Phase Transition in Anyon Superconductivity at Finite Temperature
更新时间:2023-07-17 17:37:01 阅读量: 实用文档 文档下载
- phase推荐度:
- 相关推荐
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
PHASETRANSITIONINANYONSUPERCONDUCTIVITYATFINITE
TEMPERATURE
E.J.Ferrer andV.delaIncera
Dept.ofPhysics,StateUniversityofNewYork,Fredonia,NY14063,USA
(SUNY-FRE-98-04)
Themagneticresponseofthechargedanyon uidattemperatureslargerthanthefermionenery
gap(T ωc)isinvestigatedintheself-consistent eldapproximation.Inthistemperatureregiona
newphase,characterizedbyaninhomogeneousmagneticpenetration,isfound.Theinhomogeneity
islinkedtotheexistenceofanimaginarymagneticmasswhichincreaseswiththetemperatureat
T ωc.Thesystemstabilityinthe(T ωc)-phaseisprovedbyinvestigatingtheelectromagnetic
eldrest-energyspectrum.
arXiv:hep-th/9805039v1 7 May 1998I.INTRODUCTIONInrecentyearstherehasbeenmuchinterestininvestigating(2+1)-dimensionalgaugetheorieswithChern-Simons(CS)interactions.Thisinterestisdue,inpart,toavarietyofsigni cantphysicalapplicationsofthesetheoriesinQFT,aswellasincondensedmatterphysics.AwellknownexampleinQFTistheDeser,JackiwandTempletonParityAnomaly[1].Thisresultshowsthatthe uctuationsofamassiveFermi eldinducesaCSterminthee ectiveactionofthegauge elds.Inthiscontextthephotonacquiresatopologicalmass[1],[2].Parityviolation[3]andvortexsolutionsinlowerdimensions[4]areamongtheconsequencesofthepresenceofCSterms.Ontheotherhand,ithasbeenshownthatwhenDiracfermionsarecoupledtoaMaxwell-Chern-Simons(MCS)gauge eld,theLorentzsymmetrycanbespontaneouslybrokenbythedynamicalgenerationofamagnetic eld[5].Thee ectsofCStermsinsupersymmetricmodelshavebeenalsoinvestigated[6].Incondensedmatter,CSmodelshavebeenconsideredinthestudyofdi erentphysicalapplications.CStheoriesinvolvingseveralvectorpotentialsareknowntobeparticularlyappropriatefordescribingthequantumHalle ect[7],[8],[9].ArecentmodelofthefractionalquantumHalle ectconsidersthattheelectronsaretransformedintocompositefermionsbyattachingtwoarti cialstatistical uxquantatoeachelectron[10].Thegauge eldtheorydescribingthesecompositefermionsintroducesthestatisticalgauge uxviaCS elds[11].Whenmatter eldiscoupledtotheCSgauge eldsin(2+1)-dimensions,asuitabledescriptionforanyonsisobtained[12],[13].Anyons[14],[15]areparticleswithfractionalstatisticsin(2+1)-dimensions.TheanyondescriptionwithintheCSgaugetheoryisequivalenttoattaching uxtubestothechargedfermions.TheAharonov-Bohmphasesresultingfromtheadiabatictransportoftwoanyonsisthesourceofthefractionalexchangestatistics[15].Ithasbeenarguedthatstronglycorrelatedelectronsystemsintwodimensionscanbedescribedbyane ective eldtheoryofanyons[16],[17].Anyonscanbealsoobtainedassolitonswhichfractionalspininelectronsystems.Excitationswithfractionalspinintwodimensionalsystemsnecessarilyobeyfractionalstatistics[18].Animportant
featureoftheanyontheoryisthatitviolatesparityandtime-reversalinvariances.Althoughthereareclaimsthatanyonscouldplayabasicroleinhigh-TCsuperconductivity[17]-[20],atpresentnoexperimentalevidencesofPandTviolationinhigh-TCsuperconductivityhavebeencon rmed.Itshouldbepointedout,nevertheless,thatitispossibletoconstructmoresophisticatedPandTinvariantanyonicmodels[21].
Whetherlinkedornottohigh-TCsuperconductivity,anyonsuperconductivityisaninterestinge ectinitsownright,anddeservesadeeperstudy.Asitisknown,anyonsuperconductivityhasanorigindi erentfromtheNambu-Goldstone-Higgslikemechanism.Thegenesisoftheanyonsuperconductivityisgivenbythespontaneouslyviolationofcommutativityoftranslationsinthefreeanyonsystem[22].Thisnewmechanismmayhavewiderapplicationsthantheoriginalphysicalproblemthatmotivateditsstudy.
ThesuperconductingbehaviorofanyonsystemsatT=0hasbeeninvestigatedbymanyauthors[13],[19]-[25].AtT=0,anyonsuperconductivityappearsduetotheexactcancellationbetweenthebareandinducedCStermsinthee ectiveactionofthetheory[26].However,atT=0thiscancelationdoesnottakeplace[27].Hence,several
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
authors[27]-[31]haveadvocated
that
the
superconductingphaseevaporatesatany nitetemperature.Inref.[28],ithasbeenindependentlyclaimedthatthedestructionoftheanyonsuperconductingphaseat nitetemperatureisconnectedtotheexistenceofalong-rangemode, 1foundinsidethein nitebulkatT=0.Thislongrangemodeistheconsequenceoftheexistenceofapole~
λ~10 5cmforT~200Kandelectrondensitiescharacteristicofthehigh-Tcsuperconductors).
Ourmainconclusionwasthatthemagneticbehavioroftheanyon uidisnotjustdeterminedbyitsbulkproperties,butitisessentiallya ectedbythesampleboundaryconditions.Theimportanceoftheboundaryconditionsin(2+1)-dimensionalmodelshasbeenpreviouslystressedinref.[34].
