhandlenon-linearspeciesresponsesofanyshapeande ectivelyandrobustly ndtheunderlyinggradients.
ThemostnaturaldissimilaritymeasureisEuclideandistancewhichisinherentlyusedbyeigenvectormethodsofordination.Itisthedistanceinspeciesspace.Speciesspacemeansthateachspeciesisanaxisorthogonaltoallotherspecies,andsitesarepointsinthismultidimensionalhyper-space.However,Euclideandistanceisbasedonsquareddi erencesandstronglydominatedbysinglelargedi erences.Mostecologicallymean-ingfuldissimilaritiesareofManhattantype,andusedi erencesinsteadofsquareddi erences.Anotherfeatureingooddissimilarityindicesisthattheyareproportional:iftwocommunitiessharenospecies,theyhaveamaximumdissimilarity=1.EuclideanandManhattandissimilaritieswillvaryaccordingtototalabundanceseventhoughtherearenosharedspecies.
PackageveganhasfunctionvegdistwithBray–Curtis,JaccardandKulczy´nskiindices.AlltheseareoftheManhattantypeanduseonly rstorderterms(sumsanddi erences),andallarerelativizedbysiteto-talandreachtheirmaximumvalue(1)whentherearenosharedspeciesbetweentwocomparedcommunities.Functionvegdistisadrop-inre-placementforstandardRfunctiondist,andeitherofthesefunctionscanbeusedinanalysesofdissimilarities.
Therearemanyconfusingaspectsindissimilarityindices.Oneisthatsameindicescanbewrittenwithverydi erentlookingequations:twoalternativeformulationsofManhattandissimilaritiesinthemarginserve
5
2.2Communitydissimilarities
djk
=
N(xij xik)2
Euclidean
i=1djk= N|xij xik|Manhattan
i=1
A= Nxij
B=
Nxik
i=1i=1
J=
Nmin(xij,xik)
i=1
djk=A+B 2JManhattan
dA+B 2Jjk=
A+BBraydA+B 2Jjk=
A+B J
Jaccardd1 1 JJ
jk=2A+
B
Kulczy´nski
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2.2Communitydissimilarities2ORDINATION:BASICMETHOD
forA=BforA=B
dAB=0dAB>0dAB=dBAdAB≤dAx+dxB
asanexample.Anothercomplicationisnaming.Functionvegdistusescolloquialnameswhichmaynotbestrictlycorrect.ThedefaultindexinveganiscalledBray(orBray–Curtis),butitprobablyshouldbecalledSteinhausindex.Ontheotherhand,itscorrectnamewassupposedtobeCzekanowskiindexsomeyearsago(butnowthisisregardedasanotherindex),anditisalsoknownasSørensenindex(butusuallymisspelt).Strictlyspeaking,Jaccardindexisbinary,andthequantitativevariantinveganshouldbecalledRuˇziˇckaindex.However,vegan ndseitherquantitativeorbinaryvariantofanyindexunderthesamename.
Thesethreebasicindicesareregardedasgoodindetectinggradi-ents.Inaddition,vegdistfunctionhasindicesthatshouldsatisfyothercriteria.Morisita,Horn–Morisita,Raup–Cric,BinomialandMountfordindicesshouldbeabletocomparesamplingunitsofdi erentsizes.Eu-clidean,CanberraandGowerindicesshouldhavebettertheoreticalprop-erties.
FunctionmetaMDSusedBray-Curtisdissimilarityasdefault,whichusuallyisagoodchoice.Jaccard(Ruˇziˇcka)indexhasidenticalrankorder,buthasbettermetricproperties,andprobablyshouldbepreferred.Functionrankindexinvegancanbeusedtostudywhichoftheindicesbestseparatescommunitiesalongknowngradientsusingrankcorrelationasdefault.Thefollowingexampleusesallenvironmentalvariablesindatasetvarechem,butstandardizesthesetounitvariance:
>data(varechem)
>rankindex(scale(varechem),varespec,c("euc","man","bray","jac","kul"))eucmanbrayjackul0.23960.27350.28380.28380.2840
arenon-linearlyrelated,buttheyhaveidenticalrankorders,andtheirrankcorrelationsareidentical.Ingeneral,thethreerecommendedindicesarefairlyequal.
Itookaverypracticalapproachonindicesemphasizingtheirabilitytorecoverunderlyingenvironmentalgradients.Manytextbooksempha-sizemetricpropertiesofindices.Theseareimportantinsomemethods,butnotinnmdswhichonlyusesrankorderinformation.Themetricpropertiessimplysaythat
1.iftwositesareidentical,theirdistanceiszero,
2.iftwositesaredi erent,theirdistanceislargerthanzero,3.distancesaresymmetric,and
4.theshortestdistancebetweentwositesisaline,andyoucannotimprovebygoingthroughothersites.Theseallsoundverynaturalconditions,buttheyarenotful lledbyalldissimilarities.Actually,onlyEuclideandistances–andprobablyJaccardindex–ful llallconditionsamongthedissimilaritiesdiscussedhere,andaremetrics.Manyotherdissimilaritiesful llthree rstconditionsandaresemimetrics.
Thereisaschoolthatsaysthatweshouldusemetricindices,andmostnaturally,Euclideandistances.Oneoftheirdrawbackswasthat
6
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2ORDINATION:BASICMETHODtheyhaveno xedlimit,buttwositeswithnosharedspeciescanvaryindissimilarities,andevenlookmoresimilarthantwositessharingsomespecies.Thiscanbecuredbystandardizingdata.SinceEuclideandis-tancesarebasedonsquareddi erences,anaturaltransformationistostandardizesitestoequalsumofsquares,ortotheirvectornormusingfunctiondecostand:
>dis<-vegdist(decostand(varespec,"norm"),"euclid")
Thisgiveschorddistanceswhichreachamaximumlimitof√
whentherearenosharedspeciesbetweentwosites.AnotherrecommendedalternativeisHellingerdistancewhichisbasedonsquarerootsofsitesstandardizedtounittotal:
>dis<-vegdist(decostand(varespec,"hell"),"euclidean")
Despitestandardization,thesestillareEuclideandistanceswithalltheirgoodproperties,butfortransformeddata.Actually,itisoftenusefultotransformorstandardizedataevenwithotherindices.Ifthereisalargedi erencebetweensmallestnon-zeroabundanceandlargestabundance,wewanttoreducethisdi uallysquareroottransformationissu cienttobalancethedata.Wisconsindoublestandardizationoftenimprovesthegradientdetectionabilityofdissimilarityindices;thiscanbeperformedusingcommandwisconsininvegan.Herewe rstdivideallspeciesbytheirmaxima,andthenstandardizesitestounittotals.Afterthisstandardization,manydissimilarityindicesbecomeidenticalinrankorderingandshouldgiveequalresultsinnmds.
