二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案
更新时间:2024-04-19 00:34:01 阅读量: 综合文库 文档下载
- 二元一次方程培优题推荐度:
- 相关推荐
二元一次方程(组)补习、培优、竞赛归类讲解及练习答案
知识点:
1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。 2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。 3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。 4、二元一次方程组的解:二元一次方程组中各个方程的公共解。(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)
?x?无论是二元一次方程还是二元一次方程组的解都应该写成? 的形式。
y??5、二元一次方程组的解法:基本思路是消元。
(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。主要步骤:
变形——用一个未知数的代数式表示另一个未知数。 代入——消去一个元。
求解——分别求出两个未知数的值。 写解——写出方程组的解。
(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。
变形——同一个未知数的系数相同或互为相反数。 加减——消去一个元。
求解——分别求出两个未知数的值。 写解——写出方程组的解。
(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
① 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。 ② 找:找出能够表示题意两个相等关系。
③ 列:根据这两个相等关系列出必需的代数式,从而列出方程组。 ④ 解:解这个方程组,求出两个未知数的值。
⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
?a1x?b1y?c16、二元一次方程组?的解的情况有以下三种:
ax?by?c22?2① 当
a1b1c1??时,方程组有无数多解。(∵两个方程等效) a2b2c2a1b1c1??时,方程组无解。(∵两个方程是矛盾的) a2b2c2a1b1?(即a1b2?a2b1?0)时,方程组有唯一的解 a2b2② 当
③ 当
7、方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
8、求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
1 / 20
练习题:
1a?13xy与?3x?by2a?b是同类项,那么a= ,b= 。 21nm?n2013m?132、已知-2xy与xy是同类项,那么?n?m?=_______。
21、已知代数式3、解下列方程组:
?4?x?y?1??3?1?y??2x?2013y?6037?x?4y??1?2011? ?xy????2?2x?y?16?2013x?2011y?6035??23
?a?2b?4,4、已知?则a?b= 。
3a?2b?8.?5、关于x的方程组??3x-y?m?x?1的解是?,则 |m-n| 的值是 。
x?my?ny?1??6、已知??x?2?ax?by?10是二元一次方程组?的解,则3a?b的算术平方根为 。 y?1bx?ay?1???2x?3y?k的解x,y满足方程5x-y=3,求k的值是 。
?3x?4y?k?2013?5x?y?7 (1)有无数多解,(2)无解,(3)有唯一的解。
?mx?2y?n7、已知方程组?8、选择一组m,n值使方程组?
9、a取什么值时,方程组?
?x?y?a 的解是正数?
5x?3y?31?10、a取哪些正整数值,方程组?
11、要使方程组??x?2y?5?a的解x和y都是正整数?
3x?4y?2a??x?ky?k的解都是整数, k应取哪些整数值?
?x?2y?1 2 / 20
?2x?ay?612、已知关于x、y的方程组?有整数解,即x、y都是整数,a是正整数,求a的值。
4x?y?7?
13、m取何整数值时,方程组?
?2x?my?4的解x和y都是整数?
x?4y?1?5x2?2y2?z214、若4x?3y?6z?0,x?2y?7z?0?xyz?0?,求代数式2的值。 222x?3y?10z
应用题: 一、数字问题
例1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数。
二、利润问题
例2、一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?
三、配套问题
例3、某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?
四、行程问题
例4、在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米。分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上。问巡逻车和犯罪团伙的车的速度各是多少?
3 / 20
五、货运问题
例5、某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?
六、工程问题
例6、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的
4;现在工厂改进了人员组织结构和生产5流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?
15、用100枚铜板买桃、李、杏共100粒,己知桃、李每粒分别是3,4枚铜板,而杏7粒1枚铜板。问桃、李、杏各买几粒?
16、今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,鸡翁,鸡母,鸡雏都买,可各买多少?
17、某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品。若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?
