圆中的最值问题

更新时间:2024-07-11 01:46:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

拔高专题 圆中的最值问题

一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的 对称 点,对称点与另一点的连线与直线L的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题

例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。

解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,

∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32.

【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。

第 1 页 共 3 页

探究点二:直线与圆上点的距离的最值问题

例2:如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值

解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2, ∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 ∴AB=2OA=6,∴OP=

2,

OA?OB22=3,∴PQ=OP?OQ=22. AB

【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值.

解:(1)线段AB长度的最小值为4, 理由如下: 连接OP,

∵AB切⊙O于P, ∴OP⊥AB,

取AB的中点C, ∴AB=2OC;

当OC=OP时,OC最短, 即AB最短, 此时AB=4.

第 2 页 共 3 页

【教师总结】结合切线的性质以及辅助线的作法,利用“垂线段最短”是解决此类问题的关键。

第 3 页 共 3 页

本文来源:https://www.bwwdw.com/article/6b5.html

Top