Youarenotrestrictedtouseonlyvegdistindicesinvegan:vegdistreturnssimilardissimilaritystructureasstandardRfunctiondistwhichalsocanbeused,aswellasanyothercompatiblefunctioninanypackage.Somecompatiblefunctionsaredsvdis(labdsvpackage),daisy(clusterpackage),anddistance(analoguepackage),andbetadiversityindicesinbetadiverinvegan.Morever,veganhasfunctiondesigndistwhereyoucande neyourowndissimilarityindicesbywritingitsequationusingeitherthenotationforA,BandJabove,orwithbinarydata,the2×2contingencytablenotationwhereaisthenumberofspeciesfoundonbothcomparedsites,andbandcarenumbersofspeciesfoundonlyinoneofthesites.Thefollowingthreeequationsde nethesameSørensenindexwherethenumberofsharedspeciesisdividedbytheaveragespeciesrichnessofcomparedsites:
>d<-vegdist(varespec,"bray",binary=TRUE)>d<-designdist(varespec,"(A+B-2*J)/(A+B)")
>d<-designdist(varespec,"(b+c)/(2*a+b+c)",abcd=TRUE)
Functionbetadiverde nessomemorebinarydissimilarityindicesinvegan.
Mostpublisheddissimilarityindicescanbeexpressedasdesigndistformulae.However,itismucheasierandsafertousethecannedalter-nativesinexistingfunctions:itisveryeasytomakeerrorsinwritingthedissimilarityequations.
7
2.2Communitydissimilarities
Quadraticterms
J=N
=1xijxA= iNikB= i2N=1xiji=1x2ik
Minimumterms
J=N
=1min(xij,xik)A= iN=1xB= iNiji=1xikBinarytermsJ=SharedspeciesA=No.ofspeciesinjB=
No.ofspeciesink
Sitek
presentabsent
Sitej
presentababsent
c
d
J=aA=a+bB=a+c
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2.3Comparingordinations:Procrustesrotation2ORDINATION:BASICMETHOD
2.3Comparingordinations:Procrustesrotation
Procrustes errors
q
Twoordinationscanbeverysimilar,butthismaybedi culttosee,becauseaxeshaveslightlydi erentorientationandscaling.Actually,innmdsthesign,orientation,scaleandlocationoftheaxesarenotde- ned,althoughmetaMDSusessimplemethodto xthelastthreecompo-nents.ThebestwaytocompareordinationsistouseProcrustesrotation.Procrustesrotationusesuniformscaling(expansionorcontraction)androtationtominimizethesquareddi erencesbetweentwoordinations.PackageveganhasfunctionprocrustestoperformProcrustesanalysis.
HowmuchdidwegainwithusingmetaMDSinsteadofdefaultisoMDS?
q
0.4
q
q
Dimension 2
0.0
q
q
q
q
q
q
>>>>>tmp<-wisconsin(sqrt(varespec))dis<-vegdist(tmp)
vare.mds0<-isoMDS(dis,trace=0)pro<-procrustes(vare.mds,vare.mds0)pro
0.2
q
q
q
q
Call:
procrustes(X=vare.mds,Y=vare.mds0)Procrustessumofsquares:0.156>plot(pro)
0.4 0.2
q
0.4 0.20.00.20.40.6
Dimension 1
Procrustes errors
0.30
Inthiscasethedi erenceswerefairlysmall,andmainlyconcernedtwopoints.Youcanuseidentifyfunctiontoidentifythosepointsinaninteractivesession,oryoucanaskaplotofresidualdi erencesonly:
>plot(pro,kind=
2)
0.250.000.05
Thedescriptivestatisticis“Procrustessumofsquares”orthesumofsquaredarrowsintheProcrustesplot.Procrustesrotationisnonsym-metric,andthestatisticwouldchangewithreversingtheorderofordina-tionsinthecall.Withargumentsymmetric=TRUE,bothsolutionsare rstscaledtounitvariance,andamorescale-independentandsymmetricstatisticisfound(oftenknownasProcrustesm2).
Procrustes residual
0.100.150.20
2.4
5
10
Index
15
20
Eigenvectormethods
methodnmdsmdspcaca
metricanyanyEuclideanChi-square
mappingnonlinearlinearlinear
weightedlinear
djk
N
= (xij xik)2
i=1
Non-metricmultidimensionalscalingwasahardtask,becauseanykindofdissimilaritymeasurecouldbeusedanddissimilaritieswerenonlinearlymappedintoordination.Ifweacceptonlycertaintypesofdissimilaritiesandmakealinearmapping,theordinationbecomesasimpletaskofrotationandprojection.Inthatcasewecanuseeigenvectormethods.Principalcomponentsanalysis(pca)andcorrespondenceanalysis(ca)arethemostimportanteigenvectormethodsincommunityordination.Inaddition,principalcoordinatesanalysisa.k.a.metricscaling(mds)isusedoccasionally.PcaisbasedonEuclideandistances,caisbasedonChi-squaredistances,andprincipalcoordinatescanuseanydissimilarities(butwithEuclideandistancesitisequaltopca).
Pcaisastandardstatisticalmethod,andcanbeperformedwithbaseRfunctionsprcomporprincomp.Correspondenceanalysisisnotasubiq-uitous,butthereareseveralalternativeimplementationsforthatalso.In
8
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2ORDINATION:BASICMETHODthistutorialIshowhowtoruntheseanalyseswithveganfunctionsrdaandccawhichactuallyweredesignedforconstrainedanalysis.
Principalcomponentsanalysiscanberunas:
>vare.pca<-rda(varespec)>vare.pca
Call:rda(X=varespec)InertiaRank
Total1826Unconstrained182623Inertiaisvariance
Eigenvaluesforunconstrainedaxes:PC1PC2PC3PC4PC5PC6PC7PC8983.0464.3132.373.948.437.025.719.7
(Showedonly8ofall23unconstrainedeigenvalues)>plot(vare.pca)
Theoutputtellsthatthetotalinertiais1826,andtheinertiaisvari-ance.Thesumofall23(rank)eigenvalueswouldbeequaltothetotalinertia.Inotherwords,thesolutiondecomposesthetotalvarianceintolinearcomponents.Wecaneasilyseethatthevarianceequalsinertia:
>sum(apply(varespec,2,var))[1]1826
Functionapplyappliesfunctionvarorvariancetodimension2orcolumns(species),andthensumtakesthesumofthesevalues.Inertiaisthesumofallspeciesvariances.Theeigenvaluessumuptototalinertia.Inotherwords,theyeach“explain”acertainproportionoftotalvariance.The rstaxis“explains”983/1826=53.8%oftotalvariance.