18、某水果批发市场香蕉的价格如下表: 购买香蕉数(千克) 每千克价格 不超过20千克 6元 20千克以上但40千克不超过40千克 以上 5元 4元 张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?
19、小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和是242;而小亮在另一个加数后面多写了一个0,得到的和是341,正确的结果是多少?
4 / 20
20、用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?
21、同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元。 (1)购买一个足球、一个篮球各需多少元?
(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个。要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
22、为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”。该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?
23、古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就分有7人没地方住;若每间房住9人,则空出一间房.问有多少房间多少客人.)
24、某次数学竞赛前60名获奖,原定一等奖5人,二等奖15人,三等奖40人;现调整为一等奖10人,二等奖20人,三等奖30人。调整后一等奖的平均分数降低了3分,二等奖的平均分数降低了2分,三等奖平均分数降低1分。如果原来二等奖比三等奖平均分数多7分,求调整后一等奖比三等奖平均分数多几分?
5 / 20
二元一次方程组竞赛题集(答案+解析)
【例1】 已知方程组
的解x,y满足方程5x-y=3,求k的值.
【思考与分析】 本题有三种解法,前两种为一般解法,后一种为巧解法.
(1) 由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.
(2) 把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值. (3) 将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.
把代入①,得,解得 k=-4.
解法二: ①×3-②×2,得 17y=k-22,
解法三: ①+②,得 5x-y=2k+11. 又由5x-y=3,得 2k+11=3,解得 k=-4.
【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.
【例2】 某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少? 【思考与分析】 本题我们可以运用方程思想将此问题转化为方程来求解. 我们先找出问题中的数量关系,再找
6 / 20
出最主要的数量关系,构建等式. 然后找出已知量和未知量设元,列方程组求解. 最后,比较各个解对应的x+y的值,即可知道哪种付款方式付出的张数最少.
解: 设付出2元钱的张数为x,付出5元钱的张数为y,则x,y的取值均为自然数. 依题意可得方程: 2x+5y=33. 因为5y个位上的数只可能是0或5, 所以2x个位上数应为3或8.
又因为2x是偶数,所以2x个位上的数是8,从而此方程的解为: 由
得x+y=12;由
得x+y=15. 所以第一种付款方式付出的张数最少.
答: 付款方式有3种,分别是: 付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱. 其中第一种付款方式付出的张数最少.
【例3】 解方程组
【思考与分析】 本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零. 解:由①,得 y=4-mx, ③ 把③代入②,得 2x+5(4-mx)=8, 解得 (2-5m)x=-12,当2-5m=0, 即m=
时,方程无解,则原方程组无解.
时,方程解为
当2-5m≠0,即m≠ 将 故当m≠
代入③,得时,
原方程组的解为
【小结】 含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.
对于x、y的方程组
中,a1、b1、c1、a2、b2、c2均为已知数,且a1与b1、a2与b2都至少有一个不等
于零,则 ①
时,原方程组有惟一解;
7 / 20
② ③
时,原方程组有无穷多组解; 时,原方程组无解.
【例4】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生. (1) 求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2) 检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.
【思考与解】(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生. 根据题意,得
所以平均每分钟一道正门可以通过学生120人,一道侧门可以通过学生80人. (2) 这栋楼最多有学生4×8×45=1440(人).拥挤时5分钟4道门能通过 5×2×(120+80)×(1-20%)=1600(人). 因为 1600>1440,所以建造的4道门符合安全规定.
答:平均每分钟一道正门和一道侧门各可以通过120名学生、80名学生;建造的这4道门符合安全规定.
【例5】某水果批发市场香蕉的价格如下表:
张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?
【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手.通过观察图表我们可知香蕉的价格分三段,分别是6元、5元、4元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.