Itisnaturaltoexpectthatattemperatureslargerthantheenergygapthissuperconductingbehaviorshouldnotexist.Atthosetemperaturestheelectronthermal uctuationsshouldmakeaccessiblethefreestatesexistingbeyondtheenergygap.Asaconsequence,thechargedanyon uidshouldnotbeaperfectconductoratT ωc.Asignalofsuchatransitionmaybefoundstudyingthesystemmagneticresponseatthosetemperatures.Themaingoalinthispaperistoinvestigatethecharacteristicsofthemagneticresponseinthishightemperaturephase.
InwhatfollowsweshowthatatT ωcanexternallyappliedconstantandhomogeneousmagnetic eldcanpenetratethesample,givingrisetoaperiodicinhomogeneousmagnetic eldwithinthebulk.Theinhomogeneityofthemagneticresponseincreaseswiththetemperature.Wealso ndthat,contrarytotheT ωccase,along-rangepenetration,associatedtoamasslessmodeoftheelectromagnetic eldwithintheanyon uid,canpenetratetheboundedsampleinthehightemperaturephase.Nevertheless,intherangeoftemperaturesconsideredthee ectofthishomogeneous eldpenetrationisnegligibleascomparedtotheinhomogeneouscomponent.
Theseresultscorroboratetheexistenceofaphasetransitioninthechargedanyon uidfromasuperconductingphase,atT ωc(seeRef.[33]),toanon-superconductingphase,atT ωc.Theinhomogeneouscharacterofthemagneticresponseinthehightemperaturephaseislinkedtotheinhomogeneityofthespatialdistributionoftheinducedmany-particlechargeandcurrentdensitiesatT ωc.
Wealsoprovethattheinhomogeneousmagneticpenetrationisassociatedtoanimaginarymagneticmassassociatedtooneoftheelectromagnetic eldmodeswithinthechargedanyon uid.TheappearanceofanimaginarymagneticmassatT ωcbynomeansindicatesthatthelinearapproximationusedinthesecalculationsisbrokenbythepresenceoftachyons.Tachyons,asitisknown,correspondtoimaginaryrest-energysolutions.TherestenergyandthemagneticmassspectrumoftheMCStheoryat nitedensityarenotthesameatT ωc,asprovedinSec.4.FortheMCStheoryat nitedensity,weshowthattherestenergiesoftheelectromagnetic eldmodesatT ωcarereal.
Theplanforthepaperisasfollows.InSec.2,forcompleteness,aswellasfortheconvenienceofthereader,wereviewthemany-particle(2+1)-dimensionalMCSmodelusedtodescribethechargedanyon uidintheself-consistent eldapproximation.Principalattentionisgiventothederivationofthehigh-temperatureMCSe ectiveactioninthelinearapproximation.InSec.3westudythemagneticresponseintheself-consistent eldapproximationofachargedanyon uidcon nedtoahalfplaneinthe(T ωc)-phase.We ndtheanalyticalsolutionoftheMCS eldequationsthatsatis esthecorrespondingboundaryconditionsandminimizesthesystemfreeenergy.Thepropagationmodesofthemagnetic eldwithintheanyon uidhavethreecontributions:onethatdecaysexponentiallyinspace,otherthataccountsforanhomogeneous eldpenetration,andathirdthatchangesperiodicallyinspacewithinthesample.Whenallthecoe cientsappearinginthemagnetic eldsolutionareevaluatedfortherangeoftemperaturesandothercharacteristicparametervalues,we ndthattheleadingterminthemagneticresponseisaninhomogeneousmagnetic eldwithacharacteristicwavelengththatdecreaseswiththetemperature.InSec.4weinvestigatethedispersionequationfortheMaxwell eldinthehigh-temperatureapproximation.WesolvethisequationinarbitrarycovariantgaugesfortheMaxwellandCS eldstoobtainthemagneticmassesofthechargedanyon uidinthehigh-temperaturephase.Asexpected,themagneticmassesturnouttobeequaltotheinverselengthscaleswhichcharacterizethemagneticresponseoftheanyon uidinthisphase.Wethenprovethattheexistenceofanimaginarymagneticmasscannotbeassociatedtoatachyonicmodeinthismany-particlesystemwithCSinteractions.Indoingthat,we ndtherestenergiesoftheelectromagnetic eldmodesatT ωc.Sec.6containsthesummaryanddiscussion.
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
II.ANYONFLUIDATHIGHTEMPERATUREANDDENSITY
A.Many-particlemodelandenergygap
Thenon-relativisticchargedanyonsystemininteractionwithanelectromagnetic eldin2+1dimensionscanbemodeledbytheMCSLagrangiandensity
L= 1
4πεµνρaµ νaρ+eneA0+iψ D0ψ 1
4πεµνρfνρ= jµ (2.6)
(2.7) νFµν=e jµ eneδµ0
Toguaranteetheelectricneutralityofthesystemformedbytheelectron uidandthebackgroundchargeneweimposethecondition
0 j neδµ0=0,(2.8)
wherej0isthemany-particlesystemfermiondensity
0 j=
ip4+µ p2
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
Theexistenceofadi erentfromzerofermiondensity,asitisrequiredbytheneutralitycondition(2.8),generatesthrougheqs.(2.6)-(2.7)anontrivialbackgroundofCSmagnetic eld
f21=
b,
H0= 1a1)+22 22πne
In(2.13)weconsideredthebackgroundCSpotential,
ak= (2.13)
2 ωc
(2.16)
Ψnk=√
whereωc=√Lb(2.17)
b/2π.Thus,the llingfactor,de nedastheratiobetweenthedensityof
particlesneandthenumberofstatesperunitareaofafullLandaulevelnB,isequaltotheCScouplingconstantN.WhenthemagnitudeoftheCScouplingconstantNisconsideredasapositiveinteger,the
systemwillhaveNcompletely lledLandaulevels.Oncethisgroundstateisestablished,itcanbearguedimmediately[19],[20],[22],
[24],thatatT=0thesystemwillbecon nedtoa lledband,whichisseparatedbyanenergygap(ωc)fromthefreestates;therefore,itisnaturaltoexpectthatatT=0thesystemshouldsuperconduct.ThisresultisalreadyawellestablishedfactonthebasisofHartree-Fockanalysis[19]andRandomPhaseApproximation[20],[22].AtT=0itwasprovedinRefs.[33]thattheexistenceofanaturalscale(thecyclotronfrequencyωc)inthistheory,makespossibletherealizationofasuperconductingphaseatT ωc,forsystemscon nedtoaboundedregion.Itislogicaltoexpectthatthisenergyscale,ωc,separatestwodi erentphysicalphasesofthesystem.Aswewillprovebelow,thesuperconductingstate,foundatT ωc,disappearswhenthesystemreachestemperatureslargeenough(i.e.atT ωc)tomovetheelectronsbeyondtheenergygaptothefree-energyband.