Thestandardordinationplotcommandusespointsorlabelsforspeciesandsites.Somepeopleprefertousebiplotarrowsforspeciesinpcaandpossiblyalsoforsites.Thereisaspecialbiplotfunctionforthispurpose:
>biplot(vare.pca,scaling=-1)
Forthisgraphwespeci edscaling=-1.Theresultsarescaledonlywhentheyareaccessed,andwecan exiblychangethescalinginplot,biplotandothercommands.Thenegativevaluesmeanthatspeciesscoresaredividedbythespeciesstandarddeviationssothatabundantandscarcespecieswillbeapproximatelyasfarawayfromtheorigin.
Thespeciesordinationlookssomewhatunsatisfactory:onlyreindeerlichens(Cladina)andPleuroziumschreberiarevisible,andallotherspeciesarecrowdedattheorigin.Thishappensbecauseinertiawasvari-ance,andonlyabundantspecieswithhighvariancesareworthexplaining(butwecouldhidethisinplotbysettingnegativescaling).Standard-izingallspeciestounitvariance,orusingcorrelationcoe cientsinsteadofcovarianceswillgiveamorebalancedordination:
>vare.pca<-rda(varespec,scale=TRUE)>vare.pca
9
2.4Eigenvectormethods
6
57
6
4
Cla.ran
Cla.arb
18
132
4
3
2
14
CP0
Cet.nivPol.pilCla.spBar.lycPin.sylCet.eriIch.eriDic.polCla.fimCla.criCla.cerCla.botDic.fusDic.spLed.palCla.corDes.fleCla.chlPoh.nutPol.junCet.islPti.cilEmp.nigVac.myrHyl.spl21Vac.vit2
152212
2
25
24
10Cla.ste
9
4 Ple.sch27
628
4 20246810
PC1
Cla.arbCla.ran
4
Ich.eri
75
Ste.sp62
Vac.uli
Cla.amaPol.pilCla.cocCla.gra18Cal.vul
13Dip.mon2
CCet.eriCet.nivP14Cla.fim430Cla.def20Cla.cer232121522Dic.fus25Pol.jun24
Cla.spPin.syl12Dic.spCet.islCla.chlCla.phy
Led.palCla.ste10
Emp.nig9
2
27Des.fleVac.vitPoh.nut
28
Vac.myr
Hyl.spl
4
Ple.sch
4 20
246
PC1
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2.4Eigenvectormethods9
1
11Cla.phy
10Cla.coc
Poh.nut
Cla.stePin.sylCla.chl
Cla.spCet.isl
Cla.gra1223Vac.vit5
Cla.ran14Pol.pilCet.eriCla.cri
Cla.fimCla.arbSte.sp618Dic.pol21
2
Ich.eriCla.ama13Cla.uncDip.monCla.corCla.defPel.aph24Bet.pubCla.bot
Bar.lycPti.cilC4
7Cal.vulCet.niv1516Vac.uli20Dic.sp
Emp.nig
Led.palVac.myr
1
25
Des.fle
Ple.sch
Hyl.spl28
27
2
10123
PC1
5
.19Bar.lyc2128
10
Bet.pub
0.Pti.cil
Vac.myrHyl.spl
12
27Cla.ste
Cla.phyCla.chl
Cet.islDes.fle
5
Cla.bot
.0Cla.sp
Pin.sylPoh.nutPle.sch3
Emp.nigVac.vitNep.arc
Dic.sp24250
.Pol.jun
0Cla.cer
11
Cla.fim2
Cla.graCla.corPel.aph23A1522C5
Cla.coc
Cla.criCla.def20Cet.eri
Dic.fus
.0Cet.niv 4
Dip.monCla.ran
Cla.unc16
Pol.pil0
.Cla.amaCla.arb181Vac.uli
Cal.vul 14
5
Ste.sp
6
13.1Ich.eri
7
.2 5
1012
CA1
2ORDINATION:BASICMETHOD
Call:rda(X=varespec,scale=TRUE)InertiaRank
Total44Unconstrained4423Inertiaiscorrelations
Eigenvaluesforunconstrainedaxes:
PC1PC2PC3PC4PC5PC6PC7PC88.904.764.263.732.962.882.732.18
(Showedonly8ofall23unconstrainedeigenvalues)>plot(vare.pca,scaling=3)
Nowinertiaiscorrelation,andthecorrelationofavariablewithitselfisone.Thusthetotalinertiaisequaltothenumberofvariables(species).Therankorthetotalnumberofeigenvectorsisthesameaspreviously.Themaximumpossiblerankisde nedbythedimensionsofthedata:itisonelessthansmallerofnumberofspeciesornumberofsites:
>dim(varespec)[1]2444
Iftherearespeciesorsitessimilartoeachother,rankwillbereducedevenfromthis.
Thepercentageexplainedbythe rstaxisdecreasedfromthepreviouspcaabundant.Thisspeciesisnatural,withsincehighpreviouslyvariances,webutneedednowwetohave“explain”toexplainonlytheallspeciesequally.Weshouldnotlookblindlyatpercentages,buttheresultweget.
Correspondenceanalysisisverysimilartopca:
>vare.ca<-cca(varespec)>vare.ca
Call:cca(X=varespec)
InertiaRank
Total2.08Unconstrained2.0823
Inertiaismeansquaredcontingencycoefficient
Eigenvaluesforunconstrainedaxes:
CA1CA2CA3CA4CA5CA6CA7CA80.52490.35680.23440.19550.17760.12160.11550.0889(Showedonly8ofall23unconstrainedeigenvalues)>plot(vare.ca)
Nowtheinertiaiscalledmeansquaredcontingencycoe cient.Corre-spondenceanalysisisbasedonChi-squareddistance,andtheinertiais
theChi-squaredstatisticofadatamatrixstandardizedtounittotal:
>chisq.test(varespec/sum(varespec))
Pearson'sChi-squaredtest
data:varespec/sum(varespec)
X-squared=2.083,df=989,p-value=1
10
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2ORDINATION:BASICMETHOD2.5Detrendedcorrespondenceanalysis
YoushouldnotpayanyattentiontoP-valueswhicharecertainlymis-leading,butnoticethatthereportedX-squaredisequaltotheinertiaabove.
Correspondenceanalysisisaweightedaveragingmethod.Inthegraphabovespeciesscoreswereweightedaveragesofsitescores.Withdi erentscalingofresults,wecoulddisplaythesitescoresasweightedaveragesofspeciesscores:
>plot(vare.ca,scaling=1)
Wealreadysawanexampleofscaling=3orsymmetricscalinginpca.Theothertwointegersmeanthateitherspeciesareweightedaveragesofsites(2)orsitesareweightedaveragesofspecies(1).Whenwetakeweightedaverages,therangeofaveragesshrinksfromtheoriginalval-ues.Theshrinkagefactorisequaltotheeigenvalueofca,whichhasatheoreticalmaximumof1.
