Composite Operators and Topological Contributions in Gauge Theory
更新时间:2023-07-24 21:27:01 阅读量: 实用文档 文档下载
- composition推荐度:
- 相关推荐
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
1
2
ay
M
9
1
1
v
9
8
1
5
1
/0h
t
-
p
e
:hv
i
X
r
aCompositeOperatorsandTopologicalContributionsinGaugeTheoryJungjaiLee1DepartmentofPhysics,DaeJinUniversity,PoCheon,GyeongGi487-711,KoreaYeongDeokHan2DepartmentofPhysics,WoosukUniversity,Hujeong,Samrye,Wanju,Cheonbuk565-701,KoreaAbstractInD-dimensionalgaugetheorywithakinetictermbasedonthep-formtensorgauge eld,weintroduceagaugeinvariantoperatorassociatedwiththecompositeformed
fromaelectric(p 1)-braneandamagnetic(q 1)-braneinD=p+q+1spacetimedimensions.Byevaluatingthepartitionfunctionforthisoperator,weshowthattheexpectationvalueofthisoperatorgivesrisetothetopologicalcontributionsidenticaltothoseingaugetheorywithatopologicalChern-SimonsBFterm.
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
Theexoticstatistics,anyonsandfermion-bosontransmutationforthecompositestateofapointchargeandamagneticvortexhasbeendiscussedbyWilczek[1].In(2+1)dimensionalspacetime,theanyonshaveawell-knownphysicalrealizationwheremagnetic uxtubesareattachedtochargedparticlesandtheAharonov-Bohmphaseresultingfromadiabatictransportofthecompositesgivethemfractionalexchangestatistics.ItwasgeneralizedtothefactthatthecompositeofaclosedNambuchargedstringandapointvortexpresentedtheunusalstatisticsin(3+1)dimensions[2].
Also,Polyakovshowedthefermion-bosontransmutationin(2+1)dimensionsbyinvestigatingthesmallmomentumbehaviorofascalar eldinteractingwithtopo-logicalChern-simonsterm[3].ThisChern-Simonsmechanismofstatisticaltransmu-tationwasshowntoholdforstring-likeobjectinteractingwithtopologicalBFtermin(3+1)dimensions[4][5].Thetopologicalquantum eldtheorywhichgivestheappropriategeneralizationtohigherdimensionshasbeenstudied[6].Chern-Simonstheorygivestherepresentationsoflinkingnumbersofcurvesin3dimensions,BFtheoriesprovidethepathintegralrepresentationsofthelinkingandintersectionnumbersofgenericsurfacesinDdimensions[5][6].
Inthesestatisticalphenomenalikefermion-bosontransmutation,eventhoughthetopologicalterm(Chern-SimonstermorBFterminhigherdimensions)playsanessentialrole,suchtopologicalcontributionsmayarisefromthegaugetheorywiththekinetictermaselectromagnetism[7].InWilczek’swork[1],iftwocompositesofachargedparticleandapointvortexareinterchanged,anadditionalphasefactorappearsinallgaugeinvariantobservables,thisisbecauseeachcompositeshouldbecovariantlytransportedinthegaugepotentialoftheother.Sothecompositeshavetheunusualstatistics.
Recentlytherehasincreasinglybeenthetheoreticalevidencefortheextended
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
objects(string,membrane,...,p-braneetc.)asthefundamentalconstituentsoftheuniverse[8].Inthispaper,inordertoseeifthetopologicalcontributionsarisefromthehigherdimensionalgaugetheorieswiththeminimalMaxwellkineticterm,wewillapplyPolyakov’spathintegralarguments[3]tothecompositeofelectric(p 1)-braneandmagnetic(q 1)-braneinD(=p+q+1)spacetimedimensions.Theapplicationto(2+1)or(3+1)dimensionalgaugetheoryshowedthattheexpectationvalueofthecompositeoperatorsinvolvessometopologicalcontributionsassociatedwithlinkinvariants[7][9].
