Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glass Transition
更新时间:2023-05-26 22:02:01 阅读量: 实用文档 文档下载
- nonlinear推荐度:
- 相关推荐
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
3
9
9
1
n
Ju
1
1
v
1
30
6
3
9
/
t
am
-
d
n
co
:v
i
X
r
aNonlinearhydrodynamicsofahardsphere uidneartheglasstransitionLisaM.LustandOriolT.VallsSchoolofPhysicsandAstronomyandMinnesotaSupercomputerInstitute,UniversityofMinnesota,Minneapolis,Minnesota55455-0149andChandanDasguptaDepartmentofPhysics,IndianInstituteofScience,Bangalore560012,India
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
Abstract
Weconductanumericalstudyofthedynamicbehaviorofadensehardsphere uidbyderivingandintegratingasetofLangevinequations.ThestaticsofthesystemisdescribedbyafreeenergyfunctionaloftheRamakrishnan-Yussou form.We ndthatthesystemexhibitsglassybehaviorasevidencedthroughstretchedexponentialdecayandtwo-stagerelaxationofthedensitycorrelationfunction.ThecharacteristictimesgrowwithincreasingdensityaccordingtotheVogel-Fulcherlaw.Thewavenumberdependenceofthekineticsisextensivelyexplored.Theconnectionofourresultswithexperiment,modecouplingtheory,andmoleculardynamicsresultsisdiscussed.
1992PACSnumbers:64.70Pf,61.20Ja,61.20Lc
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
I.INTRODUCTION
Despiteextensiveexperimental,numericalandtheoreticalinvestigations1,2overseveraldecades,thepresentunderstandingoftheslownon-exponentialdynamicsofdenseliquidsneartheglasstransitionremainsincomplete.Whenaliquidiscooledrapidlyenoughtotemperaturesbelowtheequilibriumfreezingtemperature,crystallizationisbypassedandthesystemundergoesatransitionintoanamorphoussolidstatecalledaglass.Thecharacteristicrelaxationtimet ,asre ectedinalargenumberofexperimentallymeasuredquantitiessuchasviscosityanddielectricrelaxation,growsrapidlyinthesupercooledstateasthetemperatureisdecreasedorthedensityincreased.Theglasstransitiontemperature(oralternatively,density)Tg(ρg)isconventionallyde nedasthetemperature(density)wheretheviscosityreachesavalueof1013poise.
Inrecentyears,considerableprogressinthedevelopmentofatheoreticalandex-perimentalunderstandingofthephenomenaassociatedwithglassformationandtheglasstransitionhasbeenachieved.Inparticular,theso-calledmodecoupling(MC)theoriesoftheglasstransition3 10haveledtoaframeworkforunderstandingandinterpretingmanyexperimentalresults.InMCtheories,theslowingdownofthedynamicsneartheglasstransitionisattributedtoanonlinearfeedbackmechanismarisingfromcorrelationsofdensity uctuationsintheliquid.TheMCequationsforthedynamicsneartheglasstransitionwereoriginallyderived4,5fromthekinetictheoryofdense uidsandwerelater
6,7generalizedandextendedbyG¨otzeandco-workers
theories4,5.IntheoriginalversionofMC,thecharacteristictimescalesoftheliquidarepredictedtoexhibitapowerlawdivergenceatan‘idealglasstransition’orcrossovertemperatureTc,higherthanTg.However,thisdivergenceisnotfoundexperimentally:thepowerlawformbreaksdown,andrelaxationtimesatTcaretypicallyoforder10 8s.Morerecentcalculations
9,10have
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