2.5Detrendedcorrespondenceanalysis
Correspondenceanalysisisamuchbetterandmorerobustmethodfor
communityordinationthanprincipalcomponentsanalysis.However,withlongecologicalgradientsitsu ersfromsomedrawbacksor“faults”whichwerecorrectedindetrendedcorrespondenceanalysis(dca):
Singlelonggradientsappearascurvesorarcsinordination(arce ect):thesolutionistodetrendthelateraxesbymakingtheirmeansequalalongsegmentsofpreviousaxes.
Sitesarepackedmorecloselyatgradientextremesthanatthecen-tre:thesolutionistorescaletheaxestoequalvariancesofspeciesscores.
Rarespeciesseemtohaveanundulyhighin uenceontheresults:thesolutionisstodownweightrarespecies.
AllthesethreeseparatetricksareincorporatedinfunctiondecoranawhichisafaithfulportofMarkHill’soriginalprogrammewiththesamename.Theusageissimple:
>vare.dca<-decorana(varespec)>vare.dca
Call:
decorana(veg=varespec)
Detrendedcorrespondenceanalysiswith26segments.Rescalingofaxeswith4iterations.DCA1DCA2DCA3DCA4
Eigenvalues0.5240.3250.20010.1918Decoranavalues0.5250.1570.09670.0608Axislengths2.8162.2051.54651.6486>plot(vare.dca,display="sites")
11
Bar.lyc2Bet.pub
Hyl.spl
Pti.cil
Cla.ste
Cla.phyCla.chl
Des.fle
1
Cla.bot10
921
28
2Cla.sp
12Pin.sylPoh.nutEmp.nig27Ple.schVac.vit
Dic.spCla.cer3Pol.jun
2425Nep.arc2
ACCla.fimPel.aphCla.cor2015
224
Cla.gra16Cla.coc
18Cla.criCla.def1Cet.niv
613Cet.eriDic.fus14
Dip.monCla.ran7
Cla.uncPol.pil
5Cla.amaCla.arb
Vac.uli
Cal.vul2
Ste.sp
Ich.eri
2 10123
CA1
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2.6Ordinationgraphics21
.1109
5
212
.28
027
2
A3
CD0.020
2418
2515522
.0 4
616
713
0.5
114
1.0 0.50.00.51.01.5
DCA1
2ORDINATION:BASICMETHOD
Functiondecorana ndsonlyfouraxes.Eigenvaluesarede nedasshrinkagevaluesinweightedaverages,similarlyasinccaabove.The“Decoranavalues”arethenumbersthattheoriginalprogrammereturnsas“eigenvalues”—Ihavenoideaoftheirpossiblemeaning,andtheyshouldnotbeused.Mostoftenpeoplecommentonaxislengths,whichsometimesarecalled“gradientlengths”.Theetymologyisobscure:thesearenotgradients,butordinationaxes.Itisoftensaidthatiftheaxislengthisshorterthantwounits,thedataarelinear,andpcashouldbeused.Thisisonlyfolkloreandnotbasedonresearchwhichshowsthatcaisatleastasgoodaspcawithshortgradients,andusuallybetter.
Thecurrentdatasetishomogeneous,andthee ectsofdcaarenotverylarge.Inheterogeneousdatawithacleararce ectthechangesoftenaremoredramatic.Rescalingmayhavelargerin uencethandetrendinginmanycases.
Thedefaultanalysisiswithoutdownweightingofrarespecies:seehelppagesfortheneededarguments.Actually,downweightisanindependentfunctionthatcanbeusedwithccaaswell.
Thereisaschoolofthoughtthatregardsdcaasthemethodofchoiceinunconstrainedordination.However,itseemstobeafragileandvaguebackoftricksthatisbetteravoided.
2.6Ordinationgraphics
Wehavealreadyseenmanyordinationdiagramsinthistutorialwithonefeatureincommon:theyareclutteredandlabelsaredi culttoread.Ordinationdiagramsaredi culttodrawcleanlybecausewemustputalargenumberoflabelsinasmallplot,andoftenitisimpossibletodrawcleanplotswithallitemslabelled.Inthischapterwelookatproducingcleanerplots.Forthiswemustlookattheanatomyofplottingfunctionsinveganandseehowtogainabettercontrolofdefaultfunctions.
Ordinationfunctionsinveganhavetheirdedicatedplotfunctionswhichprovidesasimpleplot.Forinstance,theresultofdecoranaisdisplayedbyfunctionplot.decoranawhichbehindthescenesiscalledbyourplotfunction.Alternatively,wecanusefunctionordiplotwhichalsoworkswithmanynon-veganordinationfunctions,butusespointsinsteadoftextasdefault.Theplot.decoranafunction(orordiplot)actuallyworksinthreestages:
1.Itdrawsanemptyplotwithlabelledaxes,butwithnosymbolsforsitesorspecies.2.Itusesfunctionstextorpointstoaddspeciestotheemptyframe.Iftheuserdoesnotaskspeci cally,thefunctionwillusetextinsmalldatasetsandpointsinlargedatasets.3.Itaddsthesitessimilarly.
Forbettercontroloftheplotswemustrepeatthesestagesbyhand:drawanemptyplotandthenaddsitesand/orspeciesasdesired.
Inthischapterwestudyadi cultcase:plottingtheBarroColoradoIslandordinations.
12
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2ORDINATION:BASICMETHOD2.6Ordinationgraphics
>data(BCI)
Thisisadi cultdatasetforplotting:ithas225speciesandthereisnowayoflabellingthemallcleanly–unlessweuseverylargeplottingareawithsmalltext.Wemustshowonlyaselectionofthespeciesorsmallpartsoftheplot.Firstanordinationwithdecoranaanditsdefaultplot:
>mod<-decorana(BCI)>plot(mod)
DCA2
++
4
Thereisanadditionalprobleminplottingspeciesordinationwiththesedata:
>names(BCI)[1:5]
[1]"Abarema.macradenium""Acacia.melanoceras"[3]"Acalypha.diversifolia""Acalypha.macrostachya"[5]"Adelia.triloba"
++++++++++
++++++++++++++++++++++++++++++++
+++++++++++++++++++++q+q++++q+q++++++++q+++q+++++q+++qqq++++++q+q++q++qqqq+++++++++qqq+q++++++q+qqqq++q+++++++qq+++++++++++qq++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++
++
+++
++++
4 202
+
+
6 4 20DCA1
246
Thedatasetusesfullspeciesnames,andthereisnowayof ttingthoseinordinationgraphs.Thereisautilityfunctionmake.cepnamesinvegantoabbreviateLatinnames:
>shnam<-make.cepnames(names(BCI))>shnam[1:5]
[1]"Abarmacr""Acacmela""Acaldive""Acalmacr""Adeltril"
++
Alchlati
DCA2
>pl<-plot(mod,dis="sp")
Allveganordinationplotfunctionsreturninvisiblyanordiplotobjectwhichcontainsinformationonthepointsplotted.Thisinvisibleresultcanbecaughtandusedasinputtoidentify.Thefollowingselectivelylabelssomeextremespeciesasclicked:
>identify(pl,"sp",labels=shnam)
20
Theeasiestwaytoselectivelylabelspeciesistouseinteractiveiden-tifyfunction:whenyouclicknexttoapoint,itslabelwillappearonthesideyouclicked.Youcan nishlabellingclickingtherightmousebutton,orwithhandicappedone-buttonmouse,youcanhittheesckey.
