全国中学生数理化竞赛论文范文 - 图文

更新时间:2024-01-12 14:45:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

(数学部分)

第一部分 解题技能竞赛大纲 第二部分 解题技能竞赛试题样题 第三部分 数学建模论文示范论文

首届全国中学生数理化学科能力竞赛

化学学科笔试部分竞赛大纲(2008年试验稿)

为了提高广大青少年走进科学、热爱科学的兴趣,培养和发现创新型人才,团中央中国青少年发展服务中心、全国“青少年走进科学世界”科普活动指导委员会办公室共同举办首届“全国中学生数理化学科能力竞赛”(以下简称“竞赛”)。竞赛由北京师范大学《高中数理化》杂志社承办。为保证竞赛活动公平、公正、有序地进行,现将数学学科笔试部分竞赛大纲颁布如下:

1 命题指导思想和要求

根据教育部《全日制义务教育数学课程标准》和《全日制普通高级中学数学课程标准》的要求,着重考查学生的基础知识、基本能力、科学素养和运用所学知识分析问题、解决问题力及创新能力。命题吸收各地高考和中考的成功经验,以能力测试为主导,体现新课程标准对能力的要求,注意数学知识中蕴涵的丰富的思维素材,强调知识点间的内在联系;注重考查数学的通法通则,注重考查数学思想和方法。激发学生学科学的兴趣,培养实事求是的科学态度和创新能力,促进新课程标准提出的“知识与技能”、“过程与方法”、“情感与价值观”三维目标的落实。总体难度把握上,要追求“源于教材,高于教材,略高于高考”的原则。并提出以下三个层面上的命题要求:

1)从宏观上看:注意对知识点和能力点的全面考查,注意对数学基本能力(空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力)的考查,注意对数学思想和方法方面的考查,注意考查通则通法。

2)从中观上看:注意各个主要知识块的重点考查,注意对主要数学思维方法的考查。

3)从微观上看:注意每个题目的基础性(知识点)、技能性(能力点)、能力性(五大基本能力为主)和思想性(四种思想为主),注意考查大的知识块中的重点内容(如:代数中的函数的单调性、奇偶性、周期性),注意从各个知识点之间的交

汇命题,注意每个题目的通则通法使用的同时也适度引进必要的特技,注意题目编拟中一些题目的结构特征对思路形成的影响。

2 命题范围

依据教育部《全日制义务教育数学课程标准》和《全日制普通高级中学数学课程标准》的要求,初赛和决赛所考查的知识点范围,不超出相关年级在相应的时间段内的普遍教学进度。另外要明确初二年级以上开始,每个年级的命题范围包含下年级的所有的内容。比如:高一的命题范围包括初中所有内容和高中阶段所学的内容。

3 考试形式

初一、初二、初三、高一、高二组:闭卷,笔答。考试时间为120分钟,试

卷满分为120分。

4 试卷结构

全卷选择题6题,非选择题9题(填空6题、解答题3题)

5 难度系数

1)初赛试卷的难度系数控制在0.6左右;

2)决赛试卷的难度系数控制在0.5左右。

初中一年级样题

一、 选择题(每小题5分,共30分)

1、若a?5,b?3,那么a?b的值有( )个 【C】 (A)4 (B)3 (C)2 (D)1 2、若

4表示一个整数,则整数x可取值共有( ).【D】 x?12

2

(A)3个 (B) 4个 (C) 5个 (D) 6个

3、如果代数式4y-2y+5的值为7,则代数式2y-y+1的值等于( )【A】 (A)2 (B)3 (C)-2 (D)4

4、已知?A与?B之和的补角等于?A与?B之差的余角,则?B=( )【C】

0000

(A)75 (B)60 (C)45 (D)30

5、如右图所示,在△ABC中,∠ACB是钝角,让点C在射线BD

A 上向右移动,则( )【D】

(A)△ABC将先变成直角三角形,然后再变成锐角三角形,而不

会再是钝角三角形

(B)△ABC将变成锐角三角形,而不会再是钝角三角形

C D B (C)△ABC将先变成直角三角形,然后再变成锐角三角形,接着又由锐角三角形变为钝角三角形

(D)△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形

6、观察这一列数:?3591733,, ?, ,?,依此规律下一个数是( )【D】 4710131645456565(A) (B) (C) (D)

21192119

二、 填空题(每小题5分,共30分)

7、已知

3a?4,3b?2,则32a?3b=_________ 【128】

8、甲、乙两打字员,甲每页打500字,乙每页打600字,已知甲每完成8页,乙恰能完成7页。若甲打完2页后,乙开始打字,则当甲、乙打的字数相同时,乙打了 页【35】

a—32004

如果多项式3mxay与—2nx4y是关于x、y的单项式,且他们的和是单项式,则a—1=______ 9、【0】

10、一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积是_________cm3。【60】

11、张、王、李三人预测甲、乙、丙、丁四个队参加足球比赛的结果:王说:\丁队得冠军,乙队得亚军\; 李说:\甲队得亚军,丙队得第四\;张说:\丙队得第三,丁队得亚军\。 赛后得知,三人都只猜对了一半,则得冠军的是___________。【丁】 12、如果a、b、c是非零有理数,那么 【3、1、-1、-3】

aa?bb?cc的所有可能值是

三、 解答题(每小题20分,共60分)

?1?13、计算???2001?2007????20012008???5????6?1213?1?????【2007】 ?30?b,b的a1214、三个互不相等的有理数,既可以表示为1,a?b,a的形式,也可以表示为0,形式,试求a2000?b2001的值

b,a【解:由于三个互不相等的有理数,既表示为1,a?b,a的形式,又可以表示为0,

b的形式,也就是说这两个数组的数分别对应相等。

bb无意义,

aab∴a?0,只能a?b?0,即a??b,于是??1.只能是b?1,于是a=-1。

a于是可以判定a?b与a中有一个是0,与b中有一个是1,但若a?0,会使∴原式=2 。】

15、现在由五个福娃带我们去参观国家体育馆“鸟巢”,贵宾门票是每位30元,20人以上(含20人)的团体票8折优惠,我们一行共有18人(包括福娃),当领队欢欢准备好零钱到售票处买18张票时,爱动脑筋的晶晶喊住了欢欢,提议买20张票,欢欢不明白,明明我们只有18人,买20张票岂不是“浪费”吗?

(1)请你算算,晶晶的提议对不对?是不是真的“浪费”呢?

(2)当人数少于20人时,至少要有多少人去“鸟巢”,买20张票反而合算呢? 【略】 16、如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D.点P在MN上(P点与A、B、M三点不重合).

(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系?请说明理由. (2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系?(只须写出结论) 【答案:①过点P作PF∥AC,交ME于点F,则∠γ= ∠α+∠β

②当点P运动到射线AN上时:∠α= ∠γ+∠β 当点P运动到线段BM上时: ∠β= ∠γ+∠α】

l1 Nl2A

P

γ B

βαECDM

初中高中数学创新小论文要求及范文

一、 论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。 二、 论文选题:新颖,有意义,力所能及

要求: 1. 有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。 2. 有价值.

