2010年高考试题——数学理(浙江卷)-复兰高考名师在线精编解析版

更新时间:2023-06-08 09:02:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_翻转课堂( )

在做试卷之前,给大家推荐一个视频学习网站,我之前很长时间一直是做试卷之后,再到这上面去找一些相关的学习视频再复习一遍,效果要比只做试题要好很多,真不是打广告。

如果你有上网的条件,建议你也去学习一下,全站所有的视频都是免费的。 ◆高考语文类在线听课地址:

/yuwen

◆高考数学类在线听课地址:

/shuxue

◆高考英语类在线听课地址:

/yingyu

◆高考化学类在线听课地址:

/huaxue

◆高考物理类在线听课地址:

/wuli

其他学科的大家自己去找吧!

◆高考在线题库:

/exams

绝密★考试结束前

2010年普通高等学校招生全国统一考试(浙江卷)

数学(理科)

本试题卷分选择题和非选择题两部分。全卷共5页,选择题部分1至2页,非选择题部分3至5页。满分150分,考试时间120分钟。

请考生按规定用笔讲所有试题的答案涂、写在答题纸上。

选择题部分(共50分)

注意事项:

1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。

参考公式:

如果事件A 、B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =

如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B = 锥体的体积公式

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_翻转课堂( )

如果事件A 在一次试验中发生的概率是p , 3

V S h = 那么n 次独立重复试验中事件A 恰好发生 其中S 表示锥体的底面积,h 表示锥体的高

k 次的概率

()(1)

(0,1,2,)k k n k n n P k C p

p k n -=-=… 球的表面积公式 台体的体积公式 2

4S R π= ()

1213

V h S S = 球的体积公式 其中12,S S 分别表示台体的上、下底面积, 343V R π= h 表示台体的高 其中R 表示球的半径

一. 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四项中,只有一项是符合题目要求

的。

(1)设P={x ︱x <4},Q={x ︱2x <4},则

(A )p Q ? (B )Q P ?

(C )R p Q C ? (D )R

Q P C ? (2)某程序框图如图所示,若输出的S=57,则判断框内位

(A ) k >4? (B )k >5?

(C ) k >6? (D )k >7?

(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则

52S S = (A )11 (B )5 (C )8- (D )11-

(4)设02x π

<<,则“2

sin 1x x <”是“sin 1x x <”的 (A )充分而不必要条件 (B )必要而不充分条件

(C )充分必要条件 (D )既不充分也不必要条件 (5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是

(A )2z z y -=

(B )222z x y =+

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_翻转课堂( )

(C )2z z x -≥ (D )z x y ≤+

(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是

(A )若l m ⊥,m α?,则l α⊥ (B )若l α⊥,l m //,则m α⊥

(C )若l α//,m α?,则l m // (D )若l α//,m α//,则l m //

(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥??--≤??-+≥?

且x y +的最大值为9,则实数m =

(A )2- (B )1- (C )1 (D )2

(8)设1F 、2F 分别为双曲线22

221(0,0)x y a b a b

-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF FF =,且2F 到直线1PF

的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 (A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±=

(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.

存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4

(10)设函数的集合

211()log (),0,,1;1,0,122P f x x a b a b ??==++=-=-????

, 平面上点的集合

11(,),0,,1;1,0,122Q x y x y ??==-=-????

, 则在同一直角坐标系中,P 中函数()f x 的图象恰好..

经过Q 中两个点的函数的个数是 (A )4 (B )6 (C )8 (D )10

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_

翻转课堂( )

绝密★考试结束前

2010年普通高等学校招生全国统一考试

数 学(理科)

非选择题部分(共100分)

注意事项:

1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、填空题:本大题共7小题,每小题4分,共28分。

(11)函数2()sin(2)4f x x x π

=--的最小

正周期是__________________ .

(12)若某几何体的三视图(单位:cm )如图所示,

则此几何体的体积是___________3

cm .

(13)设抛物线22(0)y px p =>的焦点为F ,点 (0,2)A .若线段FA 的中点B 在抛物线上,

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_翻转课堂( )

则B 到该抛物线准线的距离为_____________。

(14)设1

1

2,,(2)(3)23n n

n n N x x ≥∈+-+ 2012n n a a x a x a x =+++???+,

将(0)k a k n ≤≤的最小值记为n T ,则

2345335511110,,0,,,,2323

n T T T T T ==-==-?????? 其中n T =__________________ .