4
AbarmacrSocrexor
++Pachquin
++++++++
+Entescho+Nectciss++++++++++++Pachsess+++++++++++++++++Ficuyopo+++++++++++++++++++++++++++Margnobi++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Gustsupe+++++Poularma+++++++++++++++++++++++Ocotwhit++++++++++
+++
Macrrose+++++Tropcauc++++Cavaplat++++Sapibroa+++++++++
++Pourbico
++++
2
Senndari+
+
+Brosguia+
+Quasamar
4
6 4 20DCA1
246
Thereisan“ordinationtextorpoints”functionorditorpinvegan.Thisfunctionwilllabelanitemonlyifthiscanbedonewithoutover-writingpreviouslabels.Ifanitemcannotbelabelledwithtext,itwillbemarkedasapoint.Itemsareprocessedeitherfromthemargintowardthecentre,orindecreasingorderofpriority.Thefollowinggiveshigherprioritytothemostabundantspecies:
DCA2
CasecommAlchlati
4
>stems<-colSums(BCI)
>plot(mod,dis="sp",type="n")
>sel<-orditorp(mod,dis="sp",lab=shnam,priority=stems,pcol="gray",pch="+")
Wealsocanzoomintosomepartsoftheordinationdiagramsbysettingxlimandylim,andwecanseemoredetails.
Analternativetoorditorpisfunctionordilabelwhichdrawstextonopaquelabelsthatcoverotherlabelsbelowthem.Alllabelscannotbedisplayed,butatleasttheuppermostarereadable.Argumentpriorityworkssimilarlyasinorditorpandcanbeusedtoselectwhichofthelabelsaremostimportanttoshow:
13
+
++Socrexor+++Ingacocl+++++
+Entescho+++Cordbico+++++Pachsess++++++Ficuyopo++Cocccoro++++++++++++Unonpitt+++++Talinerv++++++++++++++++Tabeguay++++++++Heisacum+++++++++++++T+++Faraocci+++++++++++++++TFicuinsi+Sapiglan++++++++++++++++++Gustsupe+++++Garcinte+Poularma++++++++++++++++CaseaculSloatern
Ocotwhit++++++T+ripcumi
++Hirttria+MacrroseViromult++++Xylomacr+++Marilaxi++++Drypstan+++
+
4 202
+
6 4 20DCA1
246
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
3ENVIRONMENTALINTERPRETATION
>plot(mod,dis="sp",type="n")
4
22
ACD02 4 6 4 20246
DCA1
>ordilabel(mod,dis="sp",lab=shnam,priority=stems)
Finally,thereisfunctionordipointlabelwhichusesbothpointsand
labelstothesepoints.Thepointsarein xedpositions,butthelabelsareiterativelylocatedtominimizetheiroverlap.TheBarroColoradoIslanddatasethasmuchtoomanynamesfortheordipointlabelfunction,butitcanbeusefulinmanycases.
Inadditiontotheseautomaticfunctions,functionorditkplotallowseditingofplots.Ithaspointsin xedpositionswithlabelsthatcanbedraggedtobetterplaceswithamouse.Thefunctionusesdi erentgraphicaltoolset(Tcl/Tk)thanordinaryRgraphics,buttheresultscanbepassedtostandardRplotfunctionsforeditingordirectlysavedasgraphics les.Moreover,theordipointlabelouputcanbeeditedusingorditkplot.
Functionsidentify,orditorp,ordilabelandordipointlabelmayprovideaquickandeasywaytoinspectordinationresults.Oftenweneedabettercontrolofgraphics,andjudicuouslyselectthelabelledspecies.Inthatcasewecan rstdrawanemptyplot(withtype="n"),andthenuseselectargumentinordinationtextandpointsfunctions.Theselectargumentcanbeanumericvectorthatliststheindicesofselecteditems.Suchindicesaredisplayedfromidentifyfunctionswhichcanbeusedtohelpinselectingtheitems.Alternatively,selectcanbealogicalvectorwhichisTRUEtoselecteditems.Suchalistwasproducedinvisiblyfromorditorp.Youcannotseeinvisibleresultsdirectlyfromthemethod,butyoucancatchtheresultlikewedidaboveinthe rstorditorpcall,andusethisvectorasabasisforfullycontrolledgraphics.Inthiscasethe rstitemswere:
>sel[1:14]
AbarmacrAcacmelaAcaldiveAcalmacrAdeltrilAegipanaAlchcost
FALSEFALSEFALSEFALSEFALSEFALSEFALSEAlchlatiAlibedulAllopsilAlseblacAmaicoryAnacexceAndiiner
TRUEFALSEFALSEFALSETRUETRUEFALSE
3Environmentalinterpretation
Itisoftenpossibleto“explain”ordinationusingecologicalknowledgeonstudiedsites,uallyitispreferabletouseexternalenvironmentalvariablestointer-prettheordination.Therearemanywaysofoverlayingenvironmentalinformationontoordinationdiagrams.Oneofthesimplestistochangethesizeofplottingcharactersaccordingtoanenvironmentalvariables(argumentcexinplotfunctions).Theveganpackagehassomeusefulfunctionsfor ttingenvironmentalvariables.
3.1Vector tting
Themostcommonlyusedmethodofinterpretationisto tenvironmentalvectorsontoordination.The ttedvectorsarearrowswiththeinterpre-tation:
14
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
3ENVIRONMENTALINTERPRETATION Thearrowpointstothedirectionofmostrapidchangeinthetheenvironmentalvariable.Oftenthisiscalledthedirectionofthegradient.
Thelengthofthearrowisproportionaltothecorrelationbetweenordinationandenvironmentalvariable.Oftenthisiscalledthestrengthofthegradient.