解:设张强第一次购买香蕉x千克,第二次购买香蕉y千克.由题意,得0
(与0 8 / 20 ③当20 【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的可能性,看有几种情况符合题意. 【例6】 用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完? 【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数2000,未知量是竖式纸盒的个数和横式纸盒的个数. 而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系: 每个竖式纸盒要用的正方形纸板数 × 竖式纸盒个数 + 每个横式纸盒要用的正方形纸板数 × 横式纸盒个数 = 正方形纸板的总数 每个竖式纸盒要用的长方形纸板数 × 竖式纸盒个数 + 每个横式纸盒要用的长方形纸板数 × 横式纸盒个数 = 长方形纸板的总数 通过观察图形,可知每个竖式纸盒分别要用1张正方形纸板和4张长方形纸板,每个横式纸盒分别要用2张正方形纸板和3张长方形纸板. 解:由题中的等量关系我们可以得到下面图表所示的关系. 设竖式纸盒做x个,横式纸盒做y个. 根据题意,得 ①×4-②,得 5y=2000,解得 y=400. 把y=400代入①,得 x+800=1000,解得 x=200. 所以方程组的解为 9 / 20 因为200和400均为自然数,所以这个解符合题意. 答: 竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完. 二元一次方程组培优应用题 一.数字问题 1.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和是242;而小亮在另一个加数后面多写了一个0,得到的和是341,正确的结果是多少? 2.小宏与小英是同班同学,小英家的住宅小区有1号楼至22号楼共22栋楼房,小宏问了小英下面两句话,就猜出了小英住几号楼几号房间. 小宏问:“你家的楼号加房间号是多少?” 小英答:“220.” 小宏问:“楼号的10倍加房间号是多少?” 小英答:“364. ” 你知道为什么吗? 3.炎热的夏天,游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.如果每个男孩看到蓝色与红色的游泳帽一样多,而每个女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗? 4.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是( ) 二.配套问题 1.(08山东省日照市)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套? 2.(2008年山东省威海市)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶? 10 / 20 3.长沙市某公园的门票价格如下表所示: 购票人数 票价 1~50人 10元/人 51~100人 8元/人 100人以上 5元/人 某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 三.行程问题 1.甲、乙两人练习跑步,如果让乙先跑10米,甲5秒追上乙;如果让乙先跑2秒,那么甲4秒追上乙.甲、乙每秒分别跑 x、y米,由题意得方程组____________. 2.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明即返回原地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度. 3.一船顺水航行43.5公里需要3小时,逆水行47.5公里需5小时,求此船在静水中的速度和水流的速度. 四.工程问题 1.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成.按这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求期限内只能完成订货的 4;现在工厂改进了人员组织结构和生产流程,5每天可生产这种工作服200套,这样,不仅比规定的期限少用1天,而且比订货量多生产25套.那么客户订做的工作服是多少套,要求完成的期限是多少天? 2.(2006年日照市)在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问: (1)甲、乙两个工程队单独完成该工程各需多少天? (2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用 11 / 20 五.含量浓度问题 1. (2008山东烟台)据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%之间时,衣服的洗涤效果较好,因为这时表面活性较大.现将4.94 的衣服放入最大容量为15 的洗衣机中,欲使洗衣机中洗衣粉的含量达到0.4%,那么洗衣机中 ,假设洗衣机以最大容量洗涤) 需要加入多少千克水,多少匙洗衣粉?(1匙洗衣粉约0.02 2.要配制浓度为15%的硫酸500公斤,已有60%的硫酸100公斤,问还需要加水和加浓度为80 %的硫酸各多少公斤? 六.图形问题 1.如图4,周长为68的长方形ABCD被分成7个大小完全一样的长方形,则长方形ABCD的面积是多少? 2.用一些长短相同的小木棍按图5所示,连续摆正方形和六边形.要求每两个相邻的图形只有一条公共边.已知摆放的正方形比正六边形多4个,并且一共用了110根小木棍,问连续摆放的正方形和正六边形各有多少个? 3.(2006年烟台市)2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a3+b4的值为( ) A.35 B.43 C.89 D.97 七.整数解问题 1.把面值为1元的纸币换为1角或5角的硬币,则换法共有_____种. 练习: 1.古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就分有7人没地方住;若每间房住9人,则空出一间房.问有多少房间多少客人.)答:_______________. 2.某公司去年的总收入比总支出多50万元,今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元.如果设去年的总收入是x万元,总支出是y元,那么可列方程组是_________________. 