(15)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,

则d 的取值范围是__________________ .

(16)已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°

, 则α的取值范围是__________________ .

(17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、

“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握 力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共 有______________种(用数字作答).

三、解答题:本大题共5小题.共72分。解答应写出文字说明、证明过程或演算步骤。

(18)(本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,已知1cos 24

C =- (I)求sinC 的值;

(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.

(19) (本题满分l4分)如图,一个小球从M 处投入,通过管道自

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家

k6kt_

翻转课堂( )

上而下落A 或B 或C 。已知小球从每个叉口落入左右两个

管道的可能性是相等的.

某商家按上述投球方式进行促销活动,若投入的小球落

到A ,B ,C ,则分别设为l ,2,3等奖.

(I )已知获得l ,2,3等奖的折扣率分别为50%,70%,

90%.记随变量ξ为获得k (k =1,2,3)等奖的折扣

率,求随机变量ξ的分布列及期望ξE ;

(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机

变量η为获得1等奖或2等奖的人次,求)2(=ηP .

(20)(本题满分15分)如图, 在矩形ABCD 中,点,E F 分别

在线段,AB AD 上,243

AE EB AF FD ====.沿直线EF 将 AEF V 翻折成'A EF V ,使平面'A EF BEF ⊥平面.

(Ⅰ)求二面角'

A FD C --的余弦值;

(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四

边形MNCD 向上翻折,使C 与'A 重合,求线段FM

的长。

(21) (本题满分15分)已知m >1,直线2

:02

m l x my --=, 椭圆2

22:1x C y m

+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;

(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_翻转课堂( )

12BF F V 的重心分别为,G H .若原点O 在以线段

GH 为直径的圆内,求实数m 的取值范围.

(22)(本题满分14分)已知a 是给定的实常数,设函数22()()()f x x a x b e =-+,b R ∈, x a =是()f x 的一个极大值点.

(Ⅰ)求b 的取值范围;

(Ⅱ)设123,,x x x 是()f x 的3个极值点,问是否存在实数b ,可找到4x R ∈,使得1234,,,x x x x

的某种排列1234,,,i i i i x x x x (其中{}1234,,,i i i i ={}1,2,3,4)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.

数学(理科)试题参考答案

一、 选择题 本题考查基本知识和基本运算。每小题5分,满分50分。

(1)B (2)A (3)D (4)B (5)D

(6)B (7)C (8)C (9)A (10)B

二、填空题:本题考查基本知识和基本运算。每小题4分,满分28分。

0 当n 为偶数时

(11)π (12)144 (13 (14) (15)d ≤-或d ≥ (16)(0,

] (17)264 三、解答题:本大题共5小题,共72分。 n n 11

-23 当n 为奇数时

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_

翻转课堂( )

(18)本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。满分14分。 (Ⅰ)解:因为cos2C=1-2sin 2C=14

-,及0<C <π 所以(Ⅱ)解:当a=2,2sinA=sinC 时,由正弦定理

a c sin A sin C =,得 c=4

由cos2C=2cos 2C-1=14

-,J 及0<C <π得 cosC=由余弦定理c 2=a 2+b 2-2abcosC ,得

b 2解得 所以 b= c=4 或 c=4

(19)本题主要考察随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识。满分14分。

则Εξ=16×50%+8×70%+16

90%=4. (Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916

. 由题意得η~(3,

916

) 则P (η=2)=23C (916)2(1-916)=17014096. (20)本题主要考察空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力。满分15分。

(Ⅰ)解:取线段EF 的中点H ,连结'A H ,因为'A E ='

A F 及H 是

EF 的中点,所以'A H EF ⊥,

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家

k6kt_翻转课堂( )

又因为平面'A EF ⊥平面BEF .

如图建立空间直角坐标系A-xyz

则'

A (2,2,,C (10,8,0),

F (4,0,0),D (

10,0,0).

故'FA →=(-2,2,,FD →

=(6,0,0

).