Fittingenvironmentalvectorsiseasyusingfunctionenvfit.Theexampleusesthepreviousnmdsresultandenvironmentalvariablesinthedatasetvarechem:
>data(varechem)
>ef<-envfit(vare.mds,varechem,permu=999)>ef***VECTORS
NMDS1NMDS2r2Pr(>r)
N-0.0573-0.99840.250.036*P0.61970.78480.190.101K0.76650.64230.180.114Ca0.68520.72830.410.003**Mg0.63250.77450.430.004**S0.19140.98150.180.132Al-0.87160.49020.530.001***Fe-0.93600.35200.450.001***Mn0.7987-0.60170.520.001***Zn0.61760.78650.190.108Mo-0.90310.42940.060.512Baresoil0.9249-0.38030.250.055.Humdepth0.9328-0.36040.520.003**pH-0.64800.76170.230.060.---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1Pvaluesbasedon999permutations.
The rsttwocolumnsgivedirectioncosinesofthevectors,andr2givesthesquaredcorrelationcoe cient.Forplotting,theaxesshouldbescaledbythesquarerootofr2.Theplotfunctiondoesthisautomatically,andyoucanextractthescaledvalueswithscores(ef,"vectors").Thesigni cances(Pr>r),orP-valuesarebasedonrandompermutationsofthedata:ifyouoftengetasgoodorbetterR2withrandomlypermuteddata,yourvaluesareinsigni cant.
Youcanaddthe ttedvectorstoanordinationusingplotcommand.Youcanlimitplottingtomostsigni cantvariableswithargumentp.max.Asusual,moreoptionscanbefoundinthehelppages.
>plot(vare.mds,display="sites")>plot(ef,p.max=0.1)
3.2Surface tting
Vector ttingispopular,anditprovidesacompactwayofsimultaneouslydisplayingalargenumberofenvironmentalvariables.However,itimplies
15
3.2Surface tting
q
4
.0q
q
Mgq
Ca
AlpHq
q
2
.0Fe
q
2
qSq
D0
.q
M0Nq
q
q
q
q
q
q
q
Baresoil
2
q
.Humdepth
0 q
q
Mn
q
N
4
.0 q
0.4 0.20.00.20.40.6
NMDS1
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
3.3Factorsq
4
.0q
001
q
800
q
Ca
5506q65
q
2
Al
.00 0
50 7 00
4005
0 q
750
40
2
q
Sq
D3.50q
M0 300 Nq
q
q
300q
q
q
q
250
2
q
.02 5q
0 200
q
20
q
04
150
.0 050
q
0.4 0.20.00.2
0.40.6
NMDS1
3ENVIRONMENTALINTERPRETATION
alinearrelationshipbetweenordinationandenvironment:directionandstrengthareallyouneedtoknow.Thismaynotalwaysbeappropriate.
Functionordisurf tssurfacesofenvironmentalvariablestoordi-nations.Itusesgeneralizedadditivemodelsinfunctiongamofpackagemgcv.Functiongamusesthinplatesplinesintwodimensions,andauto-maticallyselectsthedegreeofsmoothingbygeneralizedcross-validation.Iftheresponsereallyislinearandvectorsareappropriate,the ttedsur-faceisaplanewhosegradientisparalleltothearrow,andthe ttedcontoursareequallyspacedparallellinesperpendiculartothearrow.
InthefollowingexampleIintroducetwonewRfeatures:
Functionenvfitcanbecalledwithformulainterface.Formulahasaspecialcharactertilde(~),andtheleft-handsidegivestheordinationresults,andtheright-handsideliststheenvironmentalvariables.Inaddition,wemustde nethenameofthedatacon-tainingthe ttedvariables.
ThevariablesindataframesarenotvisibletoRsessionunlessthedataframeisattachedtothesession.Wemaynotwanttomakeallvariablesvisibletothesession,becausetheremaybesynonymousnames,andwemayusewrongvariableswiththesamenameinsomeanalyses.Wecanusefunctionwithwhichmakesthegivendataframevisibleonlytothefollowingcommand.
Nowwearereadyfortheexample.Wemakevector ttingforselectedvariablesandadd ttedsurfacesinthesameplot.
>ef<-envfit(vare.mds~Al+Ca,varechem)>plot(vare.mds,display="sites")>plot(ef)
>tmp<-with(varechem,ordisurf(vare.mds,Al,add=TRUE))
>
with(varechem,ordisurf(vare.mds,Ca,add=TRUE,col="green4"))
Functionordisurfreturnstheresultof ttedgam.Ifwesavethatresult,likewedidinthe rst twithAl,wecanuseitforfurtheranalyses,suchasstatisticaltestingandpredictionofnewvalues.Forinstance,fitted(ef)willgivetheactual ttedvaluesforsites.
3.3Factors
Classcentroidsareanaturalchoiceforfactorvariables,andR2canbeusedasagoodness-of- tstatistic.The“signi cance”canbetestedwithpermutationsjustlikeinvector tting.Variablescanbede nedasfactorsinR,andtheywillbetreatedaccordinglywithoutanyspecialtricks.
Asanexample,weshallinspectdunemeadowdatawhichhasseveralclassvariables.Functionenvfitalsoworkswithfactors:
>data(dune)
>data(dune.env)
>dune.ca<-cca(dune)
>ef<-envfit(dune.ca,dune.env,permutations=999)>
ef
16
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
3ENVIRONMENTALINTERPRETATION***VECTORS
CA1CA2r2Pr(>r)
A10.99820.06060.310.043*---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1Pvaluesbasedon999permutations.***FACTORS:Centroids:CA1CA2Moisture1-0.75-0.14Moisture2-0.47-0.22Moisture40.18-0.73Moisture51.110.57ManagementBF-0.73-0.14ManagementHF-0.39-0.30ManagementNM0.651.44ManagementSF0.34-0.68UseHayfield-0.290.65UseHaypastu-0.07-0.56UsePasture0.520.05Manure00.651.44Manure1-0.46-0.17Manure2-0.59-0.36Manure30.52-0.32Manure4
-0.21
-0.88
Goodnessoffit:
r2Pr(>r)
Moisture0.410.005**Management0.440.001***Use0.180.079.Manure0.460.010**---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1Pvaluesbasedon999permutations.>plot(dune.ca,display="sites")>plot(ef)
Thenamesoffactorcentroidsareformedbycombiningthenameof
thefactorandthenameofthelevel.Nowtheaxesshowthecentroidsforthelevel,andtheR2valuesareforthewholefactor,justlikethesigni cancetest.Theplotlookscongested,andwemayusetricksof§2.6(p.12)tomakecleanerplots,butobviouslynotallfactorsarenecessaryininterpretation.
