统计学第三版课后习题答案17页
更新时间:2024-03-17 23:47:01 阅读量: 综合文库 文档下载
附录1:各章练习题答案
2.1 (1) 属于顺序数据。
(2)频数分布表如下:
服务质量等级评价的频数分布 服务质量等级
家庭数(频率)
频率% A 14 14 B 21 21 C 32 32 D 18 18 E 15 15 合计 100
100
(3)条形图(略)
2.2 (1)频数分布表如下:
40个企业按产品销售收入分组表 按销售收入分组 企业数 频率 向上累积 向下累积 (万元) (个) (%) 企业数 频率 企业数 频率 100以下 5 12.5 5 12.5 40 100.0 100~110 9 22.5 14 35.0 35 87.5 110~120 12 30.0 26 65.0 26 65.0 120~130 7 17.5 33 82.5 14 35.0 130~140 4 10.0 37 92.5 7 17.5 140以上 3 7.5 40 100.0 3 7.5 合计 40 100.0 — — — — (2) 某管理局下属40个企分组表
按销售收入分组(万元) 企业数(个)
频率(%) 先进企业 11 27.5 良好企业 11 27.5 一般企业 9 22.5 落后企业 9 22.5 合计
40
100.0
2.3 频数分布表如下:
某百货公司日商品销售额分组表
按销售额分组(万元)
频数(天)
频率(%) 25~30 4 10.0 30~35 6 15.0 35~40 15 37.5 40~45 9 22.5 45~50 6 15.0 合计
40
100.0
直方图(略)。 2.4 (1)排序略。
(2)频数分布表如下:
100只灯泡使用寿命非频数分布
按使用寿命分组(小时) 灯泡个数(只)
频率(%)
650~660 2 2 660~670
5
5
1
670~680 6 6 680~690 14 14 690~700 26 26 700~710 18 18 710~720 13 13 720~730 10 10 730~740 3 3 740~750 3 3 合计
100
100
直方图(略)。
(3)茎叶图如下: 65 1 8 66 1 4 5 6 8 67 1 3 4 6 7 9 68 1 1 2 3 3 3 4 5 5 5 8 8 9 9 69 0 0 1 1 1 1 2 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 8 9 9 70 0 0 1 1 2 2 3 4 5 6 6 6 7 7 8 8 8 9 71 0 0 2 2 3 3 5 6 7 7 8 8 9 72 0 1 2 2 5 6 7 8 9 9 73 3 5 6 74 1 4 7 2.5 (1)属于数值型数据。
(2)分组结果如下:
分组 天数(天)
-25~-20 6 -20~-15 8 -15~-10 10 -10~-5 13 -5~0 12 0~5 4 5~10 7 合计
60
(3)直方图(略)。 2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。 2.7 (1)茎叶图如下: A班 B班 数据个数 树 叶 树茎 树叶 数据个数 0 3 59 2 1 4 4 0448 4 2 97 5 122456677789 12 11 97665332110 6 011234688 9 23 98877766555554443332100 7 00113449 8 7 6655200 8 123345 6 6 632220 9 011456 6 0 10 000 3 (2)A班考试成绩的分布比较集中,且平均分数较高;B班考试成绩的分布比A班分散,
且平均成绩较A班低。
2.8 箱线图如下:(特征请读者自己分析)
2
各城市相对湿度箱线图958575655545Min-Max25%-755北京长春南京郑州武汉广州成都昆明兰州西安 2.9 (1)x=274.1(万元);Me=272.5 ;QL=260.25;QU=291.25。
(2)s?21.17(万元)。
2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但
单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。 2.11 x=426.67(万元);s?116.48(万元)。 2.12 (1)(2)两位调查人员所得到的平均身高和标准差应该差不多相同,因为均值和标准差的大小基本上不受样本大小的影响。
(3)具有较大样本的调查人员有更大的机会取到最高或最低者,因为样本越大,变化的范围就可能越大。 2.13 (1)女生的体重差异大,因为女生其中的离散系数为0.1大于男生体重的离散系数0.08。 (2) 男生:x=27.27(磅),s?2.27(磅); 女生:x=22.73(磅),s?2.27(磅); (3)68%;
(4)95%。
2.14 (1)离散系数,因为它消除了不同组数据水平高地的影响。 (2)成年组身高的离散系数:vs??0.024; 172.12.3?0.032; 幼儿组身高的离散系数:vs?71.34.2Median value 由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。 2.15 下表给出了一些主要描述统计量,请读者自己分析。 方法A 平均 中位数 众数 标准偏差 极差 最小值 最大值 165.6 165 164 2.13 8 162 170 方法B 平均 中位数 众数 标准偏差 极差 最小值 最大值 128.73 129 128 1.75 7 125 132 方法C 平均 中位数 众数 标准偏差 极差 最小值 最大值 125.53 126 126 2.77 12 116 128 2.16 (1)方差或标准差;(2)商业类股票;(3)(略)。 2.17 (略)。
