考研数学公式手册
更新时间:2023-03-14 05:24:01 阅读量: 教育文库 文档下载
考研数学公式
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB
tanA?tanBtanA?tanBtan(A+B) = tan(A-B) =
1-tanAtanB1?tanAtanBcotAcotB-1cotAcotB?1cot(A+B) = cot(A-B) =
cotB?cotAcotB?cotA
倍角公式
2tanAtan2A = Sin2A=2SinA?CosA
1?tan2ACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA
??tan3a = tana·tan(+a)·tan(-a)
33
半角公式 sin(
AAA1?cosA1?cosA1?cosA)= cos()= tan()= 222221?cosAAA1?cosAsinA1?cosA)= tan()== 22sinA1?cosA1?cosAcot(
和差化积
a?ba?ba?ba?bcos sina-sinb=2cossin 2222a?ba?ba?ba?bcosa+cosb = 2coscos cosa-cosb = -2sinsin
2222sin(a?b)tana+tanb=
cosacosb
积化和差
11Sina sinb = -[cos(a+b)-cos(a-b)] Cosa cosb = [cos(a+b)+cos(a-b)]
2211Sina cosb = [sin(a+b)+sin(a-b)] Cosa sinb = [sin(a+b)-sin(a-b)]
22
诱导公式
sina+sinb=2sin
sin(-a) = -sina cos(-a) = cosa sin(sin(
??-a) = cosa cos(-a) = sina 22??+a) = cosa cos(+a) = -sina sin(π-a) = sina cos(π-a) = -cosa 22sinasin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =
cosa
万能公式
aaa2tan1?(tan)22tan2 cosa=2 tana=2 sina=
aaa1?(tan)21?(tan)21?(tan)2222其它公式
ba?sina+b?cosa=(a2?b2)×sin(a+c) [其中tanc=]
aaa?sin(a)-b?cos(a) = (a2?b2)×cos(a-c) [其中tan(c)=]
baaaa1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2
2222
其他非重点三角函数 11csc(a) = sec(a) =
sinacosa双曲函数
ea-e-aea?e-asinh(a)sinh(a)= cosh(a)= tg h(a)=
22cosh(a)公式一:
设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:
任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: ?3?±α及±α与α的三角函数值之间的关系: 22????sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanα
2222????sin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanα
22223?3?3?3?sin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotα cot(+α)= -tanα
22223?3?3?3?sin(-α)= -cosα cos(-α)= -sinα tan(-α)= cotα cot(-α)= tanα
2222(以上k∈Z)
A?sin(ωt+θ)+ B?sin(ωt+φ) =A2?B2?2ABcos(???)×sin
?t?arcsin[(Asin??Bsin?)A?B?2ABcos(???)22
高等数学公式
导数公式:
(tanx)??secx(cotx)???csc2x(secx)??secx?tanx(cscx)???cscx?cotx(ax)??axlna(logax)??基本积分表:
2(arcsinx)??11xlna1?x21(arccosx)???1?x21(arctanx)??1?x21(arcctanx)???1?x2?tanxdx??lncosx?C?cotxdx?lnsinx?C?secxdx?lnsecx?tanx?C?cscxdx?lncscx?cotx?Cdx1x?arctan?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx2?cos2x??secxdx?tanx?Cdx2?sin2x??cscxdx??cotx?C?secx?tanxdx?secx?C?cscx?cotxdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2In??sinxdx??cosnxdx?00n?1In?2n???x2a22x?adx?x?a?ln(x?x2?a2)?C22x2a2222x?adx?x?a?lnx?x2?a2?C22x2a2x222a?xdx?a?x?arcsin?C22a22三角函数的有理式积分:
2u1?u2x2dusinx?, cosx?, u?tan, dx? 22221?u1?u1?u一些初等函数: 两个重要极限:
e?e2ex?e?x双曲余弦:chx?2shxex?e?x双曲正切:thx??xchxe?e?x双曲正弦:shx?arshx?ln(x?x2?1)archx??ln(x?x2?1)11?xarthx?ln21?x三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α sin x?x
sinx lim?1x?0 x1
lim(1?)x?e?2.718281828459045...x?? x
cos tan cot -sinα cosα cosα cosα sinα sinα -tanα -cotα cotα tanα -sinα -cotα -tanα -cosα -tanα -cotα cotα tanα -sinα -cosα tanα -cosα -sinα cotα -cosα sinα -sinα cosα sinα cosα -cotα -tanα -tanα -cotα tanα cotα
·和差角公式: ·和差化积公式:
sin(???)?sin?cos??cos?sin?cos(???)?cos?cos??sin?sin?tan??tan?tan(???)?1?tan??tan?cot??cot??1cot(???)?cot??cot?·倍角公式:
sin??sin??2sin???22??????sin??sin??2cossin22??????cos??cos??2coscos22??????cos??cos??2sinsin22cos???
sin2??2sin?cos?
cot2??1 cot2??