uncoveredacuto mechanismwhichissupposedtoroundo thepredicteddivergenceandtorestoreergodicityoveramuchlongertimescale.MostoftheexistingMCstudiesoftheglasstransitiondonottakeintoaccounttheequilibriumshort-rangestructureofthedenseliquid.Asaresult,thesetheoriesdonotleadtoanypredictionforthewavenumberdependenceoftherelaxation.SomeattemptstowardstheincorporationofinformationaboutliquidstructureintheMCformalismhavebeenmaderecently8,10.MCtheories3,7andexperimentalinformationcanbecombinedinaconsistentdescriptionofthedecayofS(q,t),thespatialFouriertransformofthedynamicdensitycorrelationfunction,atsuf- cientlylowtemperaturesorhighdensities,whenthedecaytimeshavegrownverylarge.Thedecayaccordingtothisschemetakesplaceinasuccessionofseveralregimes:afterafastdecayintimesoforderoftheinversephononfrequency,a rstslowdecayoccurswhichMCtheoriespredicttobeaninversepowerlawintime.Thisiscalledtheβ-relaxationregime.Evidenceforpower-lawdecayofcorrelationsintheβregimeisprovidedbylight11andneutronscatteringexperiments12.Thisdecayistoanonzerovalue(anapparentnonergodicphase)fromwhichthesystemeventuallymovesawayleadingtotheprimaryorα-relaxationregime.Therelaxationintheαregimeisfoundtofollowtheso-calledKohlrausch-Williams-Watts‘stretchedexponential’form13.Boththedurationoftheβrelaxationandthetimescaleofthestretchedexponentialdecayintheαregimearefoundtoincreasesharplyasthe‘glasstransition’isapproached.Insomecases,theβandtheαregimesareseparatedbyaregionofso-calledvonSchweidlerrelaxationwhichhasapowerlawform.ThestretchedexponentialbehaviorintheαregimeandthevonSchweidlerrelaxationareseenindielectricmeasurements
scattering1614andinlight15andneutronexperiments.TheparameterswhichdescribethedecayofS(q,t)areknowntobeq-dependent,butthenatureofthisdependencehasnotbeenstudiedindetail.Thus,
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
theMCtheoriesprovideaqualitativeunderstandingofanumberofexperimentallyob-servedfeaturesofglassyrelaxation.However,someofthedetailedMCpredictionsarenotinagreementwithexperiments17andtheMCdescriptionclearlyfailstoaccountforthebehaviorobservedattemperaturesclosetoandlowerthanTc.Itisgenerallybe-lieved3thatthisfailurearisesfromthefactthatMCtheoriesdonottakeintoaccountactivatedprocessesinvolvingtransitionsbetweendi erentlocalminimaofthefreeenergywhicharesupposedtodevelopasthetemperatureisloweredbelowtheequilibriumfreezingtemperature.
IncontrasttoMCtheorieswhichportraytheglasstransitionasbeingpurelydy-namicinnature,therehavebeenanumberofattempts18 21todevelopa‘thermody-namic’theoryinwhichsomeoftheinterestingbehaviorobservedneartheglasstransitionisattributedtoanunderlyingcontinuousphasetransition.Theseattemptshavebeenmotivatedbythefactthattheobservedgrowthoftherelaxationtimeinso-called‘fragile’liquids2iswell-describedbytheVogel-Fulcherlaw
t=τse aT022:
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
explicitlydemonstratestheexistenceofsuchatransitioninaphysicallyrealisticsystemisnotyetavailable.Thus,the‘thermodynamicglasstransition’scenarioremainsessentiallyspeculative.Inthisapproach,thegrowthoftherelaxationtimeisattributedtoagrowingcorrelationlengthwhichwoulddivergeattheidealglasstransition.Tworecentnumericalstudies25,26whichlookedforsuchagrowingcorrelationlengthdidnot ndanyevidence
27foritsexistence.Arecentexperiment,ontheotherhand,haspresentedevidencefor
theexistenceofalengthscalethatgrowsasthetemperatureisloweredbelowthecrossovertemperatureTc.
Thestaticanddynamicpropertiesofdenseliquidshavealsobeenstudiedexten-sivelybymoleculardynamics(MD)simulations28 32.Theverynatureofthesimulationmethodrestrictssuchstudiestosimplemodelsystemsandtotimescaleswhicharerathershort(oftheorderof10 9sec).Inspiteoftheselimitations,MDsimulationshavepro-ducedanumberofinterestingresultswhichareinqualitativeagreementwithpredictionsofMCtheoriesandresultsofexperiments(suchasthoseusingtheneutronspin-echotech-nique33)whichhavetimescalescomparabletothoseofthesimulations.Thisobservationleadstotheinterestingandusefulconclusionthatastudyofsimplemodelsystemsmaybesu cientforunderstandingthebasicphysicsoftheglasstransition.
