实变函数积分理论部分复习题(附答案版)
更新时间:2023-12-20 11:05:01 阅读量: 教育文库 文档下载
- 实变函数积分三大定理推荐度:
- 相关推荐
2011级实变函数积分理论复习题
一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例)
1、设?fn(x)?是[0,1]上的一列非负可测函数,则f(x)?可积函数。(×)
2、设?fn(x)?是[0,1]上的一列非负可测函数,则f(x)?可测函数。(√)
3、设?fn(x)?是[0,1]上的一列非负可测函数,则
??fn?1n(x)是[0,1]上的Lebesgue
?fn?1?n(x)是[0,1]上的Lebesgue
?[0,1]n??limfn(x)dx?lim?n??[0,1] fn(x)dx。(×)
4、设?fn(x)?是[0,1]上的一列非负可测函数,则存在?fn(x)?的一个子列fnk(x),使得,
???[0,1]k??limfnk(x)dx?lim?k??[0,1]fnk(x)dx。
(×,比如?fn(x)?为单调递增时,由Levi定理,这样的子列一定不存在。) 5、设?fn(x)?是[0,1]上的一列非负可测函数,则存在?fn(x)?的一个子列fnk(x),使得,
???[0,1]k??limfnk(x)dx?lim?k??[0,1]fnk(x)dx。
(×,比如课本上法都引理取严格不等号的例子。) 6、设?fn(x)?是[0,1]上的一列非负可测函数,则
??[0,1]n??limfn(x)dx?lim?n??[0,1]fn(x)dx。
(√)
7、设?fn(x)?是[0,1]上的一列非负可测函数,则
[0,1]n??limfn(x)dx?lim?n??[0,1]fn(x)dx。
(×)
8、设f(x)是[0,1]上的黎曼可积函数,则f(x)必为[0,1]上的可测函数。 (√,Lebesgue积分与正常黎曼积分的关系)
9、设f(x)是[0,??)的上黎曼反常积分存在,则f(x)必为[0,??)上的可测函数。 (√,注意到黎曼反常积分的定义的前提条件,对任意自然数n>0,f(x)在[0,n]上
?黎曼可积,从而f(x)是[0,n]上的可测函数,进而f(x)是[0,??)?n?1 [0,n]上的可测函数)
10、设?fn(x)?是[0,1]上的一列单调递增非负可测函数,G([0,1],fn)表示fn(x)在
[0,1]上的下方图形,f(x)=limfn(x),则G([0,1],fn)单调递增,且
nnlimG([0,1],fn)=UG([0,1],fn=1¥n)=G([0,1],f),mG([0,1],f)=nlimmG([0,1],fn)。
(√,用集合关系的定义,单调递增可测集列的极限性可以证明。)
二、叙述题(请完整地叙述以下定理或命题) (自己在书上找答案,务必要跟书上一模一样)
1、单调收敛定理(即Levi定理)
2、Fatou引理(法都引理)
3、非负可测函数的Fubini定理和Lebesgue可积函数的Fubini定理 4、Lebesgue控制收敛定理(两个)
5、Lebesgue基本定理(即非负可测函数项级数的逐项积分定理) 6、积分的绝对连续性
三、计算题(请完整写出计算过程和结果)
??sinx,x?D01、设D0为[0,?]中的零测集,f(x)??x3 ,求
??e,x?D0?[0,?]f(x)dx。
解:由题设f(x)?sinx,a.e.于[0,?],而sinx在[0,?]上连续,
于是由积分的惟一性和L积分与R积分的关系得
??
[0,?]f(x)dx??[0,?]sinxdx?(R)?sinxdx?(?cosx)0?0?2。
?x??xe,2、设Q为[0,+?)中有理数全体,f(x)??3xsinx,??e2x?[0,??)\\Qx?Q2 ,求
?[0.??) f(x)dx。
?x2解:因为Q为可数集,所以mQ?0,从而f(x)?xe?x,a.e.于[0,??),而xe在
[0,??)上非负连续,且(R)???0f(x)dx?(R)?xe?x2??0212xe?xdx??e?x2??0?1, 21。 2所以由积分的惟一性和L积分与R积分的关系得
?