22222cot?cos2??2cos??1?1?2sin??cos??sin?cos3??4cos3??3cos?2tan?tan2?? 1?tan2?3tan??tan3?
tan3??sin3??3sin??4sin3?1?3tan2?·半角公式:
sintan
?2????1?cos??1?cos? cos??2221?cos?1?cos?sin??1?cos?1?cos?sin??? cot????1?cos?sin?1?cos?21?cos?sin?1?cos??2·正弦定理:
abc???2R ·余弦定理:c2?a2?b2?2abcosC sinAsinBsinC·反三角函数性质:arcsinx??2?arccosx arctanx??2?arccotx
高阶导数公式——莱布尼兹(Leibniz)公式:
(uv)(n)k(n?k)(k)??Cnuvk?0n?u(n)v?nu(n?1)v??n(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)uv?????uv???uv(n)2!k!
中值定理与导数应用:
拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)曲率:
当F(x)?x时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds?1?y?2dx,其中y??tan?平均曲率:K???.??:从M点到M?点,切线斜率的倾角变化量;?s:MM?弧长。?sy????d?M点的曲率:K?lim??.
23?s?0?sds(1?y?)1.a直线:K?0;半径为a的圆:K?定积分的近似计算:
b矩形法:?f(x)?ab?a(y0?y1???yn?1) nb梯形法:?f(x)?abb?a1[(y0?yn)?y1???yn?1]n2b?a[(y0?yn)?2(y2?y4???yn?2)?4(y1?y3???yn?1)]3n
抛物线法:?f(x)?a定积分应用相关公式:
功:W?F?s水压力:F?p?Am1m2,k为引力系数 2rb1函数的平均值:y?f(x)dx?b?aa引力:F?k12均方根:f(t)dt?b?aa空间解析几何和向量代数:
b空间2点的距离:d?M1M2?(x2?x1)2?(y2?y1)2?(z2?z1)2向量在轴上的投影:PrjuAB?AB?cos?,?是AB与u轴的夹角。????Prju(a1?a2)?Prja1?Prja2????a?b?a?bcos??axbx?ayby?azbz,是一个数量,两向量之间的夹角:cos??i???c?a?b?axbxjaybyaxbx?ayby?azbzax?ay?az?bx?by?bz222222k??????az,c?a?bsin?.例:线速度:v?w?r.bzaybycyaz???bz?a?b?ccos?,?为锐角时,cz
ax??????向量的混合积:[abc]?(a?b)?c?bxcx代表平行六面体的体积。平面的方程:?1、点法式:A(x?x0)?B(y?y0)?C(z?z0)?0,其中n?{A,B,C},M0(x0,y0,z0)2、一般方程:Ax?By?Cz?D?0xyz3、截距世方程:???1abc
平面外任意一点到该平面的距离:d?Ax0?By0?Cz0?DA2?B2?C2?x?x0?mtx?xy?y0z?z0??空间直线的方程:0???t,其中s?{m,n,p};参数方程:?y?y0?ntmnp?z?z?pt0?二次曲面:x2y2z21、椭球面:2?2?2?1abcx2y22、抛物面:??z(,p,q同号)2p2q3、双曲面:x2y2z2单叶双曲面:2?2?2?1abcx2y2z2双叶双曲面:2?2?2?(马鞍面)1abc多元函数微分法及应用
全微分:dz??z?z?u?u?udx?dy du?dx?dy?dz?x?y?x?y?z全微分的近似计算:?z?dz?fx(x,y)?x?fy(x,y)?y多元复合函数的求导法:dz?z?u?z?vz?f[u(t),v(t)] ???? dt?u?t?v?t?z?z?u?z?vz?f[u(x,y),v(x,y)] ? ????x?u?x?v?x当u?u(x,y),v?v(x,y)时,du??u?u?v?vdx?dy dv?dx?dy ?x?y?x?y隐函数的求导公式:FxFFdydyd2y??隐函数F(x,y)?0, ??, 2?(?x)+(?x)?dxFy?xFy?yFydxdxFyF?z?z隐函数F(x,y,z)?0, ??x, ???xFz?yFz