Packageveganhasseveralfunctionsforgraphicaldisplayoffactors.Functionordihulldrawsanenclosingconvexhullfortheitemsinaclass,ordispidercombinesitemstotheir(weighted)classcentroid,andordiellipsedrawsellipsesforclassstandarddeviations,standarder-rorsorcon denceareas.TheexampledisplaysalltheseforManagementtypeinthepreviousordinationandautomaticallylabelsthegroupsin
17
3.3Factors
19
3
17
2
ManagementNMManure0
2
AC1
20
UseHayfield18
11
Moisture5
1415A1
ManagementBFUsePasture16
Moisture1ManagementHF5Manure2
7Moisture2Manure1Manure38UseHaypastu
2ManagementSF1
Manure4Moisture449
123
13 1
2 1012
CA1
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
4CONSTRAINEDORDINATION
ordispidercommand:
32
2
AC1
1
2 101
2
CA1
>plot(dune.ca,display="sites",type="p")
>with(dune.env,ordiellipse(dune.ca,Management,kind="se",conf=0.95))>with(dune.env,ordispider(dune.ca,Management,col="blue",label=TRUE))>
with(dune.env,ordihull(dune.ca,Management,col="blue",lty=2))
Correspondenceanalysisisaweightedordinationmethod,andvegan
functionsenvfitandordisurfwilldoweighted tting,unlesstheuserspeci esequalweights.
4
Constrainedordination
Inunconstrainedordinationwe rst ndthemajorcompositionalvaria-tion,andthenrelatethisvariationtoobservedenvironmentalvariation.
Inconstrainedordinationwedonotwanttodisplayallorevenmostofthecompositionalvariation,butonlythevariationthatcanbeexplainedbytheusedenvironmentalvariables,orconstraints.Constrainedordina-tionisoftenknownas“canonical”ordination,butthisnameismisleading:thereisnothingparticularlycanonicalinthesemethods(seeyourfavoriteDictionaryfortheterm).Thenamewastakenintouse,becausethereisonespecialstatisticalmethod,canonicalcorrelations,buttheseindeedarecanonical:theyarecorrelationsbetweentwomatricesregardedtobesymmetricallydependentoneachother.Theconstrainedordinationisnon-symmetric:wehave“independent”variablesorconstraintsandwehave“dependent”variablesorthecommunity.Constrainedordinationratherisrelatedtomultivariatelinearmodels.
Theveganpackagehasthreeconstrainedordinationmethodswhichallareconstrainedversionsofbasicordinationmethods:
Constrainedanalysisofproximities(cap)infunctioncapscaleisrelatedtometricscaling(cmdscale).Itcanhandleanydissimilaritymeasuresandperformsalinearmapping.
Redundancyanalysis(rda)infunctionrdaisrelatedtoprincipalcomponentsanalysis.ItisbasedonEuclideandistancesandper-formslinearmapping.
Constrainedcorrespondenceanalysis(cca)infunctionccaisre-latedtocorrespondenceanalysis.ItisbasedonChi-squareddis-tancesandperformsweightedlinearmapping.
Wehavealreadyusedfunctionsrdaandccaforunconstrainedordination:theywillperformthebasicunconstrainedmethodasaspecialcaseifconstraintsarenotused.
Allthesethreeveganfunctionsareverysimilar.Thefollowingexam-plesmainlyusecca,butothermethodscanbeusedsimilarly.Actually,theresultsaresimilarlystructured,andtheyinheritpropertiesfromeachother.Forhistoricalreasons,ccaisthebasicmethod,andrdainheritspropertiesfromit.Functioncapscaleinheritsdirectlyfromrda,andthroughthisfromcca.Manyfunctions,arecommonwithallthesemeth-ods,andtherearespeci cfunctionsonlyifthemethoddeviatesfromits
18
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
4CONSTRAINEDORDINATION4.1Modelspeci cation
ancestor.Inveganversion2.0-6thefollowingclassfunctionsarede nedforthesemethods:
cca:add1,alias,anova,as.mlm,bstick,calibrate,coef,deviance,
drop1,eigenvals,extractAIC,fitted,goodness,model.frame,model.matrix,nobs,permutest,plot,points,predict,print,residuals,RsquareAdj,scores,screeplot,simulate,summary,text,tolerance,weights rda:as.mlm,biplot,coef,deviance,fitted,goodness,predict,RsquareAdj,scores,simulate,weights capscale:fitted,print,simulate.
Manyofthesemethodsareinternalfunctionsthatusersrarelyneed.
4.1Modelspeci cation
Therecommendedwayofde ningaconstrainedmodelistousemodelformula.Formulahasaspecialcharacter~,andonitsleft-handsidegivesthenameofthecommunitydata,andright-handgivestheequationforconstraints.Inaddition,youshouldgivethenameofthedatasetwhereto ndtheconstraints.This tsaccaforvarespecconstrainedbysoilAl,KandP:
>a<-cca(varespec~Al+P+K,varechem)>a
Call:cca(formula=varespec~Al+P+K,data=varechem)
InertiaProportionRank
Total2.0831.000Constrained0.6440.3093Unconstrained1.4390.69120
InertiaismeansquaredcontingencycoefficientEigenvaluesforconstrainedaxes:CCA1CCA2CCA30.3620.1700.113
Eigenvaluesforunconstrainedaxes:
CA1CA2CA3CA4CA5CA6CA7CA80.35000.22010.18510.15510.13510.10030.07730.0537(Showedonly8ofall20unconstrainedeigenvalues)
Theoutputissimilarasinunconstrainedordination.Nowthetotalinertiaisdecomposedintoconstrainedandunconstrainedcomponents.Therewerethreeconstraints,andtherankofconstrainedcomponentisthree.Therankofunconstrainedcomponentis20,whenitusedtobe23inthepreviousanalysis.Therankisthesameasthenumberofaxes:youhave3constrainedaxesand20unconstrainedaxes.Insomecases,theranksmaybelowerthanthenumberofconstraints:someoftheconstraintsaredependentoneachother,andtheyarealiasedintheanalysis,andaninformativemessageisprintedwiththeresult.