第3章 概率与概率分布
3.1设A=女性,B=工程师,AB=女工程师,A+B=女性或工程师 (1)P(A)=4/12=1/3 (2)P(B)=4/12=1/3 (3)P(AB)=2/12=1/6
(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/2
3
3.2求这种零件的次品率,等于计算“任取一个零件为次品”(记为A)的概率P(A)。 考虑逆事件A?“任取一个零件为正品”,表示通过三道工序都合格。据题意,有:
P(A)?(1?0.2)(1?0.1)(1?0.1)?0.648
于是 P(A)?1?P(A)?1?0.648?0.352
3.3设A表示“合格”,B表示“优秀”。由于B=AB,于是
P(B)=P(A)P(B|A)=0.8×0.15=0.12
3.4 设A=第1发命中。B=命中碟靶。求命中概率是一个全概率的计算问题。再利用对立事件的概率即可求得脱靶的概率。
P(B)=P(A)P(B|A)?P(A)P(B|A) =0.8×1+0.2×0.5=0.9 脱靶的概率=1-0.9=0.1
或(解法二):P(脱靶)=P(第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.1 3.5 设A=活到55岁,B=活到70岁。所求概率为:
P(B|A)=P(AB)P(A)=P(B)P(A)=0.630.84=0.75
3.6这是一个计算后验概率的问题。
设A=优质率达95%,A=优质率为80%,B=试验所生产的5件全部优质。 P(A)=0.4,P(A)=0.6,P(B|A)=0.95, P(B|A)=0.8,所求概率为:
P(A|B)=P(A)P(B|A)P(A)P(B|A)?P(A)P(B|A)=0.309510.50612=0.6115
5
5
决策者会倾向于采用新的生产管理流程。
3.7 令A1、A2、A3分别代表从甲、乙、丙企业采购产品,B表示次品。由题意得:P(A1)=0.25,P(A2)=0.30, P(A3)=0.45;P(B|A1)=0.04,P(B|A2)=0.05,P(B|A3)=0.03;因此,所求概率分别为:
(1)P(B)=P(A1)P(B|A1)?P(A2)P(B|A2)?P(A3)P(B|A3)
=0.25×0.04+0.30×0.05+0.45×0.03=0.0385 (2)P(A3|B)=0.45?0.030.25?0.04+0.30?0.05+0.45?0.03=0.01350.0385=0.3506
3.8据题意,在每个路口遇到红灯的概率是p=24/(24+36)=0.4。
设途中遇到红灯的次数=X,因此,X~B(3,0.4)。其概率分布如下表: xi 0 1 2 3 P(X= xi) 0.216 0.432 0.288 0.064 期望值(均值)=1.2(次),方差=0.72,标准差=0.8485(次) 3.9 设被保险人死亡数=X,X~B(20000,0.0005)。
(1)收入=20000×50(元)=100万元。要获利至少50万元,则赔付保险金额应该不超过50万元,等价于被保险人死亡数不超过10人。所求概率为:P(X ≤10)=0.58304。
(2)当被保险人死亡数超过20人时,保险公司就要亏本。所求概率为: P(X>20)=1-P(X≤20)=1-0.99842=0.00158 (3)支付保险金额的均值=50000×E(X) =50000×20000×0.0005(元)=50(万元) 支付保险金额的标准差=50000×σ(X)
=50000×(20000×0.0005×0.9995)1/2=158074(元)
3.10 (1)可以。当n很大而p很小时,二项分布可以利用泊松分布来近似计算。本例中,λ= np=20000×0.0005=10,即有X~P(10)。计算结果与二项分布所得结果几乎完全一致。
4
(2)也可以。尽管p很小,但由于n非常大,np和np(1-p)都大于5,二项分布也可以利用正态分布来近似计算。 本例中,np=20000×0.0005=10,np(1-p)=20000×0.0005×(1-0.0005)=9.995, 即有X ~N(10,9.995)。相应的概率为: P(X ≤10.5)=0.51995,P(X≤20.5)=0.853262。
可见误差比较大(这是由于P太小,二项分布偏斜太严重)。
【注】由于二项分布是离散型分布,而正态分布是连续性分布,所以,用正态分布来近似计算二项分布的概率时,通常在二项分布的变量值基础上加减0.5作为正态分布对应的区间点,这就是所谓的“连续性校正”。
(3)由于p=0.0005,假如n=5000,则np=2.5<5,二项分布呈明显的偏态,用正态分布来计算就会出现非常大的误差。此时宜用泊松分布去近似。 3.11(1)P(X?150)?P(Z?150?20030)=P(Z??1.6667)=0.04779
合格率为1-0.04779=0.95221或95.221%。
(2) 设所求值为K,满足电池寿命在200±K小时范围内的概率不小于0.9,即有:
P(|X?200|?K)?P{|Z|=|X?200|30?K30}?0.9
即:P{Z?K30}?0.95,K/30≥1.64485,故K≥49.3456。
3.12设X =同一时刻需用咨询服务的商品种数,由题意有X~B(6,0.2)
(1)X的最可能值为:X0=[(n+1)p]=[7×0.2]=1 (取整数)
2(2)P(X?2)?1?P(X?2)?1??Ck60.2k0.86?k
k?0=1-0.9011=0.0989
第4章 抽样与抽样分布
