中考数学一轮复习 专题9 几何总复习(含答案)

更新时间:2024-02-27 07:49:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

初三辅导班资料9 初中几何综合复习

学校 姓名

A 一、典型例题

例1(2005重庆)如图,在△ABC中,点E在BC上,点D在AE上,已知∠ABD=∠ACD,∠BDE=∠CDE.求证:BD=CD。

D

C B E

例2(2005南充)如图2-4-1,⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.(1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长.

例3.用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.

E

M D A M A

B

图1

C B

图2

C

图3 图4

(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.

(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和

BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x?(m?1)x?m?1?0的两个实数根,试求出原矩形纸片的面积.

2

第 页 共 8 页

1

二、强化训练 练习一:填空题

1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 . 2.已知∠a=60°,∠AOB=3∠a,OC是∠AOB的平分线,则∠AOC = ___ .

3.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 4.等腰Rt△ABC, 斜边AB与斜边上的高的和是12厘米, 则斜边AB= 厘米.

5.已知:如图△ABC中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF的度数为________. 6.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面积为8cm,则△AOB的面积为 .

7.如果圆的半径R增加10% , 则圆的面积增加_________ .

8.梯形上底长为2,中位线长为5,则梯形的下底长为 . 9. △ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是10,则△A′B′C′的面积是 .

10.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°,那么AD等于 . 练习二:选择题

1.一个角的余角和它的补角互为补角,则这个角等于 [ ] A.30° B.45° C.60° D.75° 2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 [ ]

A.矩形 B.三角形 C.梯形 D.菱形

3.下列图形中,不是中心对称图形的是

[ ]

A. B. C. D.

4.既是轴对称,又是中心对称的图形是 [ ] A.等腰三角形 B.等腰梯形 C.平行四边形 D.线段

5.依次连结等腰梯形的各边中点所得的四边形是 [ ] A.矩形 B.正方形 C.菱形 D.梯形

6.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆的位置关系是 [ ]

A.相交 B.内切 C.外切 D.外离

7.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为 [ ]

8.A.B.C三点在⊙O上的位置如图所示, 若∠AOB=80°,则∠ACB等于 [ ]

A.160° B.80°

第 页 共 8 页

2

C.40° D.20°

9.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是[ ] A.160° B.150° C.70° D.50°

(第9题图) (第10题图) 10.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC相交于E,图中全等三角形共有 [ ] A.2对 B.3对 C.4对 D.5对

练习三:几何作图 1.下图左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同。

2. 正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。

3.将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.

(1)沿y轴正向平移2个单位;(2)关于y轴对称;

第 页 共 8 页

3

4. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水.修在河边什么地 方, 可使所用的水管最短?(写出已知, 求作, 并画图)

练习四:计算题

1. 求值:cos45°+ tan30°sin60°.

2.如图:在矩形ABCD中,两条对角线AC、BD相交于点O,AB=4cm ,AD=43cm. (1)判定△AOB的形状. (2)计算△BOC的面积.

AD

O

BC

3. 如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD和上弦AC的长(答案可带根号)

4.如图,折叠长方形的一边AD,点D落在BC边的点F处,已知AB=8cm, BC=10cm ,求AE的长.

A D

E

B F C

练习五:证明题

1.阅读下题及其证明过程:

已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE, 求证:∠BAE=∠CAE.

证明:在△AEB和△AEC中,

第 页 共 8 页 4

?EB?EC???ABE??ACE ?AE?AE?∴△AEB≌△AEC(第一步) ∴∠BAE=∠CAE(第二步)

问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;

2. 已知:点C.D在线段AB上,PC=PD。请你添加一个条件,使图中存在全等三角形并给予证明。所加条件为_____,你得到的一对全等三角形是△___≌△___。 证明: P

ACDB

3.已知:如图 , AB=AC , ∠B=∠C.BE、DC交于O点. 求证:BD=CE

练习六:实践与探索

1.用两个全等的等边△ABC和△ACD拼成如图的菱形ABCD。现把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A重合,两边分别与AB、AC重合。将三角板绕点A逆时针方向旋转。

(1)当三角板的两边分别与菱形的两边BC、CD相交于点E、F时(图a)

①猜想BE与CF的数量关系是__________________; ②证明你猜想的结论。

D A

F

E B C

图a

第 页 共 8 页

5

(2)当三角板的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(图b),连结EF,判断△AEF的形状,并证明你的结论。

F

A D

B C E 图b

2.如图,四边形ABCD中,AC=6,BD=8,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……,如此进行下去得到四边形AnBnCnDn。