[0.??)f(x)dx??[0.??)dx?(R)???0xe?x21?x2dx??e2??0???xe?x,x?[0,??)\\P3、设P为[0,1]上的Cantor三分集,f(x)?? ,求? f(xd)x。x.0[)????sin(e),x?P解:因为mP?0,所以f(x)?xe?x,a.e.于[0,??),而xe?x在[0,??)上非负连续,且
212xe?xdx??e?x2222(R)???0f(x)dx?(R)?2??0??0?1, 2??0所以由积分的惟一性和L积分与R积分的关系得
?
[0.??)f(x)dx??[0.??)xe?xdx?(R)???0212xe?xdx??e?x2?1。 24、计算limxn?2x(1?)edx。
n???0nxn?2x解: 令fn(x)?(1?)e?[0,n](x),易见fn(x)在[0,??)非负可测,且fn(x)单调上
nn?x升limfn(x)?en??,故由单调收敛定理
lim?n????0??x(1?)ne?2xdx??e?xdx?1。
0n
5、积分计算
(1)设¤为全体有理数所成的集合,在E?[0,1]?[0,1]上函数f定义如下:
f(x,y)??x?y?,?1, 求 xyxsiny?e,x?y?.??Ef(z)dz。
(2)设¤为全体有理数所成的集合,在E?[0,1]?[0,1]上函数f定义如下:
f(x,y)??解:(1)记
(x,y)??,?xsiny, 求 x?e?ln(1?|xy|),(x,y)??.?Ef(z)dz。
={r1,r2,},令Ak={(x,y)?Ex:y=rk,}则m(Ak)=0,故
¥骣m?UAk÷÷÷=0,从而f(x,y)=1几乎处处于E。显然,1是E上的连续函数,从而在E?k=1桫上有界且Riemann可积,故由Riemann积分与Lebesgue积分的关系定理,1在E上Lebesgue 可积且
1dz=(R)蝌EE1dxdy=1.
由于f(x,y)=1几乎处处于E,故由积分的基本性质
?Ef(z)dz??1dz?1.
E(2)解:因m(い?)0,从而f(x,y)=xsiny几乎处处于E。显然,xsiny是E上的连续函数,从而在E上有界且Riemann可积,故由Riemann积分与Lebesgue积分的关系定理,xsiny在E上Lebesgue 可积且
蝌xsinyd(x,y)=(R)EExsinydxdy=蝌xdx0110sinydy=1(1-cos1). 2 由于f(x,y)=xsiny几乎处处于E,故由积分的基本性质
?E1f(z)dz??xsinydx(y,?)E2?(1s1c). o三、证明题(请完整地写出以下命题的证明)
1、用Fubini定理证明:若f(x,y)为R2=(??,+?)?(??,+?)上的非负可测函数,则
???0dx?f(x,y)dy??0x??0dy???yf(x,y)dx。
0?x???0?y???证明:记D?{(x,y)}?{(x,y)},
0?y?xy?x???令F(x,y)???f(x,y),(x,y)?D,
(x,y)?D?0,2由题设易知F(x,y)也是R上的非负可测函数,于是,由非负可测函数的Fubini定理
???0dx?f(x,y)dy??0x????dx???????F(x,y)dy???R2?F(x,y)dxdy
??0??
n??dy???F(x,y)dx??dy???yf(x,y)dx。
2、设E是R中的可测集,若(1)E??Ek,其中Ek为可测集,E1?E2?k?1?;
(2)f(x),fn(x)(n?12)都是E上的可测函数,且limfn(x)?f(x) a.e.于E;
n??(3)存在E上的Lebesgue可积函数F(x),使得?n,fn(x)?F(x) (x?E)。 证明:f(x)在E上也Lebesgue可积,且 limn??En?fn(x)dx??f(x)dx。
E证明:记fn(x)?fn(x)??En(x),由题设知limfn(x)?f(x) a.e.于E(事实上?x?E,
n??存在n0,当n?n0时,总有x?En,从而?En(x)?1,于是fn(x)?fn(x)??En(x)?fn(x)。)
又 fn(x)?fn(x)??En(x)?fn(x)?F(x),F(x)在E上Lebesgue可积 所以 由Lebesgue控制收敛定理,并注意到得