?F?F(x,y,u,v)?0?(F,G)?u隐函数方程组: J????G?(u,v)?G(x,y,u,v)?0?u?F?v?Fu?GGu?vFvGv?u1?(F,G)?v1?(F,G)?u1?(F,G)?v1?(F,G)??? ?????? ??? ?xJ?(x,v)?xJ?(u,x)?yJ?(y,v)?yJ?(u,y)微分法在几何上的应用:
?x??(t)x?xy?y0z?z0?空间曲线?y??(t)在点M(x0,y0,z0)处的切线方程:0?????(t)?(t)??(t0)00?z??(t)?在点M处的法平面方程:??(t0)(x?x0)???(t0)(y?y0)???(t0)(z?z0)?0??FyFzFzFxFx?F(x,y,z)?0若空间曲线方程为:,则切向量T?{,,?GGGxGx?yzGz?G(x,y,z)?0曲面F(x,y,z)?0上一点M(x0,y0,z0),则:?1、过此点的法向量:n?{Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)}x?x0y?y0z?z03、过此点的法线方程:??Fx(x0,y0,z0)Fy(x0,y0,z0)Fz(x0,y0,z0)方向导数与梯度:
FyGy}2、过此点的切平面方程:Fx(x0,y0,z0)(x?x0)?Fy(x0,y0,z0)(y?y0)?Fz(x0,y0,z0)(z?z0)?0?f?f?f函数z?f(x,y)在一点p(x,y)沿任一方向l的方向导数为:?cos??sin??l?x?y其中?为x轴到方向l的转角。?f??f?函数z?f(x,y)在一点p(x,y)的梯度:gradf(x,y)?i?j?x?y
???f??它与方向导数的关系是:?gradf(x,y)?e,其中e?cos??i?sin??j,为l方向上的?l单位向量。?f?是gradf(x,y)在l上的投影。?l多元函数的极值及其求法:
设fx(x0,y0)?fy(x0,y0)?0,令:fxx(x0,y0)?A, fxy(x0,y0)?B, fyy(x0,y0)?C??A?0,(x0,y0)为极大值2AC?B?0时,???A?0,(x0,y0)为极小值??2则:值?AC?B?0时, 无极?AC?B2?0时, 不确定???重积分及其应用:
??f(x,y)dxdy???f(rcos?,rsin?)rdrd?DD?曲面z?f(x,y)的面积A???D??z???z?1???????y??dxdy?x????22平面薄片的重心:x?Mx?M??x?(x,y)d?D???(x,y)d?DD, y?MyM???y?(x,y)d?D???(x,y)d?D平面薄片的转动惯量:对于x轴Ix???y2?(x,y)d?, 对于y轴Iy???x2?(x,y)d?D
平面薄片(位于xoy平面)对z轴上质点M(0,0,a),(a?0)的引力:F?{Fx,Fy,Fz},其中:Fx?f??D?(x,y)xd?(x?y?a)2222, Fy?f??3D?(x,y)yd?(x?y?a)2222, Fz??fa??3D?(x,y)xd?(x?y?a)22322柱面坐标和球面坐标:
?x?rcos??柱面坐标:f(x,y,z)dxdydz????F(r,?,z)rdrd?dz,?y?rsin?, ??????z?z?其中:F(r,?,z)?f(rcos?,rsin?,z)?x?rsin?cos??2球面坐标:?y?rsin?sin?, dv?rd??rsin??d??dr?rsin?drd?d??z?rcos??2??r(?,?)2F(r,?,?)rsin?dr?0????f(x,y,z)dxdydz????F(r,?,?)rsin?drd?d???d??d??002重心:x?1M???x?dv, y???1M???y?dv, z???1M???z?dv, 其中M?x?????dv???转动惯量:Ix????(y2?z2)?dv, Iy????(x2?z2)?dv, Iz????(x2?y2)?dv
曲线积分:
第一类曲线积分(对弧长的曲线积分):?x??(t)设f(x,y)在L上连续,L的参数方程为:, (??t??),则:??y??(t)?L?x?t22??f(x,y)ds??f[?(t),?(t)]?(t)??(t)dt (???) 特殊情况:??y??(t)??