B.E ectiveactioninthelinearapproximation
Thelinearresponseofthemediumcanbefoundundertheassumptionthatthequantum uctuationsofthegauge eldsabouttheground-statearesmall.Inthiscasetheone-loopfermioncontributiontothee ectiveaction,obtainedafterintegratingoutthefermion elds,canbeevaluateduptosecondorderinthegauge elds.Thee ectiveactionintermsofthequantum uctuationofthegauge eldswithinthelinearapproximation[28],[29]takestheform
1µνρΓeff(Aν,aν)=dx (2.18)εaµ νaρ+Γ(2)
4π
Γ(2)istheone-loopfermioncontributiontothee ectiveactioninthelinearapproximation
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
Γ(2)= dxdy[aµ(x)+eAµ(x)]Πµν(x,y)[aν(y)+eAν(y)].(2.19)
In(2.19)Πµνrepresentsthefermionone-looppolarizationoperatorinthepresenceoftheCSbackgroundmagnetic eld
k2+Π0′,A2=Π1,A3+A1=Π2(2.21)
From(2.20)and(2.21)wehavethatthenewindependentcoe cientscanbefoundfromthepolarizationoperatorcomponents
Π0Π00=
+Π0
′
k2 k0k2 iΠ1k1(2.23)
2Π22=Π2k1 Π0
b
[28],[29],[36]
G(p4,p)=∞ dρ
n=0 ∞0∞ ∞ dx2bexp (ip2x2)exp ip4+µ 2m ρ n(ξ) n(ξ′)tn(2.25)
where
t=expmρ,ξ=p1
2
,ξ′=p12(2.26)
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
IntheLandaugauge,theΠµνEuclideancomponents:Π00,Π02andΠ22aregivenby[29],
Π00k,µ,
b=
Πjkk,µ,i(2π)2β dpp0 +G(p)·DjG(p k)+DjG(p)·G(p k),(2.28)4m2β dpp0
2m
wherethenotationΠ4,(2.29)
±DjG(p)=ipj εjk pkG(p),2 ±DjG(p k)=i(pj kj) εjk pkG(p k),2 (2.30)
hasbeenused.Theindependentcoe cients:Π0,Π0′,Π1andΠ2,foundfrom(2.22)-(2.24),arefunctionsofk2,βand
b
π
8π n(2n+1)Θn (2.34)
Π1=1b
πm
where n(2n+1) n β32πm2 n(2n+1)2Θn (2.36)
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
Θn=sech2β( n
2, n=(eβ( n
2π tanhβµ
48πsech2 βµb
12m2Π0(2.38)
Intheseexpressionsm=2me(meistheelectronmass).
III.MAGNETICRESPONSEINTHEHIGH-TEMPERATUREAPPROXIMATION
Inthehightemperatureregion,fortemperaturesabovetheenergygap(T ωc),theelectronswillbeenergizedenoughtoreachtheemptyLandaulevelbands,aswementionedabove.Consequently,theelectroncon nementintoacompletely lledbandislost,beingpossiblefortheelectronstochangetheirinitialstates.Hence,itisnaturaltoexpect,fromaheuristicpointofview,thatinthishightemperaturephasethesystemcannotbehaveasasuperconductor.
IfthesystemisnotasuperconductoratT ωc,thenithastoallowthepenetrationofanexternallyappliedconstantmagnetic eld.Inotherwords,noMeissnere ectcantakeplace.Inthissectionwewillshowthatthisisindeedthecase.
A.Many-ParticleSystemLinearEquations
Toobtaintheextremumequationscorrespondingtotheanyonmany-particlesystemwehavetoconsiderthevariationalproblemderivedfrom
thee ectiveaction(2.18).Thisformulationisknownintheliteratureastheself-consistent eldapproximation[29].
Incomponentform,the eldequationsinthepresenceoftheinducedcurrentsandtheCS eldsare
·E=eJ0
0Ek+εkl lB=eJk
eN(3.1)(3.2)
2πf0k=εkl 0El+ kB(3.4)
µwherefµνistheCSgauge eldstrengthtensor,de nedasfµν= µaν νaµ,andJindisthecurrentdensityinduced
bythemany-particlesystem.