Itisevidentfromthisbriefsurveyofthecurrentstatusoftheglasstransitionproblemthatanobviousneedexistsforthedevelopmentofnewanalyticandnumericalmethodswhichmayaddresssomeoftheoutstandingissuesrelatedtothisproblem.Inthispaper,wedescribetheresultsobtainedfromtheapplicationofanewnumericalmethodtoastudyofthedynamicbehaviorofadensehard-sphereliquidneartheglasstransition.ThemethodweuseconsistsofdirectnumericalintegrationofasetofLangevinequationswhichdescribethenonlinear uctuatinghydrodynamics(NFH)
rmation
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
aboutthestaticstructureoftheliquidisincorporatedintheLangevinequationsthroughafree-energyfunctionalwhichhasaformsuggestedbyRamakrishnanandYussou (RY).35Recently,ithasbeenshown36thattheRYfreeenergyfunctionalprovidesacorrectmean- elddescriptionofthestaticsoftheglasstransitioninthissystem.Inthatwork,anumericalprocedurewasusedtolocatelocalminimaofadiscretizedversionoftheRYfreeenergyappropriateforthehardspheresystem.Alargenumberofglassylocalminimawithinhomogeneousbutaperiodicdensitydistributionwerefoundtoappearastheaveragedensitywasincreasedabovethevalueatwhichequilibriumcrystallizationtakesplace.Athigherdensities,thefreeenergiesoftheseminimawerefoundtodropbelowthatoftheminimumrepresentingtheuniformliquidsignalingamean- eldglasstransition.ThesuccessoftheRYfreeenergyfunctionalinprovidingacorrectdescriptionofthestaticsoftheglasstransitionofthehardspheresystemsuggeststhatagoodstartingpointforastudyofthedynamicsofthissystemwouldbeobtainedbyincorporatingthisfreeenergyintheappropriateNFHequations.
Anumberofimportantissuesareaddressedinourstudyofthedynamics.BycomparingtheresultsofourcalculationswithexistingMDresults28onthesamesystem,weareabletotestthevalidityoftheNFHdescriptionwhichiscastintermsofcoarse-grainednumberandcurrentdensityvariablesinsteadofthecoordinatesandmomentaofindividualparticles.ThecorrectnessoftheNFHequationsweuse,althoughusuallytakenforgranted,isnotobviousinviewofthefactthatthehydrodynamictermsintheseequationsdescribethephysicsatrelativelylonglengthscales,whereasthetermsarisingfromthefreeenergyfunctionalinvolvelengthscalesoftheorderof(orsmallerthan)theinterparticlespacing.IntheRYfreeenergyfunctional,informationaboutthemicroscopicinteractionsisincorporatedintheformoftheOrnstein-Zernikedirectpaircorrelation
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
function37oftheliquid.Thisappearstobeadequateforacorrectdescriptionofthestaticsofthefreezingoftheliquidintobothcrystalline35andglassy36states.Oneofthequestionsweaddressinthepresentstudyiswhetherthisisalsosu cientforacorrectdescriptionofthedynamicbehavior.TwonumericalstudiesofNFHequationsdescribingthedynamicsofdenseliquidshavebeenreportedrecently38,39.Themaindi erencebetweenthesestudiesandthepresentoneisthattheequilibriumstructureoftheliquidwastreatedonlyinanapproximatewayintheearliercalculations.ConsequentlytheresultsofthesecalculationscouldnotbecompareddirectlywithMDdata.Theresultsofthesecalculationsdidnotexhibitsomeofthefeatures(suchastwo-regimedecayofcorrelations)generallyassociatedwithglassydynamics,althoughnon-exponentialdecayofcorrelationsoftenassociatedwithitsonsetwasfound.InRef.(39),itwassuggestedthatthisfailurearisesfromtheapproximationsmadeinthetreatmentofliquidstructure.Thepresentstudyprovidestheopportunitytocheckwhetherthisexplanationiscorrectandtoinvestigateingeneraltheroleofstaticstructureinthedynamicsofadenseliquid.Further,perturbativetreatmentsoftheNFHequationssimilartotheonesweuseareknown9,10toleadtoresultswhichareveryclosetothoseobtainedfromtheMCapproach.Apartfromnumericalerrorsarisingfromspatialdiscretizationandtheintegrationprocedure,ourtreatmentoftheseequationsisexact.Inparticular,ournumericalsolutionoftheseequationsisobviouslynonperturbative,therefore,acomparisonoftheresultsofourcalculationwithMCpredictionsprovidesawaytotestthevalidityofsomeoftheapproximationsmadeintheanalyticstudies.Sinceourcalculationtakesfullaccountoftheshortrangestructureoftheliquid,ithasthemostdirectconnectionwiththeMCstudiesofKirkpatrick8andDas10.Finally,bymonitoringwhichminimaofthefreeenergyarevisitedduringthetimeevolutionofthesystemweareabletodeterminewhethertheobserveddynamicbehavior
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
arisesfromnonlinearitiesofdensity uctuationsintheliquidorfromtransitionsamongdi erentglassyminimaofthefreeenergy.Itisnotpossibletodistinguishbetweenthee ectsofthesetwokindsofprocessesinconventionalMDsimulations.