第二类曲线积分(对坐标的曲线积分):?x??(t)设L的参数方程为,则:??y??(t)??P(x,y)dx?Q(x,y)dy???{P[?(t),?(t)]??(t)?Q[?(t),?(t)]??(t)}dtL两类曲线积分之间的关系:?Pdx?Qdy??(Pcos??Qcos?)ds,其中?和?分别为LLL上积分起止点处切向量的方向角。?Q?P?Q?P格林公式:(?)dxdy?Pdx?Qdy格林公式:(?)dxdy??Pdx?Qdy??????x?y?x?yDLDL?Q?P1当P??y,Q?x,即:??2时,得到D的面积:A???dxdy??xdy?ydx?x?y2LD·平面上曲线积分与路径无关的条件:1、G是一个单连通区域;2、P(x,y),Q(x,y)在G内具有一阶连续偏导数,且减去对此奇点的积分,注意方向相反!·二元函数的全微分求积:?Q?P在=时,Pdx?Qdy才是二元函数u(x,y)的全微分,其中:?x?y(x,y)?Q?P=。注意奇点,如(0,0),应?x?yu(x,y)?(x0,y0)?P(x,y)dx?Q(x,y)dy,通常设x0?y0?0。
曲面积分:
22对面积的曲面积分:f(x,y,z)ds?f[x,y,z(x,y)]1?z(x,y)?z(x,y)dxdyxy?????Dxy对坐标的曲面积分:??P(x,y,z)dydz?Q(x,y,z)dzdx?R(x,y,z)dxdy,其中:???R(x,y,z)dxdy????R[x,y,z(x,y)]dxdy,取曲面的上侧时取正号;?Dxy??P(x,y,z)dydz????P[x(y,z),y,z]dydz,取曲面的前侧时取正号;?Dyz
??Q(x,y,z)dzdx????Q[x,y(z,x),z]dzdx,取曲面的右侧时取正号。?Dzx两类曲面积分之间的关系:??Pdydz?Qdzdx?Rdxdy???(Pcos??Qcos??Rcos?)ds??高斯公式:
???(??P?Q?R??)dv???Pdydz?Qdzdx?Rdxdy???(Pcos??Qcos??Rcos?)ds?x?y?z??高斯公式的物理意义——通量与散度:??P?Q?R?散度:div????,即:单位体积内所产生的流体质量,若div??0,则为消失...?x?y?z??通量:??A?nds???Ands???(Pcos??Qcos??Rcos?)ds,?因此,高斯公式又可写成:???divAdv???Ands
?????斯托克斯公式——曲线积分与曲面积分的关系:
??(??R?Q?P?R?Q?P?)dydz?(?)dzdx?(?)dxdy??Pdx?Qdy?Rdz?y?z?z?x?x?y?cos???yQcos???zR
dydzdzdxdxdycos?????上式左端又可写成:??????x?y?z?x??PQRP?R?Q?P?R?Q?P空间曲线积分与路径无关的条件:?, ?, ??y?z?z?x?x?yijk????旋度:rotA??x?y?zPQR???向量场A沿有向闭曲线?的环流量:Pdx?Qdy?Rdz?A???tds??常数项级数:
1?qn等比数列:1?q?q???q?1?q(n?1)n 等差数列:1?2?3???n?2111调和级数:1?????是发散的23n2n?1
级数审敛法:
1、正项级数的审敛法——根植审敛法(柯西判别法):???1时,级数收敛?设:??limnun,则???1时,级数发散n?????1时,不确定?2、比值审敛法:???1时,级数收敛U?设:??limn?1,则???1时,级数发散n??Un???1时,不确定?3、定义法:sn?u1?u2???un;limsn存在,则收敛;否则发散。n??