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。 3. 有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。 4. 有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新; 结果创新,要有新的,更深层次的结果。 5. 问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中

生(高中生)的能力范围。

三、 (数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

1.数据真实可靠,不是编的数学题目; 2.数据分析合理,采用分析方法得当。

四、 (数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题

的一个近似描述,以便于人们更深刻地认识所研究的对象。 要求:

1.抽象化简适中,太强,太弱都不好;

2.抽象出的数学问题,参数选择源于实际,变量意义明确; 3.数学推理严格,计算准确无误,得出结论;

4.将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

5.问题和方法的进一步推广和展望。

五、 (数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

1.对问题了解足够清楚,其中指导教师的作用不容忽视; 2.问题解答推理严禁,计算无误; 3.突出研究的特色和价值。

六、 论文格式:符合规范,内容齐全,排版美观

1. 标题:

是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。 要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。 2. 摘要:

全文主要内容的简短陈述。 要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果; 2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6000字以内

的文章摘要一般不超过300字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。 要求:数量不要多,以3-5各为宜,不要过于生僻。

4. 正文 1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题; 概括介绍论文的内容,问题的结论和所使用的方法。 2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。 要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误; 3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。 要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

示范小论文:

东北育才学校紧急情况下学生的疏散问题

辽宁沈阳 东北育才学校初一 李思阳 指导老师 徐秋慧

摘要:本文针对东北育才学校北校区东楼在紧急情况下学生的疏散问题,在合理的假设下,得出了在学生人数密度较大的教学楼内,学生疏散时间的计算方法和疏散过程中学生拥挤瓶颈现象的解决方法,并提出了采用合理疏散方案来控制疏散过程中学生拥挤的瓶颈现象,使学生能在最短的时间内疏散到安全地带。 关键词:紧急疏散;瓶颈现象;疏散时间;

1. 问题的提出

学校是学生聚集的场所,人口密度大,一旦发生危险情况,如火灾、爆炸等紧急情况,如果疏散方式不科学,后果则不堪设想。我们应该防患于未然,在危险发生之前,就考虑到各种危险因素,设计出最合理疏散方式,使危险发生时,将损失降低为最小。

对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别。本文针对东北育才学校北校区东楼的结构特点,提出一种学生疏散时间计算模型,对东楼的危险场景作了分析,从而指导学生能在最短的时间内疏散到安全地带。 2. 模型假设与符号说明 2.1模型假设:

(1)学生具有相同的疏散特征,且均具有足够的身体条件疏散到安全地点;

(2)学生都处于清醒状态,在疏散开始的时刻同时井然有序地进行疏

散,且在疏散过程中不会出现中途返回选择其它疏散路径;

(3)在疏散过程中,学生人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配; (4)学生在不拥挤的情况下,平均运动速度为3米/秒;

(5)学生从每个可用出口疏散且所有人的疏散速度一致并保持不变; (6)每班学生人数相等; (7)每个学生所占的空间是相等; (8)每班教室长度是相等的,为12米长; (9)假设火灾发生在第三层的特2班教室;

(10)发生火灾时每个教室都为满人,这样这层楼师生共有560人; (11)教学楼内安装有应急广播系统,但没有集中火灾报警系统; (12)从起火时刻起,当可用安全疏散时间TKY小于必需安全疏散时间TBX,为逃生失败;

2.2东北育才学校北校区东楼情况介绍

东北育才学校北校区东楼为一幢三层的建筑,每层有11间教室,1间活动室,6间办公室。一层中间为大厅,其余为教室,每间教室都有学生上课。二层为活动室和办公室,人员极少故忽略不考虑,只作为一条人员通道。每班教室都有两个出口。

经测量,走廊的总长度为108米,走廊宽为2.2米,单级楼梯的宽度为0.32米,每层楼梯共有16级,楼梯口宽2.0米,每间教室的面积为72平方米。东北育才学校北校区东楼平面图见图1。

图1

东北育才学校北校区东楼平面图

2.3符号说明

(1)TBX:必需安全疏散时间;TBX是指从危险情况发生起,到人员疏散到安全区域的时间。TBX 中BX为“必需”的汉语拼音bi-xu的字头b-x。

(2)TKY:可用安全疏散时间;TKY是指事故发生时,到对人员构成危险时的一段时间。TBX 中KY为“可用”的汉语拼音ke-yong的字头k-y。

当可用安全疏散时间TKY大于必需安全疏散时间TBX,疏散成功;当可用安全疏散时间TKY小于必需安全疏散时间TBX,疏散失败。因此,我们要做的就是采用合理疏散方案来控制疏散过程中学生拥挤的瓶颈现象,使学生能在最短的时间内疏散到安全地带。

(3) TWT:危险探测时间;TWT是指疏散人员从察觉到危险现象,到意识到危险存在的一段时间。TWT 中WT为“危险-探测”的汉语拼音Wei′xian-Tan′ce的字头W-T。 (4)TYDZ:预动作时间,单位为秒; (5)TYSY:人员疏散运动时间,单位为秒; (6)TYS:认识时间,单位为秒; (7)TFY:反应时间,单位为秒;

(8) L1:学生或老师在教室内运动距离,米,Max(L1)=12米; (9)Vk:疏散人员的平均运动速度,单位为米/秒; (10)t教室门口:在教室门口等候时间,单位为秒; (11)L2:疏散人员在楼道运动距离,单位为米; (12)L楼梯:楼梯级数,Max(L楼梯)= 16×3=48级; (13)V下楼梯疏散人员下楼梯的平均速度,单位为级/秒; (14)t楼门口为在楼门口等候时间,单位为秒。 3. 疏散时间模型的建立与求解 3.1 疏散时间模型的建立

时间就是生命,在整个疏散过程中,疏散时间是至关重要的。因此建立一个合理的疏散时间模型,了解疏散过程中时间因素的影响是解决疏散问题关键。

从危险情况发生起,到学生疏散到安全区域的时间,称之为必需安全疏散时间TBX。从危险情况发生起,到对疏散人员身体构成危险时的一段时间,称之为可用安全疏散时间TKY。当可用安全疏散时间TKY大于必需安全疏散时间TBX,则疏散成功;当可用安全疏散时间TKY小于必需安全疏散时间TBX,则疏散失败。因此,我们要做的就是采用合理疏散方案来控制疏散过程中学生拥挤的瓶颈现象,使学生能在最短的时间内疏散到安全地带。

影响必需安全疏散时间TBX长短的因素有:疏散人员对危险的认知反应能力、危险信息传播警告系统、疏散人员的行动能力、疏散过程管理等,如图2所示。

因此,疏散时间模型为:在疏散过程中,紧急情况下的我们将必需安全疏散时间TBX分为危险探测时间TWT、预动作时间TYDZ和人员疏散运动时间TYSY。其中预动作时间TYDZ又包括认识时间TYS、反应时间TFY和危险信息传播时间TXC。即:

TBX = TWT + TYDZ + TYSY = TWT +(TYS +TFY +TXC)+

TYSY …………..(1)

人员疏散运动时间还可以细分为:从最远疏散点至安全出口步行所需的时间和出口通过排队时间构成。出口通过排队时间可由区域人员全部从出口通过所需的时间来计算。

根据建筑物的结构特点,可将东北育才学校北校区东楼疏散通道分成6段:1)教室内部;2)教室门口;3)楼道;4)楼梯;5)楼门口。在第2、第5段的出口处,人群通过时可能需要一定的排队时间。于是第k个人的必需安全疏散时间TBX(k)可修正为表示为:

式中,

L1为第k个人在教室内运动距离,Max(L1)=12米;Vk为第k个人平均运动速度; t教室门口为在教室门口等候时间;L2为第k个人在楼道运动距离;L楼梯为楼梯级数;V下楼梯第k个人下楼梯的平均速度;t楼门口为在楼