Insolvingeqs.(3.1)-(3.4)wecon neouranalysistogauge eldcon gurationswhicharestaticanduniforminthey-direction.WithinthisrestrictionwetakeagaugeinwhichA1=a1=0.Then,thedi erentcurrentdensitycomponentsare
0(x)=Π0[a0(x)+eA0(x)]+Π0′ x(E+eE)+Π1(b+eB)Jind
1Jind(x)=0,2Jind(x)=Π1(E+eE)+Π2 x(b+eB)(3.5)(3.6)
Intheaboveexpressionsweusedthefollowingnotation:E=f01,E=F01,b=f12andB=F12.Eqs.(3.5)-(3.6)playtheroleintheanyon uidoftheLondonequationsinBCSsuperconductivity.Whentheinducedcurrents(3.5)-(3.6)aresubstitutedineqs.(3.1)-(3.2)we nd,aftersomemanipulation,asetofindependentdi erentialequationsdependingonthe eldsBandE,alongwiththezerocomponentsofthegaugepotentials,A0anda0,
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
2ω xB+αB=γ[ xE σA0]+τa0,
2 xB=κ xE+ηE,(3.7)(3.8)
Inobtainingtheseequationswehaveusedtheeqs.(3.3)-(3.4)toeliminatetheCSmagneticandelectric eldsintermsoftheMaxwell elds
b= χ xE
E= χ xB(3.9)(3.10)
Thecoe cientsappearinginthesedi erentialequationsdependonthecomponentsofthepolarizationoperatorsthroughtherelations
ω=2π
eN
γ=1+e2Π0′ 2π
N,σ= e2δ2πΠ1,Π1,κ=
A0,ThesolutionsforB,a0andA0,canbeobtainedusingeqs.(3.8),(3.9),(3.13)andthede nitionofEintermsof
B(x)= γ1C1e xξ1 C2exξ1 γ2C3e xξ2 C4exξ2+C5(3.15)
(3.16) 1d2 4ac2a(3.14) a0(x)=χγ1C2exξ1 C1e xξ1+χγ2C4exξ2 C3e xξ2+C6
A0(x)=1
ξ2 C3e xξ2 C4exξ2+C7(3.17)
2 2 Intheaboveformulasweintroducedthenotationγ1=ξ1κ+η/ξ1,γ2=ξ2κ+η/ξ2.
Ascanbeseenfromthemagnetic eldsolution(3.15),therealcharacteroftheinverselengthscales(3.14)iscrucialfortherealizationoftheMeissnere ect.Attemperaturesmuchlowerthantheenergygap(T ωc)thisisindeedthecase,asitwasshowninourpreviousworks(seeref.[33]).
Inthehightemperatureregion(T ωc)thepolarizationoperatorcoe cientsaregivenbyeqs.(2.38).Usingthisapproximation,andassumingthatN=2,togetherwiththeassumptionne m2(thisapproximationisinagreementwiththetypicalvaluesfoundinhigh-TCsuperconductivity),wecancalculatethecoe cientsa,canddthatde nethebehavioroftheinverselengthscales,
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
a π2Π0′Π2
c e2Π0
d 1(3.18)(3.19)(3.20)
Substitutingwith(3.18)-(3-20)ineq.(3.14),weobtainfortheinverselengthscalesinthehigh-temperaturelimit
ξ1 e
1 βµm/2πtanh2m
22(3.21) ξ2 βµtanh2
(3.22)
Theimaginaryvalueoftheinverselengthξ2is duetothefactthatatT ωc,Π2>0andΠ0′<0(seeeq. (2.38)).Animaginaryξ2impliesthatthetermγ2C3e xξ2 C4exξ2,inthemagnetic eldsolution(3.15),doesnothaveadampingbehavior,butanoscillatingone.Ontheotherhand,thepresenceoftheconstantcoe cientC5inthemagnetic eldsolution(3.15)meansthatthereexistsamagneticlong-rangemode.InSec.4wewillseehowthislong-rangemodeisassociatedtotheexistenceofamodewithzeromagneticmass,M1=0.
Nevertheless,tocompletelydeterminethecharacteristicsofthemagneticresponseinthiscase,itisneededto ndthevaluesoftheC′sunknowncoe cientswhichareinagreementwiththeproblemboundaryconditionsandtheminimizationofthesystemfree-energydensity.
C.BoundaryConditionsandStabilityConditionfortheSemi-in niteSample
Inordertodeterminetheunknowncoe cients,weneedtousetheboundaryconditions.Henceforthweconsiderthattheanyon uidiscon nedtoahalfplane ∞<y<∞withboundaryatx=0.Theexternalmagnetic eldisappliedfromthevacuum( ∞<x<0).Theboundaryconditionsforthemagnetic eldareB(x=0)=Bconstant),andB(x→∞) nite.Sinceineqs.(3.7)-(3.8)themagnetic eldistangledtotheelectric eldE,theboundaryvaluesofEhavetobetakenintoaccountindeterminingtheunknowncoe cients.Becausenoexternalelectric eldisapplied,theboundaryconditionsforthis eldare,E(x=0)=0,E(x→∞) nite.Afterusingtheseconditionsitisfoundthat,
C2=0, C1=C3+C4,C1=C5+(C3 C4)γ2 γ1(3.23)
Introducingthenewnotationξ2=i
ξ2+Asinx
γ2Acosx
A=i(C4 C3), ξ22κ η/ ξ2+C5(3.25)where
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
Eq.(3.27)establishesaconnectionbetweenthelinearcombinationofthecoe cientsofthelong-rangemodesofthezerocomponentsofthegaugepotentials,(C6+eC7),andthecoe cientofthelong-rangemodeofthemagnetic eld,C5.NotethatiftheinducedCScoe cientΠ1,ortheDebye-screeningcoe cientΠ0werezero,therewouldbenolinkbetweenC5and(C6+eC7).Thisrelationbetweenthelong-rangemodesofB,A0anda0canbeinterpretedasasortofAharonov-Bohme ect,whichoccursinthissystemat nitetemperature[33].AtT=0,wehaveΠ0=0,andthise ectdisappears.
Afterusingtheboundaryconditions(3.23),itfollowsthattheyarenotsu cienttodeterminethecoe cientsC5andA.WeneedanotherphysicalconditionfromwhereC5andAcanbefound.Since,obviously,anymeaningfulsolutionhavetobestable,thenaturaladditionalconditiontobeconsideredisthestabilityequationderivedfromthesystemfreeenergy.Withthisgoalwestartfromthefreeenergyofthehalf-planesample
F=1
πa0b Π0(eA0+a0)2
Π0(eE+E) 2Π1(eA0+a0)(eB+b)+Π2(eB+b)′22
whereLandL′determinethetwosample’slengths.