Westartbyintroducingangaugeinvariantoperatorassociatedwiththecom-positeofanelectric(p 1)-braneandamagnetic(q 1)-braneinDspace-timedimensions
X(Wq;Wp)=exp( iWq (Fp+1))exp(iWpAp).(1)
Thisoperatordependonthep-dimensionalworldvolumeWpandq-dimensionalworldvolumeWqinDspacetimedimensions.HereApisap-formgauge eldwhichcouplestoelectric(p 1)-brane,andFp+1isthecorresponding(p+1)-form eldstrength.TheoperatorX(Wq;Wp)shouldbecalledtheextended’tHooft-Wilsonoperator.Infact,the rstfactoristhecovariantversionofthe’tHooftoperatororiginatedfromtheclosedhyper-pathof(q 1)-brane,thusitshouldbesatis edthatD p 1=q,because (Fp+1)is(D p 1)-form eldinDdimensions.Ouraimistocalculatethetransitionamplitudeforthepairofa(p 1)-braneanda(q 1)-brane,andtoinvestigatetheformofthepartitionfunction,andthentoseehowthetopologicalcontributionsarise.Whenthe(p 1)-braneand(q 1)-braneofthecompositeevolvefromtheinitialcon gurationPitothe nalcon gurationPf,wehavethetransitionamplitude
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
G(Pi,Pf)=
Wp(Pi,Pf)Wq(Pi,Pf) e Sp Sq<XE(Wp,Wq)>,(2)
wherethesumisoverallp-dimensionalworldvolumeWpandq-dimensionalworldvolumeWqinterpolatingbetweentheinitialandthe nalcon gurationsPiandPfofthe(p 1,q 1)-branecomposite.ThepurelygeometricalactionSpfora(p 1)-branewithaclassicaltrajectory,parametrizedby
xµ=xµ(ξ0,...ξp 1),(3)
isthep-dimensionworld-volumeinducedonthetrajectorybytheexternalDdi-mensionalmetrictimes(p 1)-branetensionTp
Sp=Tp Wpd(Vol),(4)
wheretheRiemannianvolumeelementisgivenintermsofthedeterminantoftheworld-volumemetrich=det(hij),by
d(Vol)=dξp 1∧...∧dξ0
×exp( i
2(p+1)!Wq F)exp(i 2dDxFp+1)WpAp),(8)
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
whereSqisthegeometricalactionfora(q 1)-brane.
PerformingtheintegrationoverAµ1µ2...µpleadsto
<XE(Wp,Wq)>=exp Wpdxµ1µ2...µp Wpdyµ1µ2...µp1
1
xµ1(
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
isavector eldnormaltothehyper-surfaceWp.Thisregularizationcontributesto
RtherenormalizationofthestringTp→Tp.
Indiscussion,theclassicalactionofthisgaugetheoryisnottopological,howdoesitgiverisetothetopologicalcontributionsidenticaltothoseoftopologicalgaugetheorywithaChern-Simonsterm(orBFterminhigherdimensions)?Thoughtheactionisdynamical,theoperatorbeingconsideredisthecompositeformedfromaelectric(p 1)-braneandamagnetic(q 1)-branetowhichap-formgauge eldcouplesinDdimensions.So,whentheyevolveandformaclosedhyper-path,theymaybemutuallylinked.Thatis,iftwocompositesareinterchanged,eachcompositeshouldbecovariantlytransportedinthep-formgaugepotentialoftheother.Thusthetopologicalcontributionsareoriginatedfromtheelectro-magneticdualstructureofthecompositesource.Inmoremathematicaldetails,thepropagatorinthetopologicalChern-Simonstheoryisgivenastheinverseoperatorofthedi erentialoperator” ”,thatisthepropagatorcontainstheantisymmetric tensor,butthegaugeinvariantsourcetermdoesnot.Ontheotherhand,inthepresentgaugetheorywithakineticterm,thepropagatorwhichistheinverseofLaplacianoperatordoesnotcontain tensor,whileoneofthecurrentsourcesJandKtowhichthegauge eldcouplesdoesit.Ifwewritetheineractiontermsindetails,
SI= i
=
where
Jµ2...µp+1(x)= i
y
Kµ1...µp(D)µp+2...µDδ(x y)dy,(11)µ1 Wq( F)D p 1+i WpAp(10)dDx(J+K)µ1µ2...µpAµ1µ2...µp,(x)=i Wpδ(x y)dyµ1...µp.(12)
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
ThereforetheexpectationvalueofcompositeoperatorcangivethelinkingnumberidenticaltothatintopologicalBFtheory.
Inthistheory,sincethelinkingnumberisnotself-linkingone,inanyspacetimedimensionsthesetopologicalphasescanbeoccurred.InhigherdimensionalChern-Simonstheorythepossibletopologicalcontributionsstemingfromtheselflinkingofthesinglegaugeinvariantoperator,however,arelimitedonlytothespacetimedimensionsD=3,7,11,15,sinceChern-Simonstermcanbeconstructedonlyinodddimensionsandtheself-linkingoftheobjectwithevendimensionalstructurevanish[10][11].