门口等候时间。最后一个离开东教学楼的学生所有用的时间就是人员疏散所需的必需疏散时间。 3.2 疏散时间模型的求解

假设第三层的特2班教室是起火房间,其中特2班学生直接获得火灾迹象,马上进行疏散,设其反应的滞后时间为60秒,即TWT +TYS +TFY = 60秒。东楼人员大部分是学生和老师,火灾信息通过应急广播系统很快传播,因而同楼的其他教室的人员会得到特2班学生及教师的警告,开始决定疏散行动。设危险信息传播的时间为120秒,即TXC = 120秒。开始疏散之前,危险探测时间、危险信息传播时间、接受信息学生的认识时间和反应时间等总的滞后时间为180秒。

由于火灾发生在三楼,其对一、二层人员构成的危险相对较小,故下面重点讨论第三层、的人员疏散问题。

必需安全疏散时间TBX除了第一部分TWT +TYS +TFY +TXC之外,就是学生疏散运动时间TYSY,它又分成6个时间段:1)教室内部;2)教室门口;3)楼道;4)楼梯;5)大厅;6)楼门口。

其中第1时间段:教室内部,L1为第k个人在教室内运动距离,Max(L1)=12米,此时教室里有很多桌椅,因此学生运动速度应该乘以系数0.5,即教室平均运动速度为3米/秒×0.5=1.5 米/秒,则Max(t1)= 12/1.5 = 8秒。

第2时间段:教室门口,由于每班50名学生,同时涌向教室门口,所以教室门口是疏散过程中的第一个拥挤瓶颈现象发生的地方。此时教师有责任组织学生有秩序地从两个门口疏散:座位为1-4排的从前门疏

散,座位为5-6排的从后门疏散,依次快速地离开班级门口。在有秩序地正常疏散情况下,按1.5米宽的门口算,门口人流量= 1人/秒,则教室门口滞后时间Max(t2)= 50÷1÷2 = 25秒。

第3时间段:楼道,南北楼道长各为54米。由于有三个楼梯,因此各班应就近选择下楼楼梯,特1班、特2班、少儿1班等三个班级应选择北楼梯下楼,常1班、常2班、常5班应选择南楼梯下楼,其余班级选择中间楼梯下楼。

这样特1班、特2班、少儿1班在楼道运动的距离为Max(L2)=27米,此段时间花费max(t3)= 27÷3= 9秒。

常1班、常2班、常5班在楼道运动的距离为Max(L2)=54+27=81米,因为南楼梯没有出口,他们需通过中间大门,因此在一楼有一段楼道运动,此段时间花费max(t3)= 81÷3=27秒。

其余班级在楼道运动的距离为Max(L2)=27米,此段时间花费max(t3)= 27÷3=9秒。

第4时间段:楼梯,楼梯级数为L楼梯=48级,下楼梯的平均速度V

下楼梯

= 3级/秒,则max(t4)= 48÷3 =16秒。

第五时间段:楼门口,由于全部学生都涌向楼门口,所以楼门口是

疏散过程中的第二个拥挤瓶颈现象发生的地方。此时学校领导应提前派人在北、西楼门口组织师生有序疏散。在有秩序地正常疏散情况下,按3米宽的门口算,门口人流量= 5人/秒,则教室门口滞后时间Max(t2)= 550÷5÷2 =55秒。

学生疏散运动时间Max(TYSY)= 8+25+27+16+55 =131秒。

学生必需安全疏散时间TBX = 180 + 131 =311秒=5分11秒 3.3 可用安全疏散时间

一般情况下,可用安全疏散时间TKY与火灾危险状态有关。 火灾的危险状态[1] 可用1)热辐射通量;2)烟气温度;3)烟气中有毒气体浓度来表示。

1)热辐射通量是指热辐射到人体皮肤表面的有效热值的数量。实验表明,当人体接受的热辐射通量超过0.25W/cm2并持续3分钟以上时将造成严重灼伤。

2)烟气温度:当上部烟气层温度高于180oC时,将对人体皮肤造成严重伤害;当烟气层下降到与人体直接接触时,烟气层温度高于100oC时,会使人直接烧伤。资料显示,在71oC的烟气中待60秒或在82oC的烟气中待30秒、在100oC的烟气中待15秒就可以造成皮肤的二级烧伤。

3)有毒气体浓度:在烟气层下降到人员呼吸高度1.5米左右时,CO浓度达到0.25% 就可以对人构成严重伤害。

此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为2.5kW/m2 (烟气层温度约为200℃)。

可用安全疏散时间是一个不确定值,与火灾程度等级、教学楼建筑材料及教室桌椅门窗材料耐火性能等因素有关。它与火灾程度等级成反

比,越严重的火灾,可用安全疏散时间越短。如果教学楼建筑材料及教室桌椅门窗材料耐火性能不好,易燃且含有害成分,则可用安全疏散时间越短。

3.4 模型补充说明:

以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。

该模型是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算计算得到的。模型中的人员运动速度是作者本人通过多次在不同人员密度条件下,试验而得到的。而预测的疏散时间是根据建筑物的结构特点和人员运动速度计算而得到的。在该例中起火教室的反应滞后时间为60 秒 ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。教室门口和楼门显然是制约人员疏散的一个瓶颈。

另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。

附件:火灾自救口诀 熟悉环境,暗记出口。 通道出口,畅通无阻。 扑灭小火,惠及他人。 明辨方向,迅速撤离。 不入险地,不贪财物。 简易防护,蒙鼻匍匐。 避难场所,固守待援。 缓晃轻抛,寻求援助。 跳楼有术,虽损求生。

参考文献:

[1] 公安部消防局编,中国火灾统计年鉴,群众出版社,1997年09月 [2] 韩占先等编著,火灾科学与消防工程,山东科学技术出版社,2001年04月

[3] Shields, T. J. Human Behavior in Fire [A]. Proceedings of the First International Symposium on Human Behavior in Fire, Fire SERT[C]. University of Ulster, September 2nd, 1998, 820.

[4] 杨希伟,学校疏散时发生踩踏, 2005年11月28日02:20 合肥报业网-江淮晨报http://www.sina.com.cn

演出收入计税的数学模型

浙江省金华市第五中学初二 陶蕴哲

[内容提要]

本文运用了Y=aX+b这一最基本的函数,通过建立数学模型,简化了比较复杂的演出收入计算个人所得税的问题。

[关键词] 演出收入个人所得税数学模型

问题的提出

我的表姐是一个演员,每次演出的收入较高,但是她总觉得缴纳个人所得税的计税方法太复杂,到底要缴多少税,心里没底。为了帮表姐解决这个问题,我上网查证了计税方法,询问了税务局的专家,通过分析后发现,运用Y=ax+b这一最基本的函数,通过建立相应的数学模型,可以简化比较复杂的演出收入计算个人所得税的问题。

一、由演出者缴税的数学模型 (一)、税法规定的数学模型

个人所得税税法规定,演出收入要在减去一定费用,计算出应纳税所得额以后,再按规定税率来计算应纳税额。

假设:应纳税额为Y元,总收入为M元,应纳税所得额为X元,税率为Z。则Y=XZ。这个关系式中,有两点需要说明:

1.这里的应纳税所得额X,是在获得的总收入M的基础上扣除一定费用后的余额。税法规定,费用的扣除标准如下:

(1) 当M≤4000时,费用扣除额为800元,即X=M-800.