4.1 a. 20, 2 b. 近似正态 c. -2.25 d. 1.50
4.2 a. 0.0228 b. 0.0668 c. 0.0062 d. 0.8185 e. 0.0013 4.3 a. 0.8944 b. 0.0228 c. 0.1292 d. 0.9699 4.4 a. 101, 99 b. 1 c. 不必
4.5 趋向正态
4.6. a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.938
4.7. a. 406, 1.68, 正态分布 b. 0.001 c. 是,因为小概率出现了 4.8. a. 增加 b. 减少
4.9. a. 正态 b. 约等于0 c. 不正常 d. 正态, 0.06 4.10 a. 0.015 b. 0.0026 c. 0.1587 4.11. a. (0.012, 0.028) b. 0.6553, 0.7278 4.12. a. 0.05 b. 1 c. 0.000625
第5章 参数估计
5.1 (1)?x?0.79。(2)E=1.55。
5.2 (1)?x?2.14。(2)E=4.2。(3)(115.8,124.2)。
5.3 (2.88,3.76);(2.80,3.84);(2.63,4.01)。 5.4 (7.1,12.9)。 5.5 (7.18,11.57)。
5.6
(18.11%,27.89%);(17.17%,22.835)。
5
5.7 (1)(51.37%,76.63%);(2)36。
5.8 (1.86,17.74);(0.19,19.41)。
5.9 (1)2±1.176;(2)2±3.986;(3)2±3.986;(4)2±3.587;(5)2±3.364。 5.10 (1)d?1.75,sd?2.63;(2)1.75±4.27。 5.11 (1)10%±6.98%;(2)10%±8.32%。 5.12 (4.06,14.35)。 5.13 48。 5.14 139。 5.15 57。 5.16 769。
第6章 假设检验
6.1 研究者想要寻找证据予以支持的假设是“新型弦线的平均抗拉强度相对于以前提高了”,所以原假设与备择假设
应为:H0:??1035,H1:??1035。
6.2 ?=“某一品种的小鸡因为同类相残而导致的死亡率”,H0:??0.04,H1:??0.04。 6.3 H0:??65,H1:??65。
6.4 (1)第一类错误是该供应商提供的这批炸土豆片的平均重量的确大于等于60克,但检验结果却提供证据支持店
方倾向于认为其重量少于60克;
(2)第二类错误是该供应商提供的这批炸土豆片的平均重量其实少于60克,但检验结果却没有提供足够的证据
支持店方发现这一点,从而拒收这批产品;
(3)连锁店的顾客们自然看重第二类错误,而供应商更看重第一类错误。
x??6.5 (1)检验统计量z?,在大样本情形下近似服从标准正态分布;
s/n(2)如果z?z0.05,就拒绝H0;
(3)检验统计量z=2.94>1.645,所以应该拒绝H0。 6.6 z=3.11,拒绝H0。 6.7 z=1.93,不拒绝H0。 6.8 z=7.48,拒绝H0。 6.9 ?2=206.22,拒绝H0。 6.10 z=-5.145,拒绝H0。 6.11 t=1.36,不拒绝H0。 6.12 z=-4.05,拒绝H0。 6.13 F=8.28,拒绝H0。 6.14 (1)检验结果如下:
t-检验: 双样本等方差假设
平均 方差 观测值 合并方差 假设平均差 df t Stat P(T<=t) 单尾 t 单尾临界 P(T<=t) 双尾
变量 2
109.9
33.35789474
20
100.7
变量 1 24.11578947
20
28.73684211
0 38
-5.427106029 1.73712E-06 1.685953066 3.47424E-06
6
t 双尾临界 2.024394234
变量 2
109.9
33.35789474
20
100.7
24.11578947
20 0 37
-5.427106029 1.87355E-06 1.687094482 3.74709E-06 2.026190487
变量 1
100.7
24.11578947
20 19
0.722940991 0.243109655 0.395811384
变量 2
109.9
33.35789474
20 19
t-检验: 双样本异方差假设
平均 方差 观测值 假设平均差 df t Stat P(T<=t) 单尾 t 单尾临界 P(T<=t) 双尾 t 双尾临界
变量 1
(2)方差检验结果如下:
F-检验 双样本方差分析
平均 方差 观测值 df F
P(F<=f) 单尾 F 单尾临界
第7章 方差分析与试验设计
7.1 F?4.6574?F0.01?8.0215(或P?value?0.0409???0.01),不能拒绝原假设。 7.2 F?17.0684?F0.05?3.8853(或P?value?0.0003???0.05),拒绝原假设。
xA?xB?44.4?30?14.4?LSD?5.85,拒绝原假设; xA?xC?44.4?42.6?1.8?LSD?5.85,不能拒绝原假设; xB?xC?30?42.6?12.6?LSD?5.85,拒绝原假设。
7.3 方差分析表中所缺的数值如下表: 差异源 组间 组内 总计 SS 420 3836 4256 df 2 27 29 MS 210 142.07 — F 1.478 — — P-value 0.245946 — — F crit 3.354131 — F?1.478?F0.05— ?3.554131(或P?value?0.245946???0.05),不能拒绝原假设。