12 / 20 七年级数学 导学案 教学目标: 进一步熟练二元一次方程组的解法和解二元一次方程组,能根据实际问题,找出等量关系,然后设未知数列方程进行解答。 教学重点:找出实际问题中的等量关系 教学难点:找出实际问题中的等量关系 知识点:二元一次方程组在实际问题中的应用 归纳:列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即: (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数; (2)找:找出能够表示题意两个相等关系; (3)列:根据这两个相等关系列出必需的代数式,从而列出方程组; (4)解:解这个方程组,求出两个未知数的值; (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案. 题型分类讲解: 一、数字问题 例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数. 分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示: 解 方 程 组 原两位数 新两位数 十位上的数 x y 个位上的数 y x 对应的两位数 10x+y 10y+x +27 相等关系 10x+y=x+y+9 10y+x=10x+y?10x?y?x?y?9,?10y?x?10x?y?27??x?1得?,因此,所求的两 y?4?位数是14. 点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之. 13 / 20 二、利润问题 例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少? 分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10. 解方程组??0.9x?y?20%y?x?200,解得?, ?0.8x?y?10?y?150因此,此商品定价为200元. 点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念. 三、配套问题 例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套? 分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得 ?x?y?120?x?20,解之,得?. ?50x?2?20y?1y?100??故应安排20人生产螺栓,100人生产螺母. 点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是: (1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即 甲产品数乙产品数; ?ab(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是: 甲产品数乙产品数丙产品数. ??abc四、行程问题 B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.例4 在某条高速公路上依次排列着A、分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少? 【研析】设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则 14 / 20 ?3?x?y??120?x?y?40?x?80?,整理,得,解得, ?????x?y?120?y?40?x?y?120因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时. 点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在: “相向而遇”时,两者所走的路程之和等于它们原来的距离; “同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离. 五、货运问题 典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨? 分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x吨,乙种货物装y吨,则 ?x?y?300?x?y?300?x?150,整理,得?,解得?, ?6x?2y?12003x?y?600y?150???因此,甲、乙两重货物应各装150吨. 点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等. 六、工程问题 例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的 4;现在工厂改进了人员组织结构和5生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天? 分析:设订做的工作服是x套,要求的期限是y天,依题意,得 4?150y?x?x?3375?5. ,解得??y?18??200?y?1??x?25?点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量. 【典题精析】 例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆? 解析:设中型汽车有x辆,小型汽车有y辆.由题意,得 15 / 20 ?x?y?50, ??6x?4y?230.解得,??x?15, y?35.?故中型汽车有15辆,小型汽车有35辆. 例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示: 销售方式 每吨获利(元) 直接销售 100 粗加工后销售 250 精加工后销售 450 现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行). (1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格: 销售方式 获利(元) 全部直接销售 全部粗加工后销售 尽量精加工,剩余部分直接销售 (2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间? 