In(3.28)wehavetosubstitutethe eldsolutions(3.16),(3.17),(3.24)and(3.25)togetherwiththesolutionsfortheCS elds(thatcanbefoundsubstituting(3.24)and(3.25)ineqs.(3.9)and(3.10)respectively)
b(x)=χξ1C1e xξ1 χ
ξ2
A,(A
C1by (3.28)ξ2+C1sinxξ2 C1cosxL′→∞)isgivenasafunctionofAand
f=1=LL′beingthesamplearea)inthesample’slengthlimit(L→∞,
γ22+G,2X2=gγ1+G,X3= 2gγ1
X6=g
+e2Π2
BBγ1,Π0
1N(3.33)G=γ22
Π1 χξ2
=ξ2 γ2e+χγ2+2 2Π2 2e+χγ2ξ2 e1
δA
δC1=1
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
tobe
A=2+γ1B(3.37)
C1= 3gγ1
γ22
γ2A+
From(3.39)weseethatforT ωctheelectromagnetic eldlong-rangemodepropagatesintothesample,producinganhomogeneousmagneticpenetration.Thisresultisdi erentfromtheoneobtainedinthelow-temperaturelimit(T ωc)[33].InthatlimititwasfoundthatC5=0,whichimpliesthatthelong-rangemodecannotpropagatewithinthesamplewhenauniformandconstantmagnetic eldisperpendicularlyappliedatthesample’sboundaries.
D.InhomogeneousMagneticResponse 2+G)γ2+(gγ11B(3.39)
Asithasbeenpreviouslyestablished,inthehigh-temperaturelimitthecoe cientsA,C1andC5arealldi erentfromzero,i.e.,inthe(T ωc)-phasethemagneticresponseofthechargedanyon uidhasanexponentialdecayingcomponent,aswellas,bothhomogeneousandinhomogeneouspenetrations..Tocompleteourstudyofthemagneticresponseathightemperaturewestillneedtoestimatethecorrespondingvaluesofeachcomponentfortherangeofparametersandtemperatureshereconsidered.
Atthedensitiesunderconsideration,ne m2,theestimatedvaluesofthecoe cientsA,C1andC5inthehigh-temperatureapproximation(T ωc)are
A≈103B,C5≈10 4
λ x(3.41)
B(x)=
where
E0(T)=12√λ x 1(3.42)
2+1
B.Moreover,theinhomogeneousmagnetic eldpenetration(3.42)is
characterizedbyawavelengthλ,whichisproportionaltotheinverseofthelengthscalemagnitude
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
AtT ωc,usingthatµ πne
ξ2increaseswiththetemperature(seeeq.(3.22)),wehave,thatthewavelengthdecreases
withT.Thehigh-temperatureleadingbehaviorforλisgivenby
λ≈π1
B,andthetemperature.TheE’sinhomogeneity
alsoincreaseswiththetemperaturethroughλ.
Fromtheobtainedresultsweconcludethatfortemperatureslargerthantheenergygap,thechargedanyon uidisinanewphaseonwhichthesuperconductivityislost(nonMeissnere ectisfoundinthisphase).
Theinductionofinhomogeneouselectricandmagnetic eldswithinthechargedanyon uidathightemperature,indicatesthatsomeredistributionoftheinducedchargeandcurrentsoccursatT ωc.
Toverifythis,letuscalculatetheinducedelectricchargedensityofthechargedmediuminthehigh-temperatureapproximation.Consideringeq.(3.5)inthehigh-temperaturelimit,we ndthattheinducedelectricchargedensitypresentsaninhomogeneousspatialdistributionwithhigh-temperatureleadingcontributiongivenby
√βµeJ0(x)=24Btanhx(3.46)λ
Asdiscussedabove,inthehigh-temperatureregimeλ~
2 Bcosh βµ
2 +1 1 x(3.47)λ
Obviously,thecurrentdensity(3.47)isnotasupercurrentcon nedtothesample’sboundary.
IV.MAGNETICMASSANDRESTENERGYINTHECHARGEDANYONFLUIDATT ωC
Wehaveseenthattheinverselengthscales,ξ1andξ2,arebasicelementsinthedeterminationofthemagneticresponseofthechargedanyon uid.InthisSec.weshallgoonestepforwardinclarifyingthephysicalinterpretationoftheseparameters.Wewillshowthattheinverselengthscales(3.21),(3.22)canbeidenti edwiththemagneticmassesoftheelectromagnetic eldwithinthe uidatT ωc.AparticularlyimportantpointinthisSec.isourproofthattheexistenceathightemperatureofanimaginarymagneticmass(correspondingtotheinverselength(3.22))isnotlinkedtothepresenceoftachyonsinthetheory,ortothebreakingofthelinearapproximation,aswassuggestedinref.[28].Asshownbelow,themagneticmassandtherestenergyarenotthesameintheMCStheory(contrarytowhathappensinaKlein-Gordon-liketheory).
Toinvestigatethemagneticmassesandtherestenergiesassociatedwiththeelectromagneticmodes,weneedtostudytheelectromagnetic elddispersionequation.Withthisaimwestartfromthee ectiveaction(2.18)takeninthecovariantgaugesfortheMaxwellandCS elds
1
α2 µaµ=0(4.1)
α1andα2beingtwoindependentgaugeparameters.
Thecorrespondinge ectiveLagrangiandensityfortheMaxwellandCS eldcon gurationscanberepresentedas
Leff= 1
2 1aµ( k)Dµν(k)aν(k) eAµ( k)Πµν(k)aν(k)(4.2)
1 1wherethematrices µνandDµνaregivenby
12 µν(k)=kgµν 1 1
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
1Dµν(k)=iN
α2kµkν+Πµν(k)(4.4)
Πµνistheone-loopfermionpolarizationoperatorgivenfrom(2.20)-(2.21)by A1k2A1kω iΠ1k iΠ1ωΠµν= A1kω A1ω2
22iΠ1k iΠ1ω A1ω+Π2k(4.5)
In(4.5)weareconsideringtheframek=(k,0),andthenotationω=k0hasbeenused.