设n →=(x,y,z )为平面'A FD 的一个法向量,

所以

6x=0.

取z =(0,n =-。

又平面BEF 的一个法向量(0,0,1)m =,

故3cos ,3

n m n m n m ??==。 所以二面角的余弦值为

3 (Ⅱ)解:设,FM x =则(4,0,0)M x +,

因为翻折后,C 与A 重合,所以'CM A M =,

故, 222222(6)80=22x x -++--++()(,得214

x =, 经检验,此时点N 在线段BC 上,

所以214

FM =

。 方法二:

(Ⅰ)解:取线段EF 的中点H ,AF 的中点G ,连结',',A G A H G H 。

因为'A E ='A F 及H 是EF 的中点,

所以'A H EF ⊥

又因为平面'A EF ⊥平面BEF ,

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_翻转课堂( )

所以'A H ⊥平面BEF ,

又AF ?平面BEF ,

故'A H ⊥AF ,

又因为G 、H 是AF 、EF 的中点,

易知GH ∥AB ,

所以GH ⊥AF ,

于是AF ⊥面'A GH ,

所以'A GH

∠为二面角'A DH C --的平面角,

在'Rt A

GH 中,'A H

=GH =2,'A G =

所以cos '3

A GH ∠=. 故二面角'A DF C --的余弦值为

3。 (Ⅱ)解:设FM x =,

因为翻折后,C 与'A 重合,

所以'CM A M =,

而22222

8(6)CM DC DM x =+=+-, 22

2222'''A M A H MH A H MG GH =+=++ 2=

得214

x =, 经检验,此时点N 在线段BC 上,

所以214

FM =。 (21)本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。满分

15分。

(Ⅰ)解:因为直线:l 2

02

m

x my --=经过2F ,

2

2m =,得22m =,

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家

k6kt_翻转课堂( )

又因为1m

>,

所以m =

故直线l 的方程为02x -=。 (Ⅱ)解:设1122(,),(,)A x y B x y 。

由2

222

21m x my x y m ?=+????+=??,消去x 得 2

2

2104m y my ++-= 则由2

228(1)804m m m ?=--=-+>,知28m <, 且有212121,282

m m y y y y +=-=-。 由于12(,0),(,0),F c F c -, 故O 为12F F 的中点,

由2,2AG GO BH HO ==, 可知1121(

,),(,),3333x y x y G h 22

21212()()99

x x y y GH --=+ 设M 是GH 的中点,则1212(,)66

x x y y M ++, 由题意可知2,MO GH < 即22

2212121212()()4[()()]6699

x x y y x x y y ++--+<+ 即12120x x y y +<

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家 k6kt_翻转课堂( )

而22

12121212()()22

m m x x y y my my y y +=+++ 22

1(1()82m m =+-) 所以21082

m -< 即2

4m <

又因为1m >且0?>

所以12m <<。

所以m 的取值范围是(1,2)。

(22)本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识。满分14分。

(Ⅰ)解:f ’(x)=e x (x-a) 2(3)2,x a b x b ab a ??+-++--?? 令222()(3)2,

=(3-a+b)4(2)(1)80,g x x a b x b ab a b ab a a b =+-++--?---=+-+>则

于是,假设1212,()0.x x g x x x =<是的两个实根,且

(1) 当x 1=a 或x 2=a 时,则x=a 不是f(x)的极值点,此时不合题意。

(2) 当x 1≠a 且x 2≠a 时,由于x=a 是f(x)的极大值点,故x 1<a<x 2.

即()0

g

x <

即2

(3)20a a b a b ab a +-

++--<

此时4223x x a a b =-=--+

复兰高考名师在线:( )

复兰高考名师在线,把全省名师带回家

k6kt_翻转课堂( )

或4223x

x a a b =-=--

2)当

21x a a x -=-时,则

于是1a b +-=

此时42(3)3(3)324a x a a b a b x b a

++---++===--= 综上所述,存在b 满足题意,

当b=-a-3时,

复兰高考名师在线:()复兰高考名师在线,把全省名师带回家k6kt_翻转课堂()

本文来源:https://www.bwwdw.com/article/5wd1.html

Top