解:(1)全部直接销售获利为:100×140=14000(元); 全部粗加工后销售获利为:250×140=35000(元); 尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元). (2)设应安排x天进行精加工, y天进行粗加工. 由题意,得??x?y?15, ?6x?16y?140.?x?10,解得,? y?5.?故应安排10天进行精加工,5天进行粗加工. 练习:为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积. (1)求:原计划拆、建面积各是多少平方米? (2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米? 16 / 20 课堂练习(中考题为主) 1、某厂买进甲、乙两种材料共56吨,用去9860元。若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨? 2、某运输公司有大小两种货车,2辆大车和3辆小车可运货15.5吨,5辆大车和6 辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大、小货车各多少辆? 3、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成? 4、一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字之和是14。求这个三位数。 5、有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少? 17 / 20 补充(中考题) 1.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表: 捐款(元) 人数 1 6 2 3 4 7 表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚. 若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组( ). ?x?y?27?x?y?27?x?y?27?x?y?27(A)?(B)?(C)?(D)? 2x?3y?662x?3y?1003x?2y?663x?2y?100????2.已知二元一次方程组为??2x?y?7,则x?y?______,x?y?_______. ?x?2y?83.若方程组?4x?3y?1,的解x与y相等,则a?________. ax?(a?1)y?3.??3m?5n?94m?2n?73x?4y?2是二元一次方程,则m值等于__________. 4.若 n5.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和,商是5,余数是1,则这样的两位数( ) A.不存在 B.有惟一解 C.有两个 D.有无数解 6.4x+1=m(x-2)+n(x-5),则m、n的值是 ?m??4?m?4?n?7?m??7A.? B.? C.? D.? ?n??1?n??3?n?3?n?17.如果方程组??ax?3y?9无解,则a为 ?2x?y?1A.6 B.-6 C.9 D.-9 ?3x?2y?2k8.若方程组?的解之和:x+y=-5,求k的值,并解此方程组. 5x?4y?k?3?9.以方程组??y??x?2的解为坐标的点(x,y)在平面直角坐标系中的位置是( ) y?x?1??2x?y?m?x?2的解是?,则|m?n|为( ) ?y?1?x?my?nC.5 D.2 A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.若关于x,y的方程组?A.1 B.3 课后作业:(巩固二元一次方程的实际问题) 1 、某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人 买的甲、乙两股票各是多少元? 18 / 20 2、种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。3种包装的饮料每瓶各多少元? 3、一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数. 4、某家庭前年结余5000元,去年结余9500元,已知去年的收入比前年增加了15%,而支出比前年减少了10%,这个家庭去年的收入和支出各是多少? 5、若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人? 19. 19 / 20 6、有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人? 7、一项工程,甲单独做要10天完成,乙单独做要15天完成,甲单独做5天,然后甲、乙合作完成,共得到1000元,如果按照每人完成工作量计算报酬,那么甲、乙两人该如何分配? 20 / 20
正在阅读:
二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案04-19
切结书(保证书)03-27
(0066)《杜甫诗歌选讲与研究》复习09-21
清史课后作业11-30
财政学习题及答案04-29
SUNFireV440磁盘阵列及ORACLE安装说明 - 图文05-25
公共告知部分知情同意书03-27
vfp判断题09-24
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 一次方程
- 二元
- 补习
- 归类
- 讲解
- 竞赛
- 练习
- 答案
- 经典
- 安全风险辨识及防范手册(1) - 图文
- 全国2006年1月高等教育自学考试 护理学研究试题 课程代码03008
- Photoshop教学计划
- 表B.0.8 自立式铁塔组立检查及评定记录表(线塔1)
- 2014年成人高考专升本毛概第六章练习及答案
- 依法规范信访秩序,创新信访和群众
- 有一千个读者就有一千个哈姆雷特
- 桥梁基础工程施工教案
- 高中历史岳麓版必修三第一单元综合测试题 - 图文
- 电子科技大学2010年计算机操作系统期末B卷(含答案)
- 无政府(安那其)与无政府主义
- 2016年财科所会计专硕考研攻略
- 杭州业主大会和业主委员会工作指导规则-杭州住房保障和房产
- 朔州市国民经济和社会发展第十一个五年规划纲要
- 信息系统终端计算机系统安全等级技术要求
- 10kv变电所安装施工及调试方案施工方案
- 七上 第二单元复习课
- 幸福心理学1.1 - 4.5课后习题答案 - 图文
- 观影活动新闻稿
- 2018年在派出所纪念建党90周年表彰大会上的讲话