(2) 当M>4000时,费用扣除额为收入的20%,即X=M-20%M=0.8M 2.这里的税率Z规定如下表(见表1)

表1 演出收入个人所得税税率表 级数 税1 表税里

2 3 X(每次应纳税所得额) 不超过20000元(含)的部分 超过20000元至50000元(含)的部分 超过50000元的部分 Z(税率%) 20 30 40 该率在法有

一个术语,叫三级超额累进税率。即:它将收入分为三段,每段的税率分别不同,收入越高,税率越高。如果用数学的术语来表达的话,它是一个分段函数: 1、如果X≤20000 则Y=20%X

2、如果50000≥X>20000

则Y=20000×20%+(X一20000)×30% 3、如果X>50000

则Y=20000×20%十(50000—20000)×30%+(X一50000)×40% 上述表达式告诉我们,计算个人所得税时,应先根据M计算出X, 再根据X找出相应的Z,最后将X进行分段,再计算出应纳税额Y。 数学模型的应用:

问题1:甲演员到杭州演出一场,收入3000元,应缴纳多少个人所得税?

1、∵M=3000元<4000

∵X=M-800=3000—800=2200元 2、∵X<20000

∴Y=20%X= 2200×20%=440元

问题2:乙演员到杭州演出一场,收入100000元,应缴纳多少个人所得税?

1、∵M=100000元>40000

∴X=0.8M=0.8×100000=80000元 2、∵X>20000

∴Y=20000×20%+(50000-20000)×3O%+(X一50000)×40% =20000×20%+(50000-20000)×30%+(80000—50000) ×40% =25000元

从以上这些例子我们发现,在超额累进税率F,分段计税确实比较复杂。我们能不能找出简单一点的计算方法呢? (二)化简数学模型

我们将上面的分段函数进行化简: 1、如果X≤20000

则Y=200%X,这已经很简单了,不需要再化简。 2、如果50000≥X>20000

则Y=20000×20%+(X-20000)×30%=30%X-2000 3、如果X>50000

则Y=20000×20%+(50000-20000)×30%+(X-50000)×40% =40%X一7000

分析上述三个化简后的式子,我们可以得出以下两个结论: 1、应纳税额Y等于应纳税所得额X与相应税率Z的乘积减去一个常数。假设此常数为C,则Y=XZ-C。 2、可以把税率表(表1)改写成表2 表2 演出收入个人所得税税率表

级数 1 2 3 X(每次应纳税所得额) 不超过20000元(含)的部分 超过20000元至50000元(含)的部分 超过50000元的部分 Z(税率%) 20 30 40 C(常数) 0 2000 7000

上述结论告诉我们,计算个人所得税时,应先根据M计算出X,再根据X找出相应的Z和C,代入关系式Y=XZ-C,就可以直接得出结 果了。

数学模型的应用: 问题3 资料同问题1。

1、∵M=3000元<4000 ∴X=M-800=3000-800=220元 2、∵X<20000,则Z=20%,C=O ∴Y=XZ-C=2200×20%-0=440元 问题4 资料同问题2。

1、∵M=100000元>40000元 ∴X=0.8M=0.8×100000=80000元 2、∵X>50000,则Z=40%,C=7000 ∴Y=XZ-C=80000×40%-7000=25000元 这样计算就简单多了!

(三)再化简数学模型

经过化简后,计算确实简单了许多,但它还需要转个弯,M的前提下,只有换算成X后才能计算税款。能不能直接用M来: 答案是肯定的。因为M与X之间存在着密切的关系。下面我佃

1、当M≤4000吋.则X=M-800,Z=20%.C=0,代入 Y=XZ-C 那么,Y=(M一800)×20% = 0.2M-160 令Y=0,即0.2M-160=0,得M=800 所以,M的取值范围为:800<M≤4000 即当800<M≤4000时,Y=0.2M-160

2、当M>4000时,X=O.8M,按照X的取值范围分三种情况

(1)如果X≤20000,则Z=20%,C=O,代入Y=XZ-C, 那么,Y=20%X-0=0.2×0.8M=0.16M 令X=20000,得M=X÷0.8=20000÷0.8=25000 所以,M的取值范围为4000<M≤25000 即当4000<M≤25000时,Y=0.16M

(2)如果50000≥X>20000,则Z=30%,C=2000,代入Y=XZ-C 那么,Y=30%X-2000=0.3×0.8M-2000=0.24M-2000=0.24M-2000 令X=50000,得M=X÷0.8=50000÷0.8=62500 所以,M的取值范围为:25000<M≤62500 即,当25000<M≤62500时,Y=0.24M-2000 20000,得M:X÷O 8:20000÷0 8:25000

(3)如果X>50000,则Z=40%,C=7000,代入Y=XZ-C 那么,Y=40%X-7000=0.4×0.8M-7000=0.32M-7000

M的取值范围为M>625000

即,当M>625000时,Y=0.32M-7000

通过观察上述式子,我们可以发现,他们都变成了一次函数:Y=aM-b。将上述推导结果整理成下表(表3)

表3 演出收入个人所得税计税系数表

级数 1 2 3 4 X(每次总收入) 超过800元至4000元(含)的 超过4000元至25000元(含)的 超过25000元至62500元(含)的 超过62500元的 a 0.2 0.16 0.24 0.32 b 160 0 2000 7000 问题5:资料同问题1

∵M=3000元<4000,则a=0.2,b=160

∴Y=aM-b=0.2×3000—160=440元 问题6:资料同问题2

∵M=100000元,M>62500,则a=0.32,b=7000 ∴Y=aM—b=0.32×100000—7000=25000元 这样的计算就更简单了!

二、由举办方代付税款的数学模型

问题2中乙到杭州演出一场,总收入为100000元,缴了25000元个人所得税后,税后净收入只有75000元了。她觉得报酬太低,不合算。于是丙到演出举办单位签订协议,要求演出的税后净收入为100000元,即个人所得税由演出举办者承担.那么,举办者代为缴纳的个人所得税是不是25000元呢?

(一)税法规定的数学模型

假设:税后净收入为N,举办者为演员代付款为Y,演出举办方实际支出为M,M也就是演出者的总收入。显然M=Y+N。这意味着计算代付税款时,应当将举办者支付给演员的的税后净收入N(或称不含税支付额)换算为总收入M,按规定扣除费用后得巾应纳税所得额X,然后按规定税率Z计算出应代付的个人所得税款Y。

现在N是已知条件,我们只要建立起以N为自变量、丫为因变量的函数关系式,并且将表面化中的X换算成N,就可确定Z,计算出Y。 根据费用扣除规定和表面化的信息,推导如下:

1、当M≤4000时,X=M-800,将X=M-800,代入Y=XZ-C 那么,Y=(M-800)Z-C =(Y+N-800)Z-C,经整理可得: Y=

NZ?800Z?C

1?Z 下面确定N的取值范围。 当M≤4000时,Z=20%,C=0 令Y=0,即

NZ?800Z?C =0,则N=800。

1?Z

令M=4000,即Y=XZ—C=(4000—800)×20%-0=640元,

N=M—Y=4000—640=3360元。

即:与M=4000元相对应值为3360元。 也就是说,当3360≥N>800时,按Y=此时,Z=20%,C=0。

2、当M>4000时,X=0.8M 那以,Y =XZ-C

=0.8MZ-C =0.8(Y+N)Z-C

经整理可得:

Y=

下面分别就X的三种取值范围来确定N的对应取值范围。 (1)当X=20000元时,Y=XZ-C=20000×20%-0=4000元

M=X÷0.8=20000÷0.8=25000元

N=M-Y=25000-4000=20111元。即:与X=2000元相对应的N值为21000元。

也就是说,当21000≥N>3360时,按Y=时,Z=20%,C=0。

(2)当X=50000元时,Y=XZ-C=50000×30%-2000=13000元 M=X÷0.8=50000÷0.8=62500元,N=M-Y=62500-13000=49500元,即:与X=50000元相对应的N值为49500元。