交错级数u1?u2?u3?u4??(或?u1?u2?u3??,un?0)的审敛法——莱布尼兹定理:? ?un?un?1如果交错级数满足s?u1,其余项rn的绝对值rn?un?1。?limu?0,那么级数收敛且其和??n??n绝对收敛与条件收敛:
(1)u1?u2???un??,其中un为任意实数;(2)u1?u2?u3???un??如果(2)收敛,则(1)肯定收敛,且称为绝对收敛级数;如果(2)发散,而(1)收敛,则称(1)为条件收敛级数。 1(?1)n调和级数:?n发散,而?n收敛;1 级数:?n2收敛;p?1时发散1 p级数:?np p?1时收敛幂级数:
1x?1时,收敛于1?x1?x?x2?x3???xn?? x?1时,发散对于级数(3)a0?a1x ?a2x2???anxn??,如果它不是仅在原点收敛,也不是在全x?R时收敛数轴上都收敛,则必存在R,使x?R时发散,其中R称为收敛半径。x?R时不定1
??0时,R?求收敛半径的方法:设liman?1??,其中an,an?1是(3)的系数,则??0时,R???n??an????时,R?0?函数展开成幂级数:
f??(x0)f(n)(x0)2函数展开成泰勒级数:f(x)?f(x0)(x?x0)?(x?x0)???(x?x0)n??2!n!f(n?1)(?)余项:Rn?(x?x0)n?1,f(x)可以展开成泰勒级数的充要条件是:limRn?0n??(n?1)!f??(0)2f(n)(0)nx0?0时即为麦克劳林公式:f(x)?f(0)?f?(0)x?x???x??2!n!
一些函数展开成幂级数:
m(m?1)2m(m?1)?(m?n?1)nx???x?? (?1?x?1)2!n! 2n?1x3x5xsinx?x?????(?1)n?1?? (???x???)3!5!(2n?1)!(1?x)m?1?mx?欧拉公式:
?eix?e?ixcosx???2 eix?cosx?isinx 或?ix?ix?sinx?e?e?2?三角级数:
a0?f(t)?A0??Ansin(n?t??n)???(ancosnx?bnsinnx)2n?1n?1其中,a0?aA0,an?Ansin?n,bn?Ancos?n,?t?x。正交性:1,sinx,cosx,sin2x,cos2x?sinnx,cosnx?任意两个不同项的乘积在[??,?]上的积分=0。
?
傅立叶级数:
a0?f(x)???(ancosnx?bnsinnx),周期?2?2n?1??1(n?0,1,2?)?an??f(x)cosnxdx ????其中???b?1f(x)sinnxdx (n?1,2,3?)?n?????11?21?2?2???835 111?2?????24224262正弦级数:an?0,bn?余弦级数:bn?0,an?111?21?2?2?2???(相加)6234111?21?2?2?2???(相减)12234f(x)sinnxdx n?1,2,3? f(x)??b??02?nsinnx是奇函数2???0f(x)cosnxdx n?0,1,2? f(x)?a0??ancosnx是偶函数2
周期为2l的周期函数的傅立叶级数:
a0?n?xn?xf(x)???(ancos?bnsin),周期?22n?1lll?1n?xa?f(x)cosdx (n?0,1,2?)?n?ll??l其中?
l?b?1f(x)sinn?xdx (n?1,2,3?)?nl?l?l?微分方程的相关概念:
一阶微分方程:y??f(x,y) 或 P(x,y)dx?Q(x,y)dy?0可分离变量的微分方程:一阶微分方程可以化为g(y)dy?f(x)dx的形式,解法:?g(y)dy??f(x)dx 得:G(y)?F(x)?C称为隐式通解。dyy?f(x,y)??(x,y),即写成的函数,解法:dxx
ydydududxduy设u?,则?u?x,u???(u),??分离变量,积分后将代替u,xdxdxdxx?(u)?ux齐次方程:一阶微分方程可以写成即得齐次方程通解。一阶线性微分方程:
dy1、一阶线性微分方程:?P(x)y?Q(x)dx?P(x)dx当Q(x)?0时,为齐次方程,y?Ce?P(x)dx?P(x)dx当Q(x)?0时,为非齐次方程,y?(?Q(x)e?dx?C)e?