7.4 有5种不同品种的种子和4种不同的施肥方案,在20快同样面积的土地上,分别采用5种种子和4种施肥方案
搭配进行试验,取得的收获量数据如下表:
F种子?7.2397?F0.05?3.2592(或P?value?0.0033???0.05),拒绝原假设。
F施肥方案?9.2047?F0.05?3.4903(或P?value?0.0019???0.05),拒绝原假设。
7.5 F地区?0.0727?F0.05?6.9443(或P?value?0.9311???0.05),不能拒绝原假设。
F包装方法?3.1273?F0.05?6.9443(或P?value?0.1522???0.05),不能拒绝原假设。
7.6 F广告方案?10.75?F0.05?5.1432(或P?value?0.0104???0.05),拒绝原假设。
7
F广告媒体?3?F0.05?5.9874(或P?value?0.1340???0.05),不能拒绝原假设。
F交互作用?1.75?F0.05?5.1432(或P?value?0.2519???0.05),不能拒绝原假设。
第8章 相关与回归分析
8.1(1)利用Excel计算结果可知,相关系数为 rXY?0.948138,说明相关程度较高。 (2)计算t统计量
0.3178591?r1?o.948138 给定显著性水平=0.05,查t分布表得自由度n-2=10-2=8的临界值t?22t?rn?2?0.948138?10?2?2.681739?8.436851
2为2.306,
显然t?t?2,表明相关系数 r 在统计上是显著的。
8.2 利用Excel中的”数据分析”计算各省市人均GDP和第一产业中就业比例的相关系数为:-0.34239,这说明人均GDP与第一产业中就业比例是负相关,但相关系数只有-0.34239,表明二者负相关程度并不大。 相关系数检验:
在总体相关系数??0的原假设下,计算t统计量:
t?rn?21?r2??0.34239?31?221?(?0.34239)??1.9624
t?2=2.045;t?查t分布表,自由度为31-2=29,当显著性水平取??0.05时,当显著性水平取??0.1时,
2=1.699。
由于计算的t统计量的绝对值1.9624小于t?2=2.045,所以在??0.05的显著性水平下,不能拒绝相关系数??0的原假设。即是说,在??0.05的显著性水平下不能认为人均GDP与第一产业中就业比例有显著的线性相关性。
但是计算的t统计量的绝对值1.9624大于t?2=1.699,所以在??0.1的显著性水平下,可以拒绝相关系数??0的原假设。即在??0.1的显著性水平下,可以认为人均GDP与第一产业中就业比例有一定的线性相关性。 8.3 设当年红利为Y,每股帐面价值为X
建立回归方程 Yi??1??2Xi?ui
^75估计参数为 Yi?0.4797?0.07X2876i
参数的经济意义是每股帐面价值增加1元时,当年红利将平均增加0.072876元。 序号6的公司每股帐面价值为19.25元,增加1元后为20.25元,当年红利可能为:
^Yi?0.479775?0.072876?20.25?1.955514(元)
8.4 (1)数据散点图如下:
投诉率(次/10万名乘客)1.41.210.80.60.40.20657075航班正点率(%)8085
(2)根据散点图可以看出,随着航班正点率的提高,投诉率呈现出下降的趋势,两者之间存在着一定的负相关关系。
8
(3)设投诉率为Y,航班正点率为X
建立回归方程 Yi??1??2Xi?ui
^ 估计参数为 Yi?6.017?8 7 0X.0i(4)参数的经济意义是航班正点率每提高一个百分点,相应的投诉率(次/10万名乘客)下降0.07。 (5)航班按时到达的正点率为80%,估计每10万名乘客投诉的次数可能为: ??6.0178?0.07?80?0.4187(次/10万) Yi8.5 由Excel回归输出的结果可以看出:
(1)回归结果为
^ Yi?32.9930?90.07X16?192i0.X16?87273i i.179042X30(2)由Excel的计算结果已知:?1,?2,?3,?4 对应的 t 统计量分别为0.51206、4.853871、4.222811、3.663731 ,其绝对值均大于临界值t0.025(22?4)?2.101 ,所以各个自变量都对Y有明显影响。 由F=58.20479, 大于临界值F0.05(4?1,22?4)?3.16,说明模型在整体上是显著的。
8.6 (1)该回归分析中样本容量是14+1=15 (2)计算RSS=66042-65965=77
ESS的自由度为k-1=2,RSS的自由度 n-k=15-3=12 (3)计算:可决系数 R2?65965/66?042 修正的可决系数 R?1?20 .99880. 998615?115?3?(1?0.9988?)(4)检验X2和X3对Y是否有显著影响 F?ESS/(k?1)RSS/(n?k)?65965/277/12?329826.4166?5140.11
(5) F统计量远比F临界值大,说明X2和X3联合起来对Y有显著影响,但并不能确定X2和X3各自对Y的贡献为多少。
8.7
来 源 来自回归 来自残差 总离差平方和 ^平方和 2179.56 99.11 2278.67 自由度 1 22 23 方差 2179.56 4.505 8.8 (1)用Excel输入Y和X数据,生成X2和
3X的数据,用Y对X、X、X回归,估计参数结果为
23
Yi??1726.73?7.879646874Xi?0.00895X222?3.71249E?06X
3 t=(-1.9213) (2.462897) (-2.55934) (3.118062) R?0.9736 6 9 R?0.9637 64