也就是说,当49500≥N>21000时,按Y=时,Z=30%,C=2000。

(3)显然,当N>49500时,按Y=Z=40%,C=7000元。

0.8NZ?C来计算税款。此时,

1?0.8Z0.8NZ?C来计算税款。此

1?0.8Z0.8NZ?C来计算税款。此

1?0.8Z0.8NZ?C

1?0.8ZNZ?800Z?C 来计算税款。

1?Z

根据上述推导,可以把税率表(表2)改写成下表(表4)

级数 1 2 3 4 N(不含税演出收入) 超过800元至3360元(含)的 超过3360元至21000元(含)的 超过21000元至49500元(含)的 超过49500元的 Z(税率%) C(常数) 20 20 30 40 0 0 2000 7000 表4 不含演出收入适用税率表

问题7:丙演员到杭州演出一场,按照合同规定,举办方应支付歌星报酬3000元,与其报酬相关的个人所得税由举办方代付。计算应代付的个人所得税税额。

1、∵N=3000<3360,则Z=20%,C=0 2、∴Y=

NZ?800Z?C3000?20%-800?20%-0==550元

1?Z1?20% 现在,我们知道了由演员自己缴税和演出举办方代付税款的计算方法是不一样的。但是,这样的计算比较复杂,能否再简化点呢? (二)化简数学模型

观察表4可知,Z和C虽然随着N的变化而变化,但当N确定后, Z和C就变为常数了。所以,我们将Z和C代入式子

Y=

NZ?800Z?C0.8NZ?C 或Y=就可以进行化繁为简了。

1?Z1?0.8ZNZ?800Z?CN?20%?800?20%?0N==?200

1?Z1?20@.8NZ?C0.8N?20%?04N? =

1?0.8Z1?0.8?20!0.8NZ?C0.8N?30%?20006N??2631.58 =

1?0.8Z1?0.8?301、当N≤3360时,Z=20%,C=0 那么,Y=

2、当21000≥N>3360时,Z=20%,C=0 那么,Y=

3、当49500≥N>21000时,Z=30%,C=2000 那么,Y=

4、当N>49500时,Z=40%,C=70000

那么,Y=

0.8NZ?C0.8N?40%?70008N??10294.12 =

1?0.8Z1?0.8?40通过观察上述式子,我门可以发现,它们都变成了一次函数: Y=An-b。 将述导果理下(见5)

表5 不含演出收入计税系数表

数学模型的应用: 问题8:资料同问题7 1、∵N=3000<3360,则a=

2 、Y=结论

综上所述,不论是由演出者付税,还是由演出举办者代付税,都可以运用Y=Ax+b来计算个人所得税。只要稍微懂点函数知识的人,利用本文介绍的方法,计算个人所得税就易如反掌了。

级数 1 不含税劳务报酬收入 未超过3360元(含)的 A B 200 上推结

1 44 216 198 172 超过3360元至21000元(含)的 0 整成表

3 超过21000元至49500元(含)的 2631.58 4 超过49500元的 10294.12 表

N3000?200??550元—200 44?2001,b=200 4

F1 之进站策略

沈阳市东北育才学校初一数学1班:林奕峰 指导教师:徐秋慧

一、背景与问题的提出

F1 ,中文称为 \一级方程式锦标赛\,是英文Formula Grand Prix的简称,目前这项比赛的正式全名为 FIA Formula World Championship (一级方程式赛车世界锦标赛) 。一级方程式锦标赛是由国际汽车运动联合会从1950年开始举办的,为何叫做Formula(方程式)赛车呢?方程式其实就是 \规则与限制\ 的意思,参加F1比赛的队伍必须在FIA所制订的如方程式般精确的规格与规则下制造赛车和进行比赛;而F1是FIA所制订的方程式赛车规范中等级最高的,因此以“1”命名。

目前, F1是许多人所关注的体育项目,其魅力来自于精彩激烈的比赛以及车手的影响力。今年更是舒马赫及法拉利车迷最为喜悦的一年。舒马赫继续着自己良好的势头,未满足于已经夺取的六个总冠军,而是在今年已结束的 5 站大奖赛中全部摘得桂冠。这不仅延续了其本人在 F1 迷心目中和西班牙卡塔伦亚赛道上的 \车王\ 地位,而且为自己的第二百场分站赛夺取了第 75 个冠军。这无疑是一个骄人且让人难以置信的成绩!身为舒马赫的忠实车迷,在欣喜之余,我也冷静下来仔细考虑了一下:舒马赫为何会屡屡夺魁呢?

我曾记得有人说过:“F1比赛中,要想取胜,七分靠战车,二分凭策略,一分比技术”。在当今赛车制造技术不相上下的情况下,良好的战术安排已成为决定比赛胜负的关键。而这种战术安排中,进站策略无疑是最重要的一环。在看过极具戏剧性的西班牙大奖赛后,不禁心中提出一个疑问:在卡塔伦亚赛道上应采取怎样的进站策略才能取胜呢?

二、下面请让我以本年度 F1 西班牙大奖赛为例作具体的分析。

赛道及战绩的具体情况 1.赛道及参数示意图:

弯道名称介绍: 1、埃尔夫 (Elf); 2、雷诺 (Renault);3、里普索尔 (Repsol); 4、斯特 (Seat) ; 5、坎普萨 (Campsa) ; 6、卡特斯克亚 (La Catxa) ; 7、萨巴德尔(Bano De Sabadel)

2.西班牙大奖赛正赛成绩一览表: 名次 车号 1 2 3 4 5 6 7 8

车 手 车 队 国 籍 轮 胎 时 间 进站次数 3 2 3 3 3 3 2 3 1 2 7 8 迈-舒马赫 法拉利 巴里切罗 特鲁利 阿隆索 法拉利 雷诺 雷诺 BAR 德国 普利斯通 1:27:32.841 巴西 普利斯通 +13.290 意大利 米其林 西班牙 米其林 日本 米其林 米其林 +32.294 +32.952 +42.327 +1:13.804 10 佐藤琢磨 4 拉-舒马赫 威廉姆斯 德国 索伯 BAR 11 费斯切拉 9 巴顿 意大利 普利斯通 +1:17.108 英国 米其林 -1 lap

9 10 11 12 5 6 马萨 库特哈德 雷科南 韦伯 达- 马塔 潘塔诺 克莱恩 蒙托亚 潘尼斯 索伯 迈凯轮 迈凯轮 巴西 普利斯通 英国 芬兰 米其林 米其林 -1 lap -1 lap -1 lap -1 lap -1 lap 2 3 3 3 3 12 14 13 16 14 19 15 15 16 3 美洲虎 澳大利亚 米其林 丰田 乔丹 巴西 米其林 意大利 普利斯通 退出(52 圈) 美洲虎 奥地利 米其林 退出(47 圈) 威廉姆斯 哥伦比亚 米其林 退出(44 圈) 丰田 乔丹 法国 米其林 退出(34 圈) 17 17 18 18 海德菲尔德 19 20 布鲁尼 德国 普利斯通 退出(34 圈) 米纳尔迪 意大利 普利斯通 退出(32 圈) 20 21 鲍姆加特内 米纳尔迪 匈牙利 普利斯通 退出(18 圈)

3.西班牙大奖赛排位赛成绩一览表:

名次 车号 车手 车队 轮胎 成绩 时速 1 1 舒马赫 法拉利 普利司通 1'15\022 222.031 Km/h 2 3 蒙托亚 威廉姆斯 米其林 1'15\639 +0'00\617 3 10 佐藤琢磨 BAR 米其林 1'15\890 +0'00\868 4 7 特鲁利 雷诺 米其林 1'16\144 +0'01\122 5 2 巴里切罗 法拉利 普利司通 1'16\272 +0'01\250 6 4 小舒马赫 威廉姆斯 米其林 1'16\293 +0'01\271 7 17 潘尼斯 丰田 米其林 1'16\313 +0'01\291 8 8 阿隆索 雷诺 米其林 1'16\422 +0'01\400 9 14 韦伯 美洲虎 米其林 1'16\514 +0'01\492 10 5 库塔 迈凯轮 米其林 1'16\636 +0'01\614 11 16 达-马塔 丰田 米其林

1'17\038 +0'02\016

12 11 费斯切拉 索伯 普利司通 1'17\444 +0'02\422

13 6 雷克南 迈凯轮 米其林 1'17\445 +0'02\423 14 9 巴顿 BAR 米其林

1'17\575 +0'02\553

15 18 海德菲尔德 乔丹 普利司通 1'17\802 +0'02\780 16 15 克莱恩 美洲虎 米其林

1'17\812 +0'02\790

17 12 马萨 索伯 普利司通 1'17\866 +0'02\844 18 20 布鲁尼 米纳尔迪 普利司通 1'19\817 +0'04\795 19 19 潘塔诺 乔丹 普利司通 1'20\607 +0'05\585 20 21 鲍姆加特纳 米纳尔迪 普利司通 1'21\470 +0'06\448

三、建模与模型分析

1、应选用早进站还是晚进站的策略

在本年度的西班牙大奖赛中,雷诺车队的车手特鲁利凭借极其优异的发车在第一次进站加油前一直处于首位,法拉利的舒马赫仅以 0.5 秒之差位居次席。当比赛进行到第9圈时,特鲁利率先进站,1圈之后,舒马赫也进站。特鲁利进站加油时间为 5.9 秒,舒马赫则用了 6.7 秒,也就是说舒马赫比特鲁利慢了(0.5+6.7-5.9=)1.3秒。而等到舒马赫出站时,红色法拉利的舒马赫却刚好位于特鲁利之前,这不禁使人费解。事实上——

一方面,巴里切罗的赛车发车时与舒马赫加油量的差恰好为特鲁利的赛车加油后与法拉利的轻车油量的差,而他们三人车速几乎相同,又由表3知舒马赫与巴里切罗的赛车发车时相差1.250秒,故可得特鲁利的赛车加油后每圈约比法拉利的轻车(包括舒马赫)多用时 1.250 秒。

另一方面,由表3可知快车与慢车(慢车是指排位未进入前8名的车)单圈成绩均相差 1.4秒以上,至少约为1.5秒。而特鲁利出站后与慢车缴在一起,慢车又不能在第一个弯角——“埃尔夫”处全部让车,必须等到进入下一个直道时才能让车。由出站到雷诺弯据粗略统计约长1223m,则这段距离使特鲁利再次浪费了一段时间。

据表1若以赛道所能承受的最快车速飞奔,每圈平均时速与出站后到雷诺弯间平均时速几乎相同,又因为当时舒马赫前面无赛车,也就是说舒马赫可以发挥最快车速(即 222.031 km/h),所以可以算出特鲁利从出站到雷诺弯之间相对于舒

马赫所浪费的时间为

12231.5??0.396秒 (1)

4.627?1000注:1° 4.627km指的是整个赛道长,下同;

2°“×1000”表示单位换算,下面所提到的“60”、“1000”相同。

由此(1.250+0.396>1.3)可见,舒马赫在赛道上多跑一圈再进站绝对可以挽回他差特鲁利 1.3秒的劣势。也不难得出,在成绩相近时,晚进站策略会占有极大的优势。

2.首次进站应在何时

有人会说,虽然是舒马赫晚进站的策略使他占到了便宜,但为什么特鲁利出站后刚好与慢车缴在一起,而舒马赫则不然呢?

我们可以这样计算一下:

首先,由表 3 可知特鲁利的赛车每圈比慢车少用时 0.4 秒,在前 9 圈(即特鲁利进站前)慢车落后于特鲁利0.4?9?3.6秒,再加上发车时领先慢车的 8 个车位(约有 5 秒钟的时间),共至少可领先慢车 8.6 秒,特鲁利赛车的车速可计算为

4.627?60?60?204.022km (2)

h60?16.144?5.5注:1° “60+16.144”由表3中的“1`16``144”所知,以下类同;

2°“+5.5”是分析表2得出的赛车在正赛与排位赛上的成绩差。这个差距有两方面原因,一是车手体能问题,二是前有慢车、后有追兵,既需要超车、又要阻止后面车辆超越自己,所以每圈会浪费“5.5”秒。下面“6”和“5”类同,这数据依车手驾车水平粗略估计 同理可算出舒马赫的车速为

4.627?60?60?207.843km (3)

h60?15.022?5最快的慢车的车速为

4.627?60?60?201.805km (4)

h60?16.514?6这样,特鲁利进站前领先最快的慢车

4.627??4.627????9?204.022?1000?457.5m (5)

?201.805204.022?由于舒马赫前9圈在特鲁利之后,因此他无法跑出自己的最快速度,而是基本上以特鲁利的车速行进,只有第10圈时才发挥自己的最高车速,因此他进站时领先慢车

4.627??4.627????207.843?1000?457.5?596.1m (6)

?201.805207.843?再有,加油站长为 400 m,进站后限速100 km/h,再算上特鲁利当时加油换胎所用的5.9秒钟,可求出他进站一次大约用时

400?5.9?20.3秒 (7)

100?1000?60?60?于是,慢车用这段时间可以追赶特鲁利

100020.3?201.805??1137.9m (8)

60?60而舒马赫进站加油换胎耗时 6.7 秒,所以他进站一次共用时间

400?6.7?21.1秒 (9)

100?1000/?60?60?在这段时间内慢车追赶舒马赫

1000??21.1??201.805?m (10) ??118260?60??从而,出站后舒马赫可位于最快的慢车后

1182??400?596.1??185.9m(相当于1~2个车位) (11)

而特鲁利落后最快的慢车

1137.9??400?457.5??280.4m(相当于3~4个车位) (12)

这样,舒马赫几乎可以超过其余所有未进站的慢车。即使舒马赫落后于一两

辆赛车,由于前面为直道,舒马赫为快车,也可使前面的赛车在“埃尔夫”弯角前让车;而特鲁利出站后则位于慢车之中,无法在“埃尔夫”弯角前使慢车全部为其让车,必然影响其车速。

上述内容不仅解释了为何特鲁利出站后位于慢车之中,而舒马赫则位于慢车之前,而且说明在卡塔伦亚赛道上,对快车而言第10圈进站优于第9圈进站。

事实上,第10圈进站不仅优于第9圈进站,也是最佳进站时间。因为,如果快车第11圈或第12圈进站,当然可以超越所有慢车。但这样的话,车进站越晚,随着剩下的圈数的减少,工作人员观察赛道和制定策略的时间就越短,往往也就越难调整以后的进站加油时间。且如果第10圈进站,而出站后第1个弯角——“埃尔夫”前最快的慢车不会让车,则快车与其时速相差不大。这样,慢车不可能影响快车的时速。综上所述,第10圈为首次进站最佳时间。

3.采取两次进站策略还是三次进站策略。

有些车迷看到法拉利的巴里切罗采用两次进站策略而由排位赛的第五名升到了正赛的第二,所以不免会认为两次进站的策略或许会比三次进站策略更好。其实不然。我们可以这样计算:

ⅰ 巴里切罗两次进站,平均每次需加油9.5秒,其它快车均为三次进站,平均每次需加油7秒,即巴里切罗平均每次加油时间约比其它快车多用2.5秒。

2.5??ⅱ 按比例计算,巴里切罗在比赛过程中有近?65???17.1圈比其他快车

9.5??加油后的速度进行。

ⅲ 由表3结合表2计算得出,巴里切罗加油后跑完一圈至少需用 60+16.272+5.5+1=82.772秒 (13) 注:“1”为加油后赛车约比发车时多用的时间,此为估值。由当时比赛情况以及表2综合统计得出。

其余快车跑完一圈大致需用60+16.144+5.5=81.644秒 (14) 所以巴里切罗比其余快车车手每圈慢近(82.772-81.644=)1.128秒的时间。

ⅳ 综合计算得,巴里切罗至少要比舒马赫多用时

1.128×17.1+23.9×2-21.1×3=3.789秒 (15) 注:其中23.9由(7)式同理所得;21.1由(9)式得出。

这还仅仅是最优化计算,尚未计算巴里切罗发车时落后于舒马赫的时间以及他在赛道上比对手多跑的400多米长的距离所需要的时间。所以说少进站一次的策略虽然也不错,但这样就无法夺得冠军。

四、结论与实例验证

经过以上分析,所得结论如下:

1、尽可能比竞争对手晚些时间进站,这一策略适用于任何赛道。实例:①今年的圣马利诺大奖赛中,舒马赫从发车起便一直位于巴顿之后。但由于巴顿率先进站,舒马赫在赛道上争取了足够的时间,最终以绝对优势夺取了冠军。② 2004年度摩纳哥大奖赛上,舒马赫发车时位于第5位,正是由于他比其它快车均晚进站,使得出站后舒马赫越至第3位。虽说最终由于舒马赫车轮抱死,被蒙托

亚撞出赛道,未能续写辉煌,但这个战例也说明了晚进站具有极大优势。

2、在比赛中,首次进站应在跑完10圈之后,这种方案适用于与卡塔伦亚赛道类似的赛道上比赛。实例:1995年10月1日,德国大奖赛中,舒马赫便是采用了三次进站的策略,并且在第10圈时首次进站,最终夺取了分站赛的冠军。在其余赛道比赛时,进站时间也可用公式[21.4?400VV]?1进行计算。

t注:21.4为进一次站所需时间(秒); V表示慢车车速(m/s);

Vt表示快车与慢车的单圈成绩差(秒); 400为加油站长(m);

21.4-400/V 表示的是进站一次比慢车未进站多用的时间;

21.4?400VV

表示进站最佳时间的准确数,然而此往往为小数。赛车不

t

可能在最佳时间进站,必采取进一法,否则快车会夹与慢车之间。当然,赛车也可比公式所得的数早一两圈进站,但这需要考虑当时赛道情况以及出站后至第一个弯角前,慢车是否会位于快车之前。

通过“注”可知,原公式能求得应在何时进站最佳。实例:2004年度马来西亚大奖赛上,舒马赫在处于领先情况下,第9圈时首次进站,最终夺得冠军。我们可以用上面的公式做一下解释:当时排位赛第9名的库塔与舒马赫每圈的差距为1.528秒,即Vt=1.528。又知库塔排位赛成绩为1分34秒602,赛道长5.543千米,所以库塔在正赛时每秒钟成绩为

5.543?1000=55.098 (其中的“6”与(2)式同理)

60?34.602?6即V=55.098,利用公式得舒马赫可于第10圈或10圈之前进站。当时由于舒马赫位于首位,前几圈越跑越快,故选取了第9圈进站的策略。而正是这一良好的进站方案,使他毫无争议的夺得了冠军。

3、应采取三次进站的策略,此策略适用于与卡塔伦亚赛道类似的赛道上比赛。实例:① 2004年度巴林大奖赛上舒马赫正是凭借着此策略将领先优势一直保持到比赛结束。② 在2004年度首站澳大利亚大奖赛上舒马赫与巴里切罗同是采取3次进站的策略,保持了排位赛上的优势,为法拉利车队包揽了前两名。

五、总结

由于我是一名初一的学生,知识与能力方面尚有缺欠,再加上研究赛程时须考虑当时风向、风速以及赛道状况,还有就是比赛中汽车是进行非机械运动,车速随时变化,耗油量也不尽相同。所以论文中有不完善的地方请读者能给予帮助与支持,不吝赐教,批评指正。

通过这次论文的写作,我受益匪浅。不仅培养了我们应用数学知识的能力,而且使我感受到了运动无处不在,数学无处不在。这次建模活动对我的素质教育的发展无疑是大有裨益的。

是双赢还是两难?

——公交车IC卡、电子月票和现行公交收费的比较

沈阳市东北育才学校初二(少儿班) 石崝

一.背景与建模目的

以下消息来源于沈阳市《时代商报》:

据沈阳市客运集团透露,因为沈阳公交月票的价位低,价格与价值严重背离,所以造成了“投入”与“收取”的严重失衡。以2002年为例,月票全年发售了634.7万张,月票的全年总收入为13563万元,这样,月票的平均人次收入为0.317元,而人次乘车支出是0.713元,就是说,持月票乘车每人次公交就亏损0.396元,一笔账算下来,仅月票一项,全年亏损额就高达17221万元。

另外,“开线增车”无疑也加大了沈阳公交经营亏损额度。两年来,沈阳又新开线路30条,增加新车辆1559台,投资额达3.4亿元,这些钱全部是由公交自行贷款解决的。新开的公交线路和增加的车辆虽填补了市内公交空白,改善了市民的乘车条件,实现了较好的社会效益,但却加大了公交经营的负担,造成公交亏损2518万元。

在沈阳市,现行公交经营方式已经持续了几十年,许多市民已经非常习惯目前的乘车方式。低廉的价格使乘客得到了很多实惠,但却严重阻碍了公交事业发展。正如前面所说,现行制度有很好的社会效益,但却没有相应的经济效益。2004年7月份即将实施公交IC卡、电子月票制度,这在城市中成了一个热点话题。为什么使用IC卡和电子月票?IC卡能达到双赢的目的吗?本文将探讨IC卡、电子月票等能在多大程度上扭转公交业亏损的状况。这是一个相当复杂的实际问题,因此本文将通过假设进行适当简化。

二.采样与假设

采样1:2004年5月15日15:20,215车. 站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 总 上 28 6 7 13 10 4 7 11 3 4 5 11 4 5 9 2 0 19 4 2 0 0 154 票 20 4 5 5 7 2 4 7 1 3 3 6 4 2 7 2 0 17 3 2 0 0 104 币 8 2 2 8 3 2 3 4 2 1 2 5 0 3 2 0 0 2 1 0 0 0 50

采样2:2004年5月26日07:00,274车. 站 1 2 3 4 5 6 7 8 9 10 总 上 5 4 4 7 1 1 3 3 0 2 30

票 4 4 3 6 1 1 3 3 0 2 27 币 1 0 1 1 0 0 0 0 0 0 3 采样3:2004年5月26日15:50,225车.