(1)证明:四边形A1B1C1D1是矩形; A

A1 D2 D1

D3 C3

A2 C2 … D B B3 A3

B1 B2 C1

C

·仔细探索·解决以下问题:(填空)

(2)四边形A1B1C1D1的面积为____________ A2B2C2D2的面积为___________; (3)四边形AnBnCnDn的面积为____________(用含n的代数式表示); (4)四边形A5B5C5D5的周长为____________。

3.如图,在平面直角坐标系中,四边形ABCO是正方形,点C的坐标是(4,0)。 (1)直接写出A、B两点的坐标。A ______________ B____________

(2)若E是BC上一点且∠AEB=60°,沿AE折叠正方形ABCO,折叠后点B落在平面内点F处,请画出点F并求出它的坐标。

y B A E

O C x

(3)若E是直线..BC上任意一点,问是否存在这样的点E,使正方形ABCO沿AE折叠后,点B恰好落在x轴上的某一点P处?若存在,请写出此时点P与点E的坐标;若不存在,请说明理由。

第 页 共 8 页

6

参考答案

例1证明:因为∠ABD=∠ACD,∠BDE=∠CDE。而∠BDE=∠ABD+ ∠BAD,∠CDE=∠ACD+∠CAD 。所以 ∠BAD=∠CAD,而∠ADB

=180°-∠BDE,∠ADC=180°-∠CDE,所以∠ADB =∠ADC 。 在△ADB和△ADC中,

∠BAD=∠CAD AD=AD

∠ADB =∠ADC

所以 △ADB≌△ADC 所以 BD=CD。 例2(1)证明:连接OD,AD. AC是直径,

∴ AD⊥BC. ⊿ABC中,AB=AC, ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED是圆内接四边形ACDE的外角,∴∠C=∠BED.

故∠B=∠BED,即DE=DB.∴ 点F是BE的中点,DF⊥AB且OA和OD是半径,即∠DAC=∠BAD=∠ODA.∴OD⊥DF ,DF是⊙O的切线.

1(2)解:设BF=x,BE=2BF=2x.又 BD=CD=2BC=6, 根据BE?AB?BD?BC,

2x?(2x?14)?6?12. 化简,得 x2?7x?18?0,解得 x1?2,x2??9(不合题

意,舍去).则 BF的长为2. 例3答案:(1)如图

A M A E M

B B E C C 图4 图3

(2)由题可知AB=CD=AE,又BC=BE=AB+AE。∴BC=2AB, 即b?2a

由题意知 a,2a是方程x2?(m?1)x?m?1?0的两根

∴??a?2a?m?11 消去a,得 2m2?13m?7?0 解得 m?7或m??

2?a?2a?m?1131经检验:由于当m??,a?2a???0,知m??不符合题意,舍去.m?7符

222合题意.∴S矩形?ab?m?1?8

答:原矩形纸片的面积为8cm2.

第 页 共 8 页

7

练习一. 填空

1.9 2. 90° 3. 6.5 4.8 5. 70° 6.2 7.21% 8.8 9.24 10.练习二. 选择题

1.B 2.D 3.B 4.D 5.C 6.B 7.A 8.C 9.D 10.C 练习三: 1.3略

2. 下面给出三种参考画法:

4.作法:(1)作点A关于直线a的对称点A'.

(2)连结A'B交a于点C.则点C就是所求的点.

证明:在直线a上另取一点C', 连结AC,AC', A'C', C'B. ∵直线a是点A, A'的对称轴, 点C, C'在对称轴上 ∴AC=A'C, AC'=A'C'∴AC+CB=A'C+CB=A'B ∵在△A'C'B中,A'B<A'C'+C'B ∴AC+CB<AC'+C'B 即AC+CB最小. 练习四:计算

1. 1 2.①等边三角形 ②43 3. 23、43 4. 55 练习五:证明

1.第一步、推理略 2.略

3. 证:∵∠A=∠A , AB=AC , ∠B=∠C.∴△ADC≌△AEB(ASA)∴AD=AE ∵AB=AC, ∴BD=CE. 练习六;实践与探索

1.(1)①相等 ②证明△AFD≌△AEC即可 (2)△AEF为等边三角形,证明略 2..(1)证明略 (2)12, 6 (3)3. (1)A(0,4)B(4,4) (2)图略,F(2,4?23) (3)存在。P(0,0),E(4,0)

3 4247 (4) 2n2第 页 共 8 页 8

本文来源:https://www.bwwdw.com/article/68la.html

Top