(2)检验参数的显著性:当取??0.05时,查t分布表得t0.025(12?4)?2.306,与t统计量对比,除了截距项外,
各回归系数对应的t统计量的绝对值均大于临界值,表明在这样的显著性水平下,回归系数显著不为0。 (3)检验整个回归方程的显著性:模型的R?0.973669,R?0.963794,说明可决系数较高,对样本数据拟合较好。由于F=98.60668,而当取??0.05时,查F分布表得F0.05(4?1,12?4)?4.07,因为F=98.60668>4.07,应
9
22拒绝H0:?2??3??4?0,说明X、X2、X3联合起来对Y确有显著影响。
(4)计算总成本对产量的非线性相关系数:因为R2?0.973669因此总成本对产量的非线性相关系数为
2R?0.973669或R=0.9867466
(5)评价:虽然经t检验各个系数均是显著的,但与临界值都十分接近,说明t检验只是勉强通过,其把握并不大。如果取??0.01,则查t分布表得t0.005(12?4)?3.3554,这时各个参数对应的t统计量的绝对值均小于临界值,则在??0.01的显著性水平下都应接受H0:?j?0的原假设。 8.9 利用Excel输入X、y和Y数据,用Y对X回归,估计参数结果为
??5.73?0.314x Yii t值=(9.46)(-6.515)
R2?0.794 R2?0.775
??307.9693?e?0.314x 整理后得到:y
第9章 时间序列分析
9.1 (1)30× 1.063×1.052= 30×1.3131 = 39.393(万辆)
(2)9(30?2)/(30?1.078)?1?92/1.078?1?7.11%
(3)设按7.4%的增长速度n年可翻一番
则有 1.07n4? 60/?30 所以 n = log2 / log1.074 = 9.71(年)
故能提前0.29年达到翻一番的预定目标。
9.2 (1)(1)以1987年为基期,2003年与1987年相比该地区社会商品零售额共增长: (1?10%)5?(1?8.2%)5?(1?6.8%)5?1?3.3186?1?2.3186?231.86% (2)年平均增长速度为
15(1?10%)?(1?8.2%)?(1?6.8%)7555?1=0.0833=8.33%
(3) 2004年的社会商品零售额应为
30?(1?0.0833)?52.509(亿元)
9.3 (1)发展总速度(1?12%)?(1?10%)?(1?8%)平均增长速度=10259.12%?1?9.9892%
(2)500?(1?6%)(3)平均数y?12343?259.12%
?561.8(亿元)
4?4yj?5704?142.5(亿元),
j?1 2002年一季度的计划任务:105%?142.5?149.625(亿元)。
^9.4 (1)用每股收益与年份序号回归得Yt?0.36?5??0.365?0.193?11?2.488元 Y110.t1。93预测下一年(第11年)的每股收益为
(2)时间数列数据表明该公司股票收益逐年增加,趋势方程也表明平均每年增长0.193元。是一个较为适合的投资
方向。
9.5 (1)移动平均法消除季节变动计算表
年别 2000年 2001年
季别 一季度 二季度 三季度 四季度 一季度 鲜蛋销售量 13.1 13.9 7.9 8.6 10.8 四项移动平均值 10.875 10.3 9.7 10.15 ?)移正平均值(T — — 10.5875 10 9.925 10
二季度 11.5 10.75 10.45 三季度 9.7 11.7 11.225 四季度 11 13.2 12.45 2002年 一季度 14.6 14.775 13.9875 二季度 17.5 16.575 15.675 三季度 16 17.525 17.05 四季度 18.2 18.15 17.8375 2003年 一季度 18.4 18.375 18.2625 二季度 20 18.325 18.35 三季度 16.9 四季度 18 2)T?t?8.9625?0.63995?t (3)趋势剔出法季节比例计算表(一) 年别 季别 时间序列号t 鲜蛋销售量 预测 鲜蛋销售量 趋势剔除值 2000年 一季度 1 13.1 9.332352941 1.403718878 二季度 2 13.9 9.972205882 1.39387415 三季度 3 7.9 10.61205882 0.74443613 四季度 4 8.6 11.25191176 0.764314561 2001年 一季度 5 10.8 11.89176471 0.908191531 二季度 6 11.5 12.53161765 0.917678812 三季度 7 9.7 13.17147059 0.736440167 四季度 8 11 13.81132353 0.796447927 2002年 一季度 9 14.6 14.45117647 1.010298368 二季度 10 17.5 15.09102941 1.159629308 三季度 11 16 15.73088235 1.0171076 四季度 12 18.2 16.37073529 1.111739923 2003年 一季度 13 18.4 17.01058824 1.081679231 二季度 14 20 17.65044118 1.133116153 三季度 15 16.9 18.29029412 0.923987329 四季度 16 18 18.93014706 0.950864245 上表中,其趋势拟合为直线方程T?t?8.9625?0.63995?t。 趋势剔出法季节比例计算表(二) 季度 年度 一季度 二季度 三季度 四季度 2000年 1.403719 1.393874 0.744436 0.764315 — 2001年 0.908192 0.917679 0.73644 0.796448 — 2002年 1.010298 1.159629 1.017108 1.11174 — 2003年 1.081679 1.133116 0.923987 0.950864 — 平 均 1.100972 1.151075 0.855493 0.905842 4.013381 季节比率% 1.097301 1.147237 0.852641 0.902822 4.00000 根据上表计算的季节比率,按照公式Y?t?T?t?S?t?KL计算可得: 2004年第一季度预测值:
Y?17?T?17?S?1?(8.9625?0.63995?17)?1.097301?21.7723 2004年第二季度预测值:
Y?18?T?18?S?2?(8.9625?0.63995?18)?1.147237?23.49725 2004年第三季度预测值:
Y?19?T?19?S?3?(8.9625?0.63995?19)?0.852641?18.009 11
(
2004年第四季度预测值:
Y?20?T?20?S?4?(8.9625?0.63995?20)?0.902822?19.6468 9.6 (1)用原始资料法计算的各月季节比率为: 月份 1月 2月 3月 4月 5月 6月 季节比率 0.9195 0.7868 0.9931 1.0029 1.0288 1.0637 月份 7月 8月 9月 10月 11月 12月 季节比率 0.9722 0.9851 1.0407 1.0350 1.0765 1.0958
平均法计算季节比率表:
年别 月份 2000年 2001年 2002年 2003年 平均 季节比率% 1月 4.78 5.18 6.46 6.82 5.80875 0.9195 2月 3.97 4.61 5.62 5.68 4.97025 0.7868 3月 5.07 5.69 6.96 7.38 6.2735 0.9931 4月 5.12 5.71 7.12 7.40 6.33575 1.0029 5月 5.27 5.90 7.23 7.60 6.49925 1.0288 6月 5.45 6.05 7.43 7.95 6.7195 1.0637 7月 4.95 5.65 6.78 7.19 6.1415 0.9722 8月 5.03 5.76 6.76 7.35 6.223 0.9851 9月 5.37 6.14 7.03 7.76 6.574 1.0407 10月 5.34 6.14 6.85 7.83 6.53825 1.0350 11月 5.54 6.47 7.03 8.17 6.80025 1.0765 12月 5.44 6.55 7.22 8.47 6.9225 1.0958 平均 6.317208 1.0000 季节比率的图形如下:
季节比率1.201.000.800.600.400.200.00123456789101112季节比率
(2)用移动平均法分析其长期趋势 年月 序号 工业总产值(亿移动平均 移正平均 元) Jan-00 1 4.78 Feb-00 2 3.97 Mar-00 3 5.07 Apr-00 4 5.12 May-00 5 5.27 Jun-00 6 5.45 5.13 Jul-00 7 4.95 5.17 Aug-00 8 5.03 5.22
12
Sep-00 9 5.37 5.27 Oct-00 10 5.34 5.32 Nov-00 11 5.54 5.37 Dec-00 12 5.44 5.11 5.43 Jan-01 13 5.18 5.14 5.49 Feb-01 14 4.61 5.20 5.55 Mar-01 15 5.69 5.25 5.62 Apr-01 16 5.71 5.30 5.69 May-01 17 5.90 5.35 5.77 Jun-01 18 6.05 5.40 5.87 Jul-01 19 5.65 5.46 5.97 Aug-01 20 5.76 5.52 6.06 Sep-01 21 6.14 5.58 6.18 Oct-01 22 6.14 5.65 6.29 Nov-01 23 6.47 5.73 6.40 Dec-01 24 6.55 5.82 6.51 Jan-02 25 6.46 5.93 6.60 Feb-02 26 5.62 6.01 6.68 Mar-02 27 6.96 6.12 6.74 Apr-02 28 7.12 6.23 6.80 May-02 29 7.23 6.35 6.85 Jun-02 30 7.43 6.46 6.89 Jul-02 31 6.78 6.55 6.91 Aug-02 32 6.76 6.64 6.93 Sep-02 33 7.03 6.71 6.96 Oct-02 34 6.85 6.77 6.98 Nov-02 35 7.03 6.82 7.02 Dec-02 36 7.22 6.88 7.06 Jan-03 37 6.82 6.91 7.10 Feb-03 38 5.68 6.91 7.15 Mar-03 39 7.38 6.94 7.23 Apr-03 40 7.40 6.97 7.31 May-03 41 7.60 7.00 7.41 Jun-03 42 7.95 7.04 Jul-03 43 7.19 7.08 Aug-03 44 7.35 7.12 Sep-03 45 7.76 7.19 Oct-03 46 7.83 7.27 Nov-03 47 8.17 7.36 Dec-03 48 8.47 7.46 原时间序列与移动平均的趋势如下图所示:
13
8.007.006.005.004.003.002.001.000.00147036925814111122233移动平均原时间序列9.7 (1)采用线性趋势方程法:T?