Itisverycommontocalculatetheproportionofconstrainedinertiafromthetotalinertia.However,totalinertiadoesnothaveaclearmean-ingincca,andthemeaningofthisproportionisjustasobscure.Inrda
19
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
4.1Modelspeci cation13
21
22
16
14
Cal.vul
Bet.pub
Bar.lyc75
1
216
Led.pal
Dic.fusCla.botPti.cilIch.eri
182
C23CVac.myrCla.criCla.arb0Des.fle20Cla.defDic.polEmp.nigCla.fimSte.spVac.uliCla.amaCla.uncCet.islPin.sylCla.cocCla.ranVac.vit
Cla.graDip.mon0
Ple.schKPol.junCla.corPoh.nutPol.pilCet.eri
Cla.chlCla.sp1127
Nep.arc
Pel.aphCla.steAl
Hyl.splCla.phy
31
25
4
28
Dic.sp
12Cla.cer
210Cet.nivP
9
2
24
1
3 2 1
012
CCA1
4 3 2
3
1
AC2
C 4A0
C 3C1 2 1
2
0 1 23
3
4
3
2
1
1
2
3
CCA1
17
2
610
75
ManagementBF11
18
1
Viclat
ManagementHF2
TripraAchmil
Plalan19
1
Brohor
RumaceAntodo
Trirep
Hyprad
2
LolperPoapra
BelperLeoautAC0Brarut
JunartCPoatriElyrep
ManagementNM
EmpnigPotpalAirpraSalrepJunbufElepal
RanflaSagproCalcus
9Alogen
Agrsto1
3 4
15
14
ManagementSF
ChealbCirarv20
12
2 13
16
2 10
12
3
CCA1
4CONSTRAINEDORDINATION
thiswouldbetheproportionofvariance(orcorrelation).Thismayhaveaclearermeaning,buteveninthiscasemostofthetotalinertiamayberandomnoise.Itmaybebettertoconcentrateonresultsinsteadoftheseproportions.
Basicplottingworksjustlikeearlier:
>plot(a)
havesimilarinterpretationas ttedvectors:thearrowpointstothedirec-tionofthegradient,anditslengthindicatesthestrengthofthevariable
inthisdimensionalityofsolution.Thevectorswillbeofunitlengthinfullranksolution,buttheyareprojectedtotheplaneusedintheplot.Thereisalsoaprimitive3Dplottingfunctionordiplot3d(whichneedsuserinteractionfor nalgraphs)thatshowsallarrowsinfulllength:
>ordiplot3d(a,type="h")
Withfunctionordirglyoucanalsoinspect3Ddynamicplotsthatcanbespinnedorzoomedintowithyourmouse.
Theformulainterfaceworkswithfactorvariablesaswell:
>a<-cca(dune~Management,dune.env)>plot(a)>a
Call:cca(formula=dune~Management,data=dune.env)InertiaProportionRank
Total2.1151.000Constrained0.6040.2853Unconstrained1.5110.71516
InertiaismeansquaredcontingencycoefficientEigenvaluesforconstrainedaxes:CCA1CCA2CCA30.3190.1820.103
Eigenvaluesforunconstrainedaxes:
CA1CA2CA3CA4CA5CA6CA70.447370.203000.163010.134570.129400.094940.07904
CA8CA9CA10CA11CA12CA13CA140.065260.050040.043210.038700.023850.017730.00917
CA15CA160.007960.00416
FactorvariableManagementhadfourlevels(BF,HF,NM,SF).Internally
Rexpressedthesefourlevelsasthreecontrasts(sometimescalled“dummyvariables”).Theappliedcontrastslooklikethis:
ManagementHFManagementNMManagementSF
BF000SF001HF100NM
010
Wedonotneedbutthreevariablestoexpressfourlevels:ifthereis
numberoneinacolumn,theobservationbelongstothatlevel,andif
20
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
4CONSTRAINEDORDINATIONthereisawholelineofzeros,theobservationmustbelongtotheomittedlevel,orthe rst.Thebasicplotfunctiondisplaysclasscentroidsinsteadofvectorsforfactors.
Inadditiontotheseordinaryfactors,Ralsoknowsorderedfactors.VariableMoistureindune.envisde nedasanorderedfour-levelfactor.Inthiscasethecontrastslookdi erent:
Moisture.LMoisture.QMoisture.C
1-0.67080.5-0.22362-0.2236-0.50.670840.2236-0.5-0.67085
0.67080.50.2236
Rusespolynomialcontrasts:thelineartermLisequaltotreatingMoistureasacontinuousvariable,andthequadraticQandcubicCtermsshownonlinearfeatures.Therewerefourdistinctlevels,andthenumberofcontrastsisoneless,justlikewithordinarycontrasts.Theordinationcon guration,eigenvaluesorrankdonotchangeifthefactorisunorderedorordered,butthepresentationofthefactorintheresultsmaychange:
>a<-cca(dune~Moisture,dune.env)>plot(a)
Nowplotshowsboththecentroidsoffactorlevelsandthecontrasts.
Ifwecouldchangetheorderedfactortoacontinuousvector,onlythelineare ectarrowwouldbeimportant.Iftheresponsetothevariableisnonlinear,thequadratic(andcubic)arrowswouldbelongaswell.
Ihaveexplainedonlythesimplestusageoftheformulainterface.Theformulaisverypowerfulinmodelspeci cation:youcantransformyourcontrastswithintheformula,youcande neinteractions,youcanusepolynomialcontrastsetc.However,modelswithinteractionsorpolyno-mialsmaybedi culttointerpret.
4.2Permutationtests
Thesigni canceofalltermstogethercanbeassessedusingpermutationtests:thedatarepermutedrandomlyandthemodelisre tted.Whenconstrainedinertiainpermutationsisnearlyalwayslowerthanobservedconstrainedinertia,wesaythatconstraintsaresigni cant.
Theeasiestwayofrunningpermutationtestsistousethemockanovafunctioninvegan:
>anova(a)
Permutationtestforccaunderreducedmodel
Model:cca(formula=dune~Moisture,data=dune.env)
DfChisqFN.PermPr(>F)
Model30.632.251990.005**Residual161.49---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1
TheModelreferstotheconstrainedcomponent,andResidualtotheunconstrainedcomponentoftheordination,Chisqisthecorresponding
21
4.2Permutationtests
12
3
Moisture4
9
1
213
Junbuf132
4
ACSagpro
AlogenCElyrep
810
Moisture2RumaceCirarvPoapraPoatriTrirepJunartMoisture.LBrarut
Agrsto0
LolperLeoautMoisture157AchmilBelperBrohorAirpraTPlalanripraViclatAntodoHypradSalrepMoisture5EmpnigPotpalElepalRanflaChealbCalcus611
161
10
18
Moisture.C1915Moisture.Q2
17
14
20 2 101
23
CCA1
正在阅读:
R语言vegan包使用教程07-18
新人教版高中思想政治一轮复习必修1《发展社会主义市场经济》精品课件08-08
2018批创思维导论期末考试满分答案解析01-05
从茶道说起09-26
华润凤凰城施工设计 - 图文01-04
徐国庆二十一世纪中国的职业教育课程改革06-05
室分工程施工组织设计方案11-11
《旅游概论》课程标准03-29
电梯门洞过门石铺设漏浆处理措施01-31
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 语言
- 使用
- 教程
- vegan