?Efn(x)dx??fn(x)??En(x)dx?EEn?fn(x)dx可
lim?fn(x)dx?lim?fn(x)dx??f(x)dx。
n??Enn??EE
3、设E是Lebesgue可测集,fn(x)(n?12n??),f(x)都是E上的Lebesgue可积函数,若
n??limfn(x)?f(x) (x?E),且lim?fn(x)dx??f(x)dx,
EE证明:(1)Fn(x)?fn(x)?f(x)?fn(x)?f(x)在E上非负可测;
(2)用Fatou引理证明:limn???Efn(x)?f(x)dx?0。
证明:(1)由可测函数的运算性质得 Fn(x)?fn(x)?f(x)?fn(x)?f(x)是E上可测函数,
又 fn(x)?f(x)?fn(x)?f(x),从而Fn(x)?0,
所以 Fn(x)?fn(x)?f(x)?fn(x)?f(x)在E上非负可测。
(2)由题设limFn(x)?2f(x),再由Fatou引理得
n??2?f(x)dx??limFn(x)dx?lim?[fn(x)?f(x)?fn(x)?f(x)]dx
EEn??n??E?2?f(x)dx?lim?fn(x)?f(x)]dx,
En??E即limn???Efn(x)?f(x)]dx?0,
n??从而 0?lim故 limn???Efn(x)?f(x)]dx?lim?fn(x)?f(x)]dx?0
n??E?Efn(x)?f(x)dx?0。
4、设f(x)是定义在[0,??)上的实值函数,满足?a?0,f(x)在[0,a]上黎曼可积(即
(R)?a0,若f(x)在[0,??)上的广义黎曼积分绝对收敛(即(R)f(x)dx存在)
???0f(x)dx绝对收敛),证明:f(x)在[0,??)上Lebesgue可积,且
(L)?[0,??)f(x)dx?(R)???0。 f(x)dx。
证明:由题设知f(x)是[0,??)上的可测函数,从而f(x)是[0,??)上的可测函数,于是,
由非负可测函数L积分的完全可加性以及L积分与黎曼正常积分的关系,并注意到
[0,??)??[n?1,n)可得
n?1?(L)?[0,??)f(x)dx??(L)?n?1?[n?1,n)f(x)dx?lim?(L)?n??k?1n[k?1,k)f(x)dx
??n?lim(L)?n??[0,n)f(x)dx?lim(R)?f(x)dx?(R)?f(x)dxn??00
(注:以上证明也可利用Levi定理得到)
又f(x)在[0,??)上的广义黎曼积分绝对收敛,即(R)从而(L)???0f(x)dx???
?[0,??)f(x)dx???,即f(x)在[0,??)上Lebesgue可积。
?[0,n]单调递增,记fn(x)?f(x)?[0,n](x),易知 由于[0?且],?)??[n0,n?1 )fn(x)?f(x且fn(x)?f(x),于是,由L—控制收敛定理得f(x)在[0,??)上Lebesgue可积,且
(L)?[0,??)f(x)dx?lim(L)?n??[0,n]fn(x)dx?lim(L)?n??[0,n]f(x)dx
n?lim(R)?f(x)dx?(R)?n??0??0f(x)dx。
5、设fn(x),f(x)(n?1,2,)都是[0,1]上的Lebesgue可积函数,且
lim?n??[0,1]fn(x)?f(x)dx?0,
1?sin2?fn(x)?f(x)??1于[0,1]。 2证明:(1)fn(x)?f(x)于[0,1];(2)
1?cos2?fn(x)?f(x)?证明:(1)记E?[0,1],对任意??0,由
?mE[xfn(x)?f(x)??]??mE[xfn(x)?f(x)??]fn(x)?f(x)dx
??[0,1]fn(x)?f(x)dx?0.得limmE[xfn(x)?f(x)??]?0,即fn(x)?f(x)于[0,1]。
n??1?sin2y1
R(2)因为在上连续,且m[0,1]?1???,由(1)fn(x)?f(x)?0于21?cosy[0,1],所以用反证法,并注意到Reisz定理和Lebesgue定理可证
1?sin2?fn(x)?f(x)?1?sin201??。 2fn(x)?f(x)?1?cos02p1?cos2?