Thee ectivetheoryfortheelectromagnetic eldinthechargedanyon uid,isfoundintegratingtheCS eldsinthepartitionfunction(2.3)withLagrangiandensity(4.2).Thenewe ectiveLagrangiandensitysoobtainedis
L′eff= 1
2± 2
Furthermore,inthepresenceofabackgroundmagnetic eld,thedistinctionbetweenmassandrest
energybecomesessential.Forinstance,inthecontextofstringtheoryinabackgroundmagnetic eld,ithasbeenshown[37]thatthemass(de nedinagreementwithWigner’sde nition)ofhigherspin(s≥1)chargedbosonparticlesdoesnotcoincidewiththeirrestenergy.Thisisduetothemodi cationofthealgebraoftheglobalsymmetriesbythebackground eld.
Fromtheabovediscussion,itisalsoclearthatincalculatingthemagneticmass(eq.(4.10))andtherestenergy(eq.(4.11))at nitetemperature,wehavetotakethepolarizationoperatorscoe cientsinthestaticlimit(ω=0,k~0)andintheplasmonlimit(k=0,ω~0)respectively.Now,becauseofthelackofanalyticityoftheGreen’sfunctionaboutkµ=0atT=0,itisknownthatinQFTtheselimitsdonotcommute[35],[38].InanyontheoryatT=0onefacesasimilarsituation,asitwasshowninref.[31].Then,ineachcasewehavetoconsiderthepolarizationoperatorcoe cientsevaluatedinthecorrespondinglimit.
InanyontheorytheCSinteractiongivesrisetoadispersionequationwithastructuremorecomplicatedthanthatcorrespondingtoaKlein-Gordon-liketheory.Asshownbelow,inthiscasethemagneticmassesandtherestenergiesoftheelectromagneticmodesaredi erent.
2+M2(4.13)
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
A.Electromagnetic eldmagneticmassesathightemperatures
To ndtheelectromagnetic eldmagneticmasseswemustsolvethedispersionequation(4.8)atω=0.Sinceweareinterestedinthemagneticmassesattemperatureshigherthantheenergygap(T ωc),weshouldconsiderinsolving(4.8)thepolarizationoperatorcoe cientsinthehigh-temperatureapproximation(2.38).
Letusdetermine rsttheexpressionofthematrixNµν(k)(eq.(4.7))atω=0.InthiscasethematrixDλρ(k)appearingineq.(4.7)takestheform
Dλρ(k)=k2
π+Π1(4.16)
Thus,aftertakingthematrixproductsindicatedin(4.7)withthepolarizationoperator(4.5)evaluatedatω=0,we nd,
Nµν(k)=e2
α1
with 2k+e2A1G1k21+e2G1Π2+e4G22=0
G1=B(4.19)
α2D+Π1(4.21)
ForN=2,takingintoaccountthatinnaturalunitse2~105cm 1,andconsideringthecharacteristicvaluesne=2×1014cm 2andme=2.6×1010cm 1,wecanestimatetherelativeordersbetweenthepolarizationoperatorcoe cients(2.38)attemperatureslargerthanωcas
Π0≈ 108e2Π1≈ 107e4Π0′≈1020e4Π2
is
det[ (k) N(k)] (Π2Π0′)2(4.22)Takingintoaccounttherelations(4.22),thehigh-temperatureleadingcontributiontothedispersionequation(4.19)
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
σ1=2
4,σ3=2σ1
3
with
A=σ1,y2,3= A+B21/3√3√(4.26)6(1 B), A,B=33 3i
σ1
Inthehigh-temperaturelimit A,B 1,sowecantaketheexpansions,
(1 A,B)1/3≈1 1
9 2A,B(4.27)(4.28)
Substitutingwith(4.27)and(4.28)in(4.26)weobtaintheleadinghigh-temperatureapproximationfortherootsofeq.(4.25),
y1= e2Π0,y2,3= 1
π2(Π2Π0′) 1(4.33)
Weshouldnotethatthemagneticmasses(4.32)-(4.33)aregaugeindependent.Thatis,theydonotdependonthegaugeparametersα1andα2.Wecanseethattheequation(4.23),fromwherethemagneticmassesarefound,isindependentofthegaugeparameterα2,sinceα2Ddoesnotdependonα2;andα1appearsonlyasamultiplicativefactor.
From(4.31)-(4.33)wehavethatoneoftheinfraredmodesoftheelectromagnetic eldintheanyon uidismassless,2M1=0,whileM22>0andM3<0.Thesignsobtainedforthesquareofthemasses(4.32),(4.33),areaconsequenceofthefactthatinthehigh-temperaturelimit,Π0>0,Π2>0andΠ0′<0(eq.(2.38)).
Comparingeqs.(4.32),(4.33)witheqs.(3.21),(3.22)respectively,onecanseethat
ξ1=M2,ξ2=M3(4.34)
Hence,themagneticmassescoincidewiththeinverselengthscales,ξ1andξ2,whichdeterminethemagneticresponseofthemedium.Thisispreciselythephysicalmeaningoftheseinfraredmasses(Mi).Theycannotbeinterpreted,otherwise,astherestenergiesoftheelectromagnetic eldmodes,aswewillseebelow.Thezeromode(4.31)islinkedtothelong-rangecomponentC5appearinginthemagneticresponse(3.25).