站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 总 上 22 17 18 9 4 2 9 9 9 6 0 1 1 2 1 0 2 0 1 113 票 10 8 12 4 4 1 4 6 4 4 0 1 1 2 0 0 2 0 1 64 币 12 9 6 5 0 1 5 3 5 2 0 0 0 0 1 0 0 0 0 49 采样4:2004年5月26日13:10,220车. 站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 总 上 7 7 3 9 26 5 11 2 4 2 4 3 2 7 92 票 5 6 3 4 22 5 2 1 4 1 2 3 2 6 66 币 2 1 0 5 4 0 9 1 0 1 2 0 0 1 26 采样5:2004年5月26日14:00,环路车. 站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 总 上 25 1 5 2 4 7 2 13 13 6 17 11 2 8 11 10 1 10 5 33 14 5 3 7 6 2 1 224 票 19 1 4 2 4 5 0 8 8 4 12 8 2 3 7 3 1 6 5 23 12 4 1 6 4 2 1 155 币 6 0 1 0 0 2 2 5 5 2 5 3 0 5 4 7 0 4 0 10 2 1 2 1 2 0 0 69 采样6:2004年5月26日12:20,210车. 站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 总 上 0 5 10 0 1 3 4 2 0 0 8 0 0 1 1 35 票 0 4 6 0 1 3 4 2 0 0 7 0 0 1 1 29 币 0 1 4 0 0 0 0 0 0 0 1 0 0 0 0 6 采样7:2004年5月26日11:10,225车. 站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 总 上 2 4 17 6 1 2 3 4 3 1 3 12 1 12 1 4 1 77 票 1 3 6 2 0 1 3 2 0 1 1 10 0 5 1 2 0 38 币 1 1 11 4 1 1 0 2 3 0 2 2 1 7 0 2 1 39 采样8:2004年5月26日17:00,231车. 站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 总 上 3 3 22 2 0 16 7 13 8 8 5 12 12 4 6 9 7 14 12 3 166 票 3 3 16 2 0 12 5 10 8 6 3 10 12 4 3 8 7 12 9 1 134 币 0 0 6 0 0 4 2 3 0 2 2 2 0 0 3 1 0 2 3 2 32 采样汇总:可得持月票者/投币者=9/4. 采样号 1 2 3 4 5 6 7 8 总

上车数 154 30 113 92 224 35 77 166 891 月票数 104 27 64 66 155 29 38 134 617 投币数 50 3 49 26 69 6 39 32 274 假设一:采样具有一般性,能够代表实际乘车人群投币和使用月票人数的比率;

假设二:按采样,假设投币乘车者包括乘车少的人、外来人口等; 假设三:用月票的人可按以下几种情况划分(这里忽略了一些情况,忽略原因将在以下建模中说明):

1.换车次数A:0、1; 2.每天乘车次数B:2、4;

3.每月乘车天数C:22(即只在工作日乘车)。

假设四:单线乘车均购买单线车票,20元;换乘者均购买“满天飞”车票,50元;

假设五:以下数据同样来源于沈阳市《时代商报》:

??据权威人士测算,??普票将有20%的客量转移?? 此数据将作为以下估计减少收入金额的依据。

假设六:其他如学生月票、老年人月票、私家车增多、小公汽、公共汽车改道等情况对现有车辆营运的次要影响不予考虑。

三.建模及模型分析 (一)建模

一类乘客:1.A=0,B=2,C=22(只乘1路车,每天乘坐2次,月出行22天); 二类乘客:2.A=0,B=4,C=22(只乘1路车,每天乘坐4次,月出行22天); 三类乘客:3.A=1,B=2,C=22(乘2路车,每天乘坐2次,月出行22天); 四类乘客:4.A=1,B=4,C=22(乘2路车,每天乘坐4次,月出行22天)。 1.在现行月票制度下:

1)A=0,B=2,C=22;实际每月花费20元,相当于投币44元; 2)A=0,B=4,C=22;实际每月花费20元,相当于投币88元; 3)A=1,B=2,C=22;实际每月花费50元,相当于投币88元; 4)A=1,B=4,C=22;实际每月花费50元,相当于投币176元.

分析可知:现行月票制度,使乘客既得利益很大,但如背景所说,对公交公司及公交业发展非常不利。对于A、C更大的乘客,理论投币或刷卡金额与实际每月花费差值更大,这对结论影响不大,因此本文不特殊考虑。

2.使用电子月票乘车(需加上每月1元的电子月票折旧费): 1)A=0,B=2,C=22;实际每月花费30+1=31元,相当于投币44元;

2)A=0,B=4,C=22;实际每月花费30+1=31元,相当于投币88元; 3)A=1,B=2,C=22;实际每月花费70+1=71元,相当于投币88元; 4)A=1,B=4,C=22;实际每月花费70+1=71元,相当于投币176元。 分析可知:电子月票仍将给乘客带来很大利益,但因花费增加,将流失部分乘客。他们主要是1类和3类乘客,可能选择步行或骑自行车出行。

3.购买IC卡乘车(需加上每月1元的IC卡折旧费): 1)A=0,B=2,C=22;实际每月花费0.9×44+1=40.6元; 2)A=0,B=4,C=22;实际每月花费0.9×88+1=80.2元; 3)A=1,B=2,C=22;实际每月花费0.9×88+1=80.2元; 4)A=1,B=4,C=22;实际每月花费0.9×176+1=159.4元。

分析可知:IC卡对目前使用月票的乘客来说受益小,他们可能会继续使用电子月票。

(二)模型分析

根据沈阳市客运集团发布的数据:“2002年,月票全年发售了634.7万张,月票的全年总收入为13563万元,这样,月票的平均人次收入为0.317元,而人次乘车支出是0.713元,就是说,持月票乘车每人次公交就亏损0.396元,一笔账算下来,仅月票一项,全年亏损额就高达17221万元.”

设全年发售单线月票X万张,“满天飞” 月票 Y万张,则:20X+50Y=13563且X+Y=634.7

解得:X=615,Y=20

则购买单线电子月票人次为X1=615万人次,收入为30×615=18450万元; 购买“满天飞”电子月票人次为Y1=20万人次,收入为70×20=1400万元,月票增收18450+1400-13563=6287万元。

根据总亏损额及人次亏损额,可得持月票人次为17221/0.396=43487万。 根据采样,现金/月票=4/9,目前投币乘车人次为:43487×(4/9)=19328万人次,目前投币收入为19328万元。

假定IC卡用户人数为现投币者的50%,则公交公司乘客现金(投币)收入为:19328万元×(1—20%)=15462.4万元,投币收入减少19328-15462.4=3865.6万元;

IC卡收入为:19328万元×50%×0.9=8697.6万元,IC卡和电子月票合计增收8697.6+6287=14984.6万元。

合计增收:14984.6-3865.6=11119万元。 四.结论及意义

由此算法可以得到:公交车IC卡、电子月票制度的确可以在很大程度上扭

转现行月票制度造成的公交企业大幅度亏损的状况,原因如下:

1)据权威人士测算,同期增加的支出也不过4383万元,减少的亏损额近七千万元,这还不算提高公交管理水平减少的亏损额;

2)在建模过程中有很多数据无法进行完全统计,比如年客流量,这类数据都是按保守算法处理的;

3)假设1、假设5以及第三部分提到的假设“IC卡用户数目为现投币者的50%”同样比较保守。实际上,这三个假设每有一点变动都有可能在较大程度上影响到合计增收的情况;

4)随着沈阳城市的进一步开放和发展,市内将有越来越多的流动人口,这将大大增加公交车的投币收入和新开线收入(本文同样未考虑,但实际影响也不小),并促进公交业的进一步改革。

总之,无论如何,公交车IC卡、电子月票都能够使该行业增收,使公交有能力通过深化改革和强化管理进入市场,并降低成本,解决微亏问题,从而促进公交业的发展。虽然IC卡、电子月票会使大部分乘客支出增多,但公交业的发展也会便利市民出行,为城市发展注入活力。因此,从长远来说,公交车IC卡、电子月票制度将会实现双赢。

本文来源:https://www.bwwdw.com/article/5ulo.html

Top