Inconclusions,wehaveshownthetopologicalcontributionsfromtheexpecta-tionvaluesofthecompositeoperatorX(Wq,Wp)inthegaugetheorywithaminimalkinetictermareidenticaltothoseobtainedforWilsonhypersurfacesintopologicalquantum eldtheorywithaBFChern-SimonsterminDdimensions.Thistopolog-icalphasefactorsoriginatefromthedistinctwaysinwhichthe(p 1)-braneworldsurfacemaybraidaroundthe(q 1)-braneworldsurfacewhentheyevolveinDdimensionalspace-time.Thisresultcanbegeneralizedtothenon-intersectingmultip-branehypersurfacesandthenon-Abelianextensiondeservesfutherinvestigations.Sincestatisticshasbarelybeentouchedforobjectssuchasstring,membrane,p-brane,itisverytemptingtoanalyzethegeneralizedstatisticsindi erentcontexts.Acknowledgements
ThisworkwassupportedbytheResearchFundofWoosukUniversity.
References
[1]F.Wilczek,Phys.Rev.Lett.48,1144(1982);49,957(1982).
In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen
[2]R.GambiniandR.Setaro,Phys.Rev.Lett.65,2623(1990).
[3]A.M.Polyakov,Mod.Phys.Lett.A3,325(1988).
[4]X.Fustero,R.Gambini,andA.Trias,Phys.Rev.Lett.62,1964(1989).
[5]M.Bergeron,G.W.Semeno ,andR.J.Szabo,Nucl.Phys.B437,695(1995).
[6]M.BlauandG.Thompson,Ann.Phys.(NY)205,130(1991).
[7]R.Gambini,Phys.Lett.B242,398(1990).
[8]J.Polchinski,Phys.Rev.Lett.75,4724(1995);E.Witten,Nucl.Phys.B443,
85(1995).
[9]J.J.Lee,Mod.Phys.Lett.A11,2787(1996);J.J.Lee,J.KoreanPhys.Soc.
35,509(1999).
[10]Y.S.WuandA.Zee,Phys.Lett.B207,39(1988).
[11]C-H.TzeandS.K.Nam,Ann.Phys.193,419(1989);C-H.TzeandS.K.
Nam,Phys.Lett.B210,76(1988).
正在阅读:
Composite Operators and Topological Contributions in Gauge Theory07-24
乡镇教育扶贫工作总结及下一年工作计划08-04
立德树人心得体会(优秀5篇)03-25
眼科护理常规科室04-03
《高等数学》(专科升本科)复习资料03-11
Running man探险活动策划书03-09
《西方经济学(微观)》课后作业答案11-16
2017人力资源管理中级经济师专业知识与实务复习资料+考试大纲09-01
牛头沟尾矿说明书300t05-12
GCP知识手册口袋书第二版 - 图文06-11
- 1Large N gauge theories -- Numerical results
- 2Branes, Fluxes and Duality in M(atrix)-Theory
- 3Low velocity impact behavior of composite sandwich panels
- 4Topological anomalies from the path integral measure in superspace
- 5Topological anomalies from the path integral measure in superspace
- 6With Contributions of the following partners (in order of appearance in the document) Partn
- 7Contributions, Costs and Prospects for End-User Development
- 8Skopos Theory 目的论
- 9Wilson and Sperber--Relevance Theory
- 10Wilson and Sperber--Relevance Theory
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Contributions
- Topological
- Composite
- Operators
- Theory
- Gauge
- 湖北省咸宁市2007年初中毕业生学业考试数学试卷
- 2014-2019年中国电力电容器行业市场调查及投资运行态势报告
- 第4章 汇编语言程序设计
- 美学专题复习资料
- 关于交流的好的句子
- 08_ResourceManager_2004
- 定宁卫生院2011—2012年麻疹查漏补种实施方案通知
- IPMP培训之二(第二部分项目组织与团队)
- 2015网络认证杯A题优秀论文
- presentation--HEMT终稿
- 雏鸡饲养技术要点
- 小学语文S版三年级下册期末测试卷
- 控制理论专题:时滞相关鲁棒控制的自由权矩阵方法
- 机修钳工中级理论知识试卷及答案
- 中电联2014年电力供需的总结和2015年的分析预测(图)
- 2009移动通信网络运行维护规程(试行)
- 人教版一年级语文下册第4单元测试题
- 宝应中学班主任师徒结对方案
- 浙江浦江县上山新石器时代早期遗址_省略_长江下游万年前稻作遗存的最新发现_盛丹平
- 多选项分析及回归分析spss