i?460.0607?7.0065t 剔除其长期趋势。 趋势分析法剔除长期趋势表: 年月 序号 工业总产值(亿元) 长期趋势值 剔除长期趋势 Jan-83 1 477.9 467.0672 1.023193 Feb-83 2 397.2 474.0737 0.837844 Mar-83 3 507.3 481.0802 1.054502 Apr-83 4 512.2 488.0867 1.049404 May-83 5 527 495.0932 1.064446 Jun-83 6 545 502.0997 1.085442 Jul-83 7 494.7 509.1062 0.971703 Aug-83 8 502.5 516.1127 0.973625 Sep-83 9 536.5 523.1192 1.025579 Oct-83 10 533.5 530.1257 1.006365 Nov-83 11 553.6 537.1322 1.030659 Dec-83 12 543.9 544.1387 0.999561 Jan-84 13 518 551.1452 0.939861 Feb-84 14 460.9 558.1517 0.825761 Mar-84 15 568.7 565.1582 1.006267 Apr-84 16 570.5 572.1647 0.997091 May-84 17 590 579.1712 1.018697 Jun-84 18 604.8 586.1777 1.031769 Jul-84 19 564.9 593.1842 0.952318 Aug-84 20 575.9 600.1907 0.959528 Sep-84 21 613.9 607.1972 1.011039 Oct-84 22 614 614.2037 0.999668 Nov-84 23 646.7 621.2102 1.041032 Dec-84 24 655.3 628.2167 1.043111 Jan-85 25 645.7 635.2232 1.016493 Feb-85 26 562.4 642.2297 0.875699 Mar-85 27 695.7 649.2362 1.071567 Apr-85 28 712 656.2427 1.084964 May-85 29 723.1 663.2492 1.090239 Jun-85 30 743.2 670.2557 1.108831 Jul-85 31 678 677.2622 1.001089 Aug-85 32 676 684.2687 0.987916 Sep-85 33 703 691.2752 1.016961 Oct-85 34 685.3 698.2817 0.981409 14
Nov-85 35 703.3 705.2882 0.997181 Dec-85 36 722.4 712.2947 1.014187 Jan-86 37 681.9 719.3012 0.948003 Feb-86 38 567.6 726.3077 0.781487 Mar-86 39 737.7 733.3142 1.005981 Apr-86 40 739.6 740.3207 0.999027 May-86 41 759.6 747.3272 1.016422 Jun-86 42 794.8 754.3337 1.053645 Jul-86 43 719 761.3402 0.944387 Aug-86 44 734.8 768.3467 0.956339 Sep-86 45 776.2 775.3532 1.001092 Oct-86 46 782.5 782.3597 1.000179 Nov-86 47 816.5 789.3662 1.034374 Dec-86 48 847.4 796.3727 1.064075 剔除长期趋势后分析其季节变动情况表:
年份 月份 1983年 1984年 1985年 1986年 季节比率% 1月 1.023193 0.939861 1.016493 0.948003 0.981888 2月 0.837844 0.825761 0.875699 0.781487 0.830198 3月 1.054502 1.006267 1.071567 1.005981 1.034579 4月 1.049404 0.997091 1.084964 0.999027 1.032622 5月 1.064446 1.018697 1.090239 1.016422 1.047451 6月 1.085442 1.031769 1.108831 1.053645 1.069922 7月 0.971703 0.952318 1.001089 0.944387 0.967374 8月 0.973625 0.959528 0.987916 0.956339 0.969352 9月 1.025579 1.011039 1.016961 1.001092 1.013668 10月 1.006365 0.999668 0.981409 1.000179 0.996905 11月 1.030659 1.041032 0.997181 1.034374 1.025812 12月 0.999561 1.043111 1.014187 1.064075 1.030234 3)运用分解法可得到循环因素如下图:
1.151.11.0510.950.90.850.8161616161611223344
15
(
第10章 统计指数
10.1 Lq??q1p0?2124?q0p0?104.16% , Lp??p1q0?p0q0?2196.82039.2?107.73%;
2039.2qp22812281?p1q1 P??11??103.83% , P???107.39%。 qp2196.82124?q0p1?p0q110.2 Eq?Bq?103.99 39.2?2196.84236104.16%?103.83%??104.00%。
22124?2281?4405;Fq?104.16%?103.83%?103.99%;
10.3 Pq??q1z1?94500?92.83% , Pq???q1p1?117100?93.27%。
?q0z1101800??q0p1p125550?10.4 Ap??ipp0q0?p0q02196.82039.2?107.73%;H??p1q1?p1q1ip22812124?107.39%;Gp??p0q0?ip0pq0?107.01%。
10.5 Lq?Pp?V;104.16.6 ⑴360⑶360?12%?43.2?106.67%?107.39%?111.86% ;84.8?157?241.8。
;⑵112%?105%?106.67% , 360?6.67%?24.0;
?5%?19.2;⑷106.67%?105%?112% , 24.0?19.2?43.2。
10.7 ⑴x0?4668?2.3816 , x1?5636?2.6967 , x假定?4908?2.3483