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
B.Electromagnetic eldrestenergiesathightemperatures
Therestenergiesoftheelectromagneticmodesarefoundbysolvingthedispersionequation(4.8)forωatk=0.Werecallthatthepolarizationoperatorcoe cientshavetobetakennowintheplasmonlimit(k=0,ω~0).Usingthislimit,we ndthatΠ0(k=0,ω~0)=0,whiletherestofthecoe cientsmaintainthesamefunctionalbehavior(2.38)obtainedinthestaticlimit[31].Thenthepolarizationoperatorisgivenby(4.5)withΠ0=0andk=0.InthiscasethematrixDλρ(ω)appearingineq.(4.7)takestheform D00ω21 ′ω4λρ0 Π(4.35)D(ω)=0α2
ω30iHα2
Inwriting(4.35)thefollowingnotationwasused
D= 1detDµν(k)=ω4
with
M= ωΠ0
56′
Using(4.3)and(4.37)inthedispersionequation(4.8)weobtainthegeneralexpressionfortherest-energyequation
2 1 ω2
M+det µν(ω) Nµν(ω)=α2D
ieΠ1ω 2 2′22N=iω(2Π1 H)(Π0)ω H(Π1) ′22(Π0)ω+(Π1 2H)Π1,000 0MN α2D0 NM (4.37)(4.38)(4.39)e2
α1(α2D)
where
θ1= 2H2
42 6ω+θ1ω4+θ2ω2+θ3=0θ3= 1(4.41)2θ1,
2πΠ0′
2From(4.43)-(4.45)wehavethatω2,3>0;therefore,atT ωcthereisnonegativesquaredrestenergy,which
meansthatthehightemperaturephaseisstable.Hence,theexistenceofanegativesquaredmagneticmass,M23,simplyindicatesthatthereisaninhomogeneousmagneticpenetrationinthechargedanyon uidatT ωc.Finally,weshouldpointoutthattherestenergiesω2,3arealsogaugeindependent(theydonotdependonα1andα2),andtheyaredeterminedbytheexplicit(proportionaltoN)andinduced(proportionaltoΠ1)CScontributions. 2(4.45)
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
V.CONCLUDINGREMARKS
Theparticleenergyspectrumoftheanyontheoryexhibitsabandstructuregivenbydi erentLandaulevelsseparatedbyanenergygapωc.TheenergygapisproportionaltothebackgroundCSmagnetic eld
bwhatdeterminestheenergygap
(ωc=
Tinitshigh-
temperatureleadingorder.Thatis,thespatialinhomogeneityofthemany-particlemagneticresponsewillincreasewiththetemperatureinthisnewphase.
TheabsenceoftheMeissnere ectatT ωcisrelatedtotheappearingofanimaginarymagneticmassM3inthisphase(eq.(4.33)).Theexistenceofanimaginarymagneticmasscannotbeassociatedwithatachyonicmodeinthismany-particlesystemwithCSinteractions.Thereasonisthatthemagneticmassesandtherestenergiesoftheelectromagnetic eldmodesarenotthesamewithinthechargedanyon uid.
Itisimportanttonotethatinobtainingtheinhomogeneousmagneticresponseathightemperatures,itwascrucialthatthepolarizationoperatorcoe cientΠ0′changeditssignfromapositivevalueatT ωc[28],[31],[33],toanegativevalueatT ωc(eq.(2.38)).Thatis,becauseΠ0′changesitssign,whileΠ2continuespositive,wehavethatM3isimaginaryineq.(4.33).
Finally,weshouldstatethattheresultsobtainedinRef.[33]andinthispaperforthesuperconductingpropertiesofthechargedanyon uidhavebeenderivedonthebaseofalinearapproximation.Ifnonlineare ects,asforinstancevortices,areconsidered,itispossiblethataricherscenarioforthesuperconductingphasesoftheanyonsystemwillappear.
Acknowledgments
ThisresearchhasbeensupportedinpartbytheNationalScienceFoundationunderGrantNo.PHY-9722059.
The magnetic response of the charged anyon fluid at temperatures larger than the fermion energy gap is investigated in the self-consistent field approximation. In this temperature region a new phase, characterized by an inhomogeneous magnetic penetration,
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]Phys.Lett.B352(1995)422;T.ItohandT.Sato,Phys.Lett.B367(1996)290;S.KanemuraandT.Matsushita,Phys.Rev.D56,(1997)1021.Z.HlousekandD.Spector,Nucl.Phys.B344(1990)763.Y.N.SrivastavaandA.Widom,Nuovo.Cim.Lett.39(1984)285;S.C.Zhang,T.H.HanssonandS.Kivelson,Phys.Rev.Lett.62(1989)82;J.FrohlichandT.Kerler,Nucl.Phys.B354(1991)369;FrohlichandA.Zee,Nucl.Phys.B364(1991)517;A.P.Balachandran,L.ChandarandB.Sathiapalan,Int.J.Mod.Phys.A11(1996)3587.S.Girvinin”TheQuantumHallE ect”,editedbyR.PrangeandS.Girvin(Springer-Verlag,Berlin,1990).E.Fradkin,”FieldTheoriesofCondensedMatterSystems”(Addison-Wesley,1991).J.K.Jain,Phys.Rev.Lett.63(1989)199.A.LopezandE.Fradkin,Phys.Rev.B44,(1991)5246;Phys.Rev.B47,(1993)7080;B.I.Halpering,P.A.LeeandN.Read,Phys.Rev.B47,(1993)7312.C.R.Hagen,Ann.Phys.