dy2、贝努力方程:?P(x)y?Q(x)yn,(n?0,1)dx全微分方程:
如果P(x,y)dx?Q(x,y)dy?0中左端是某函数的全微分方程,即:?u?udu(x,y)?P(x,y)dx?Q(x,y)dy?0,其中:?P(x,y),?Q(x,y)
?x?y?u(x,y)?C应该是该全微分方程的通解。二阶微分方程:
f(x)?0时为齐次d2ydy ?P(x)?Q(x)y?f(x),2dxdxf(x)?0时为非齐次二阶常系数齐次线性微分方程及其解法:
(*)y???py??qy?0,其中p,q为常数;求解步骤:1、写出特征方程:(?)r2?pr?q?0,其中r2,r的系数及常数项恰好是(*)式中y??,y?,y的系数;2、求出(?)式的两个根r1,r23、根据r1,r2的不同情况,按下表写出(*)式的通解:
r1,r2的形式 两个不相等实根(p?4q?0) 两个相等实根(p?4q?0) 一对共轭复根(p?4q?0) 222(*)式的通解 y?c1er1x?c2er2x y?(c1?c2x)er1x y?e?x(c1cos?x?c2sin?x) r1???i?,r2???i?4q?p2 p???,??22二阶常系数非齐次线性微分方程 y???py??qy?f(x),p,q为常数f(x)?e?xPm(x)型,?为常数;f(x)?e?x[Pl(x)cos?x?Pn(x)sin?x]型
dy1、一阶线性微分方程:?P(x)y?Q(x)dx?P(x)dx当Q(x)?0时,为齐次方程,y?Ce?P(x)dx?P(x)dx当Q(x)?0时,为非齐次方程,y?(?Q(x)e?dx?C)e?
dy2、贝努力方程:?P(x)y?Q(x)yn,(n?0,1)dx全微分方程:
如果P(x,y)dx?Q(x,y)dy?0中左端是某函数的全微分方程,即:?u?udu(x,y)?P(x,y)dx?Q(x,y)dy?0,其中:?P(x,y),?Q(x,y)
?x?y?u(x,y)?C应该是该全微分方程的通解。二阶微分方程:
f(x)?0时为齐次d2ydy ?P(x)?Q(x)y?f(x),2dxdxf(x)?0时为非齐次二阶常系数齐次线性微分方程及其解法:
(*)y???py??qy?0,其中p,q为常数;求解步骤:1、写出特征方程:(?)r2?pr?q?0,其中r2,r的系数及常数项恰好是(*)式中y??,y?,y的系数;2、求出(?)式的两个根r1,r23、根据r1,r2的不同情况,按下表写出(*)式的通解:
r1,r2的形式 两个不相等实根(p?4q?0) 两个相等实根(p?4q?0) 一对共轭复根(p?4q?0) 222(*)式的通解 y?c1er1x?c2er2x y?(c1?c2x)er1x y?e?x(c1cos?x?c2sin?x) r1???i?,r2???i?4q?p2 p???,??22二阶常系数非齐次线性微分方程 y???py??qy?f(x),p,q为常数f(x)?e?xPm(x)型,?为常数;f(x)?e?x[Pl(x)cos?x?Pn(x)sin?x]型
正在阅读:
考研数学公式手册03-14
淅川粉末冶金有限公司SPC作业指导书01-19
针灸病案汇总01-19
DEH操作说明和逻辑技术说明01-19
成长的快乐作文400字06-18
财务管理学作业答案12-03
施工组织设计06-29
2016年护士资格考点:骨科手术术前术后指导每日一练(1月19日)12-22
高一历史外国史时间表08-06
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 公式
- 考研
- 数学
- 手册
- 2018年最新语文中考文学、文化常识专题复习及答案
- 宜宾五粮液股份有限公司财务分析
- 六年级学生英语学情分析模板
- 第1节 曲线运动
- 015-武汉工程大学-07-胡端平-科学思维、科学方法在概率统计课程中的应用与实践
- 心理健康常识
- 浅析短波通讯的应用和发展
- 《6和7的加减法》教学设计 一数上
- Liferay开发文档整理
- 黑龙江省投标企业加密锁使用方法 - 图文
- 操作系统实验2--银行家算法
- 万科员工手册精编版
- 无锡市惠山区2011-2012学年第一学期五校联考九年级数学反馈练习卷
- 数据库应用系统设计-复习资料-2014年春完整版
- 七年级下册历史期末考试试题
- 新北师大版三年级上册数学期末试卷
- 2014年山东干部学习平台(齐鲁先锋)答案80学时
- 2012年公务员考试申论:公共基础知识精髓要点总结(2)
- 消毒供应室岗位职责
- 基层党支部的日常工作和规范