6、设fn(x)(n?1,2,n??),f(x)都是R上的Lebesgue可积函数,且满足:
p(1)limfn(x)?f(x)a.e.于R;
(2)存在R上的Lebesgue可积函数gn(x)(n?1,2,p)和g(x),使得,
lim?n??Rpgn(x)?g(x)dx?0,且fn(x)?gn(x)a.e.于Rp,
Rp证明:(1)limn????fn(x)?f(x)dx?0; fn(x)dx??Rp(2)limn????B(0,n)f(x)dx,其中B(0,n)?x?Rpx?n。
????证明:(1)limn??Rpfn(x)?f(x)dx?0; fn(x)dx??Rp(2)limn??B(0,n)f(x)dx,其中B(0,n)?x?Rpx?n。
p证明:(1)由条件(2)可得gn(x)?g(x)于R,limn???pRpgn(x)dx??Rpg(x)dx,由
pReisz定理和条件(1)并注意到fn(x)?gn(x)a.e.于R得,f(x)?g(x)a.e.于R。
倘若limn???Rpfn(x)?f(x)dx?0,可得存在?0?0和{fn(x)}的子列不妨仍记为
{fn(x)},使得对每个n都有
?Rpfn(x)?f(x)dx??0。 (*)
p由gn(x)?g(x)及Reisz定理得,存在子列gni(x)?g(x)a.e.于R
p取Fni(x)?gni(x)?g(x)?fni(x)?f(x),易见Fni(x)?0a.e.于R,由Fatou定理,
2?Rpg(x)dx??Rpi??RplimFni(x)dx?lim?i??RpFni(x)dx?2?g(x)dx?lim?i??Rpfni(x)?f(x)dx
所以limi???Rpfni(x)?f(x)dx?0,从而lim?i??Rp fni(x)?f(x)dx?0这与(*)矛盾。
Rp(2)由(1)并注意到
?B(0,n)fn(x)?f(x)dx??fn(x)?f(x)dx得
lim?n??B(0,n)fn(x)dx??f(x)dx??0, fn(x)?f(x)dx?0,从而lim???B(0,n)n????B(0,n)?记?n(x)?f(x)??B(0,n),再注意到Lebesgue控制收敛定理得,
lim?n??B(0,n)fn(x)dx?lim?n??B(0,n)f(x)dx?lim?n??Rp?n(x)dx??2Rpf(x)dx。
7、若f(x)是R上的实值可测函数,则g(x,t)?f(x?t)是R上的可测函数。
1x)?a证明:对于任意实数a,记A?x?Rf(1
? ?,由题设,易见A为R上的可测集。
1
记h(x,t)?x?t,易见h(x,t)?x?t为R上的连续函数,于是
2?(x,t)?R2g(x,t)?a???(x,t)?R2x?t?A??h?1(A)
下证h?1(A)为可测集即可。
事实上,因h(x,t)连续,所以当A为G?型集时,h(A)也为G?型集,从而可测。 当A为零测集时,存在G?型集G,使得A?G,mG?mA?0。因h(G)为可测集,由Fubini定理
?1?1mh?1(G)??R2?h?1(G)(x,t)dxdt??1dt?1?h?1(G)(x,t)dxRRRR??1dt?RG?tdx??1m(G?t)dt??1mGdt?0?1
注意到h(A)?h(G),得mh(A)?0,从而h(A)为可测集。
当A为可测集时,由可测集与G?型集的关系,存在存在G?型集G和零测集Z,使得
?1?1?1A?G\\Z,
所以由上面已证的两种情形得,h(A)?h(G)\\h(Z)为可测集。
8、设E?R是可测集,且对任意n,存在零测集En?E,?fn(x)?为E上的一列可测函数,
q?1?1?1使得,0?fn(x)?fn?1(x)于E?En,证明:存在E上的一个非负可测函数f(x),使得
lim?n??Efn(x)dx??Ef(x)dx。
证明:令A??n?1En,则mA?0,且在E?A上,对任意n,0?fn(x)?fn?1(x),由Levi
定理,存在E?A上的一个非负可测函数f(x),使得
lim?n??E?Afn(x)dx??E?Af(x)dx。
令f(x)????f(x),??0,x?E?A,则f(x)是E上的一个非负可测函数,且注意到零测集上的
x?A任意可测函数的积分都是零,有
lim?n??Efn(x)dx?lim?n??E?Afn(x)dx??E?Af(x)dx??Ef(x)dx。证毕。
9、设E?R是可测集,且对任意n,存在零测集En?E,?fn(x)?为E上的一列可测函数,
q使得,fn(x)?0于E?En,证明:证明:令A??n?1?En??limfn(x)dx?lim?n??Efn(x)dx。