(NY)157(1984)342;Phys.Rev.D31(1985)848;D31(1985)2135;forareviewseeR.Jackiw,in”Physics,geometryandtopology,”editedbyH.C.Lee(Plenum,NewYork,1990).D.P.Arovas,J.R.Schrie er,F.Wilczek,andA.Zee,Nucl.Phys..B251(1985)117;A.Goldhaber,R.MacKenzieandF.Wilczek,Mod.Phys.Lett.A4(1989)21.E.Merzbacher,Am.J.Phys.30(1962)237;idlawandC.M.DeWitt,Phys.Rev.D3(1971)1375;J.M.LeinaasandJ.Myrheim,NuovoCimento36b(1977)1;G.A.Goldin,R.Meniko andD.H.Sharp,J.Math.Phys.22(1981)1664;Phys.Rev.D28(1983)830;F.Wilczek,Phys.Rev.Lett.48(1982)1144;49(1982)957.F.Wilczek(ed.),”FractionalStatisticsandAnyonSuperconductivity,”(WorldScienti c,Singapore1990).P.W.Anderson,in:Physicsoflow-dimensionalsystems,Proc.Nobelsymp.73,eds.S.LundquistandN.R.Nilsson(NorthHolland,Amsterdam,1989);P.B.Wiegmann,Phys.Rev.Lett.60(1988)821;I.A eckandB.Marston,Phys.Rev.B37(1988)3774;X.G.Wen,F.WilczekandA.Zee,Phys.Rev.B39,(1989)ughlin,Phys.Rev.Lett.59,(1987)2095.J.Frohlich,F.GabbianiandP.-A.Marchetti,in:Physics,GeometryandTopology,Proc.ofaNATOAdvancedStudyInst.andBan SummerSch.onTheor.Phys.15,ed.H.C.Lee(PlenumPress,NY,1990)ughlin,Phys.Rev.Lett.60,(1988)2677.A.L.Fetter,ughlin,Phys.Rev.B39,(1989)9679.G.W.Semeno andN.Weiss,Phys.Lett.B250(1990)117;N.DoreyandN.E.MavromatosPhys.Lett.B250(1990)107;Nucl.Phys.B386(1992)614;Z.F.EzawaandA.Iwazaki,Mod.Phys.Lett.B7(1993)109;J.L.GoityandJ.Soto,Int.J.Mod.Phys.A7(1993)4595.Y.-HChen,F.Wilczek,E.WittenandB.I.Halperin,Int.J.Mod.Phys.B3(1989)1001.B.I.Halpering,J.March-RusselandF.Wilczek,Phys.Rev.B40(1989)8726.X.G.WenandA.Zee,Phys.Rev.B41(1990)240.C.B.Hanna,ughlinandA.L.Fetter,Phys.Rev.B40(1989)8745,ibid.43(1991)309;G.S.Canright,S.M.GirvinandA.Brass,Phys.Rev.Lett.63(1989)2291,2295;E.Fradkin,Phys.Rev.Lett.63(1989)322,Y.HosotaniandS.Chakravarty,Phys.Rev.B42(1990)342;Phys.Rev.D44(1991)441;A.L.Fetter,andC.B.Hanna,Phys.Rev.B45(1992)2335.T.BanksandJ.Lykken,Nucl.Phys.B336(1990)500;E.Fradkin,Phys.Rev.B42(1990)570.J.D.Lykken,J.SonnenscheinandN.Weiss,Phys.Rev.D42(1990)2161;Int.J.Mod.Phys.A6(1991)1335.S.Randjbar-Daemi,A.SalamandJ.Strathdee,Nucl.Phys.B340(1990)403.Y.Hosotani,Int.J.Mod.Phys.B7(1993)2219;J.E.Hetric,Y.HosotaniandB.-HLee,Ann.Phys209(1991)151;J.E.HetricandY.Hosotani,Phys.Rev.B45(1992)2981.P.K.Panigrahi,R.RayandBSakita,Phys.Rev.B42(1990)4036;J.Kapusta,M.E.Carrington,B.Bayman,D.SeibertandC.S.Song,Phys.Rev.B44(1991)7519;Y.Georgelin,M.Knecht,Y.Leblanc,andJ.C.Wallet,Mod.Phys.Lett.B5(1991)211;Y.Leblanc,andJ.C.Wallet,Mod.Phys.Lett.B6(1992)1623;I.E.Aronov,E.N.Bogachek,I.V.KriveandS.A.Naftulin,JETPLett.56(1992)283;Y.KitazawaandH.Murayama,Phys.Rev.B41(1990)11101.S.S.Mandal,S.RamaswamyandV.Ravishankar;Mod.Phys.Lett.B8(1994)561,Int.J.Mod.Phys.B8(1994)3095.D.Cabra,E.Fradkin,G.L.RossiniandF.A.Schaposnik,Phys.Lett.B383(1996)434.E.J.Ferrer,R.HurkaandV.delaIncera,Mod.Phys.Lett.B11(1997)1;E.J.FerrerandV.delaIncera,Int.J.Mod.Phys.B12(1998)63.S.Randjbar-Daemi,A.SalamandJ.Strathdee,Int.J.Mod.Phys.B5(1991)845.E.S.Fradkin,ProceedingsofQuantumFieldTheoryandHydrodynamics,P.N.LebedevPhysicalInstitute,Vol.29(MoscowNauka)(Engl.Transl.,NewYork:ConsultantBureau).E.J.FerrerandV.delaIncera,Int.J.Mod.Phys.B5(1995)3585.E.J.FerrerandV.delaIncera,Phys.Rev.D49(1994)2926.D.A.KirzhnitsandA.D.Linde,Ann.Phys.(NY)101(1976)195;O.K.KalashnikovandV.V.Klimov,Sov.J.Nucl.Phys.
31(1980)1357;D.J.Gross,R.D.PisarskiandL.G.Ya e,Rev.ofMod.Phys.53(1981)43.
正在阅读:
Phase Transition in Anyon Superconductivity at Finite Temperature07-17
说说韦伯定律(Weber’s Law)05-30
部编人教版七年级下册历史期中测试2套(2019最新编辑)06-28
南府发〔2008〕15号——南宁市人民政府关于印发《南宁市征收集体06-08
2014年春季学期学前1班《幼儿园活动设计与实践》期考试题(A、B卷04-20
Automorphisms and strongly invariant relations08-05
2010信息技术会考模拟题104-24
送别诗“意象”类析08-05
- 1The transition from freight consolidation to logistics
- 2The transition from freight consolidation to logistics
- 3Properties of Strange Hadronic Matter in Bulk and in Finite Systems
- 4Modeling and finite element analysis of rod and wire steel r
- 5Effects of Temperature and Atmosphere on Pellets Reduction Swelling Index
- 6Apparent temperature of fragments in the breakup of spectator residues
- 7choose materials for high-temperature environments
- 8Shift Equivalence of P-finite Sequences
- 9相位误差phase error question
- 10Finite-time Lyapunov exponents of Strange Nonchaotic Attractors
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Superconductivit
- Temperature
- Transition
- Finite
- Phase
- Anyon