1960209020902.34832.69672.6967 ⑵,98.60%?114.84%?113.23% ??2.38162.34832.3816563620902.6967 ⑶ ??466819602.3816 120.74%?106.63%?113.23% , 968?309.6?658.6
10.8 依据有关公式列表计算各企业的工业经济效益综合指数如下:
各企业经济效益综合指数一览表(标准比值法)
参评指标 产品销售率 资金利税率 成本利润率 增加值率 劳动生产率 资金周转率 综合指数 排 名 A企业 77.35 90.04 90.37 87.24 93.47 87.43 87.73 5 标准比值或个体指数(%) B企业 C企业 D企业 92.74 92.33 97.97 84.87 104.06 99.63 101.07 112.96 99.88 87.59 100.00 98.28 101.85 116.84 109.59 101.09 114.75 103.83 95.01 102.41 104.03 3 2 1 E企业 87.61 103.32 82.05 92.07 87.03 98.36 94.03 4 权 数 15 30 15 10 10 20 ── ── 10.9 依据有关公式列表计算各企业的工业经济效益综合指数如下表:
各企业经济效益综合指数一览表(改进的功效系数法)
阈 值 改 进 的 功 效 系 数 参评指标 满意值 不允许值 A企业 B企业 C企业 D企业 E企业 权数 产品销售率 95.50 74.50 60.00 89.52 100.00 90.29 80.76 15 资金利税率 14.10 11.50 70.77 100.00 90.77 60.00 98.46 30 成本利润率 9.50 6.90 70.77 100.00 83.08 84.62 60.00 15 增加值率 29.00 25.30 60.00 100.00 94.59 61.08 75.14 10 劳动生产率 7250 5400 68.65 79.89 100.00 90.27 60.00 10 资金周转率 2.10 1.60 60.00 80.00 100.00 84.00 76.00 20 65.50 91.97 93.95 74.97 78.05 ── 综合指数 ── ── 4 排 名 ── ── 5 2 1 3 ── 上面两种方法给出的综合评价结果的差异表现在D、E两个企业的综合经济效益排名不同。原因在于两种方法的对比标准不同(以下具体说明)。
16
第11章 统计决策
11.1(1)根据最大的最大收益值准则,应该选择方案一。 (2)根据最大的最小收益值准则,应该选择方案三。
(3)方案一的最大后悔值为250,方案二的最大后悔值为200,方案三的最大后悔值为300,所以根据最小的最大后悔值准则,应选择方案二。
(4)当乐观系数为0.7时,可得:方案一的期望值为220,方案二的期望值为104,方案三的期望值为85。根据折中原则,应该选择方案一。
(5)假设各种状况出现的概率相同,则三个方案的期望值分别为:116.67、93.33、83.33
按等可能性准则,应选择方案一。
11.2 (1)略
(2)三个方案的期望值分别为:150万元、140万元和96万元。但方案一的变异系数为1.09,方案二的变异系数为0.80,根据期望值准则结合变异系数准则,应选择方案二。
(3)宜采用满意准则。选择方案二。 (4) 宜采用满意准则。选择方案三。
11.3 钥匙留在车内为 A,汽车被盗为E。
P(A/E)=(0.2*0.05)/ (0.02*0.05+0.8*0.01)= 55.56%。 11.4 (1)买到传动装置有问题的车的概率是30%。
(2)修理工判断车子有问题为B1,,车子真正有问题为A1, P(A1/B1)=(0.3*0.9)/(0.3*0.9+0.7*0.2)= 66%
(3)修理工判断车子没有问题为B2,车子真正有问题为A1
P(A1/B2)=(0.3*0.1)/(0.3*0.1 +0.7*0.8)= 5%
11.5 决策树图 略。
(1) 生产该品种的期望收益值为41.5万元大于不生产的期望值,根据现有信息可生产。 (2) 自行调查得出受欢迎结论的概率=0.65*0.7+0.35*0.30=0.56, 此时,市场真实欢迎的概率=0.65*0.7/(0.65*0.7+0.35*0.30)=0.8125
期望收益值=(77*0.8125 -33*0.1875)0.56+(-3*0.44) =30.25万元 (3) 委托调查得出受欢迎结论的概率=0.65*0.8 +0.35*0.20=0.59
此时,市场真实受欢迎的概率= 0.65*0.8/(0.65*0.8 +0.35*0.20)=0.8814 期望收益值=(75*0.8814 -35*0.1186)0.59+(-5*0.41)=34.50万元
根据以上分析结果。由于进一步调查的可靠性不高,并要花费相应的费用,所以没有必要进一步调查。
第12章 国民经济统计基础知识
12.1 生产法GDP=168760亿元; 分配法GDP=168755亿元
使用法GDP=154070亿元
国内生产净值=149755亿元(按生产法计算) 国民总收入=165575亿元(按收入法计算) 国民可支配总收入=167495亿元 国民可支配净收入=148490亿元 消费率=67.95%(按可支配总收入计算) 储蓄率=32.05%(按可支配总收入计算) 投资率=27.31%(按使用法GDP计算)
12.2 国民财富总额为:216765亿元
12.3生产法GDP增长速度为8.69%;紧缩价格指数为102.83%。 使用法GDP增长速度为8.25%。紧缩价格指数为103.25%。
17
正在阅读:
统计学第三版课后习题答案17页03-17
大家之家教案10-21
2022年中南财经政法大学工商管理学院434国际商务专业基础[专业学04-17
身心健康的好处02-18
上市公司采购专项审计方案05-24
小升初英语突击训练系列试卷8套04-27
山东师范大学《教师专业发展》期末试题06-05
佟大为演过的电视剧02-21
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 统计学
- 课后
- 习题
- 答案
- 河南省周口市中英文学校2017-2018学年高二下学期第三次月考化学
- 2017-2021年中国农业机械行业发展预测分析及投资咨询报告 - 图文
- “正确使用词语(实词、虚词)”专题复习教案
- 运用信息技术优化语文课堂教学
- 形容词的比较级和最高级讲解及中考真题汇编(含答案)
- 《四个太阳》教学设计和反思
- 风景园林施工与养护综述
- 采煤工作面搬家安全技术措施
- 2019实习班主任个人述职述廉
- 吴江闽南商会第五届理事会名单(纺织服装业)
- 220kV区域变电站设计论文 - 图文
- 2013第十三届中环杯小学生思维能力训练活动五年级初赛详解(1)
- 2013年5374复习串讲NEW
- 有机硅涂料
- 2014-2015学年第二学期一模化学试卷
- 乙肝知识讲座
- 组工干部应增强忧患意识
- 中国西部沉积盆地特点与油气富集规律(简2)
- 用英语介绍中国之 1-1 地理位置
- 泥工劳务分包合同