En,则mA?0,且在E?A上,对任意n,fn(x)?0,由Fatou引理,
??故
10、证明limnE?An??limfn(x)dx?lim?n??E?Afn(x)dx,
注意到零测集上的任意可测函数的积分都是零,有
En??limfn(x)dx??n??E?An??limfn(x)dx,?Efn(x)dx??E?Afn(x)dx,
?En??limfn(x)dx?lim?Efn(x)dx。证毕。
ò10e1/x-1/xsin(ne)dx=0。 21+nx证:因为
e1/xe1/x-1/xsin(ne)#ne-1/x221+nx1+nx1n1 , 21+nx2xe1/x-1/xsin(ne)=0,\x (0,1]. 而在[0,1]上Lebesgue可积,又lim2n1+nx2x由Lebesgue控制收敛定理知
nlimò10e1/xsin(ne-1/x)dx=0。 21+nx
11、设E是?n中的可测集,f(x)是E上的Lebesgue可积函数。证明:
(1)若f(x)30于E,则存在E上的非负简单函数列{sn(x)}使得
lim?|f(x)?sn(x)|dx?0;
n??E(2)存在E上的简单函数列{Sn(x)}使得limn??E?|f(x)?S(x)|dx?0。
n证:(1)因为f非负可测,故在E上存在非负简单函数列{sn(x)},使得sn(x)-f(x)。而
|f(x)-sn(x)|?|f(x)||sn(x)| 2f(x),
n??E故由Lebesgue控制收敛定理知lim?|f(x)?s(x)|dx?0。
n(2) 设f+,f-分别是f的正部和负部,则f+,f-在E上都非负可积,从而应用(1)
2的结论知,存在E上的非负简单函数列{s1n(x)}和{sn(x)},使得
lim?|f?(x)?s1n(x)|dx?0,n??E2lim?|f?(x)?sn(x)|dx?0. n??E2E上的简单函数,且由不等式 令Sn(x)=s1n(x)-sn(x), 则Sn(x)是
|f(x)-Sn(x)|=知lim
12、设函数f(x)是?证明:
(1)F(r)=n(f+(x)-ns1n(x))-(f-(x)-2sn(x))?f+(x)-2s1n(x)+f(x)-sn(x)n??E?|f(x)?S(x)|dx?0。
中的有界可测集E上的Lebesgue可积函数,且0<ò|f(x)|dx<1。
EòE?B(0,r)|f(x)|dx是[0,+ )上的连续函数,其中B(0,r)是以原点为中
1,i=1,2。 2心以r为半径的开球。
(2)存在可测集E1,E2,使得E=E1UE2,E1IE2= 且证:(1)设EìB(0,R),记l=òEi|f(x)|dx<ò|f|dx,
E则F(0)=0,F(R)=l (0,1), 且F在[0,+ )上单调递增,而
F(r+Dr)-F(r)=òE?(B(0,rDr)\\B(0,r))|f|dx.
0时,
因为f在E上可积,由积分的绝对连续性知,当Dr
正在阅读:
实变函数积分理论部分复习题(附答案版)12-20
广数系统常见故障维修手册101-03
2016年上半年山东省中学教师《教育心理学》练习题:教学测量与评价试题01-28
语言学概论 语言学课后习题答案05-23
计算科学导论文03-19
弘扬孝道文化促进社会和谐_传统孝道文化的社会学审视09-05
湖北省基层医疗卫生机构绩效考核办法03-08
读《黑格尔法哲学批判》导言有感12-20
供应商对客户的感谢词02-16
超市员工服务意识及客户投诉处理技巧培训07-20
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 理论部
- 复习题
- 函数
- 积分
- 答案
- 2019年整理--党外代表人士队伍建设经验总结
- Spring阶段小测试-笔试试卷
- 日语综合教程第8课案内者
- 寄生虫题库
- 4·现代西方社会学理论-总结&思考题
- 生涯规划教育的区域推进与落地策略
- 财政学部分名词解释(陈共 - 第六版)
- 中国人民解放军第二野战军序列
- 严格管理是扭亏解困的
- 中国文化概论简答题整理
- 超市管理系统 - 图文
- 人教PEP版六年级上册Unit1-3单元检测
- 商法总论习题(一)
- 应用时间序列分析课程论文剖析
- 长整数四则运算源代码数据结构
- 获奖新闻稿标题怎么写-优秀word范文(3页)
- 雅思口语话题分析之家乡 - 图文
- 新闽版2014-2015小学信息技术5年级下册教案
- 电大《商务谈判实务》单元练习与思考(复习及答案)
- 2016-2017学年河北省衡水中学高三(下)三调数学试卷(理科)