Wehavestudiedthetime-decayofS(q,t),thesphericallyaveragedspatialFouriertransformofthetime-dependentdensitycorrelationfunctionofthehard-sphereliquid,fordi erentvaluesofwavevectorqandforanumberofvaluesofthereduceddensityn (n ≡ρ0σ3,whereρ0istheaveragenumberdensityandσisthehardspherediameter)intherange0.75 0.93.ItwasfoundinRef.(36)thatahardspheresystemdescribedbyadiscretizedversionoftheRYfreeenergyexhibitsacrystallizationtransitionnearn =0.83.SincethepresentcalculationusesthesamediscretizedfreeenergyasthatofRef.(36),thesystemmaybeconsideredtobeinthe‘supercooled’regimeforalargepartofthedensityrangeconsideredbyus.Thenumericale ciencyoftheLangevindynamicsarisingfromtheuseofcoarsegrainedvariablesenablesustoverifythatthestaticsofthesystemremainstationarythroughoutthelongtimeintervalsthatweconsider.Theob-serveddynamicbehaviordescribedlaterindetailexhibitsanumberofcharacteristicglassyfeatures.Theseincludestretchedexponentialdecayofcorrelations,two-stagerelaxation,andVogel-Fulchergrowthofrelaxationtimes.OurresultsareinagreementwithexistingMDdata28onthedynamicsofthehard-sphereliquidandinqualitativeagreementwithotherMDresultsobtainedforsimilarbutdi erentsystems.ThisobservationestablishesthecorrectnessoftheNFHdescriptionusedinthisworkandalsodemonstratesthattheRYfreeenergycontainstheessentialphysicsofthedynamicsofthissystem.Ourcalcu-lationsalsoreproducequalitativelyanumberofpredictionsofMCtheories,however,we ndsigni cantdeviationsfromsomeofthequantitativeMCpredictions40fortheglassykineticsofthehard-spheresystem.Ourstudyindicatesthattheonsetofglassyfeaturesin
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
thedecayofS(q,t)occursatrelativelylowerdensitiesforwavevectorsclosetothe rstandsecondpeaksinthestaticstructurefactor.Thisresultclearlyillustratestheimportantroleplayedbytheequilibriumstructureinthelong-timedynamicsoftheliquid.Theobservedq-dependenceofthedecayofS(q,t)alsosuggeststhattheglassybehaviorsetsinearlier(atlowerdensities)atshorterlengthscales.Finally,thesystemisfoundto uctuateabouttheliquid-stateminimumofthemean eldfreeenergyinalloursimulations.
Therestofthepaperisorganizedasfollows.SectionIIcontainsadescriptionofthemodelconsideredbyus.We rstde nethemodel,discussitsstaticsandderivetheappropriateNFHequations.Byde ningappropriateunitsoflength,timeandmass,theseequationsarethenwrittenindimensionlessform.ThemethodusedbyustointegratetheseequationsforwardintimeisdescribedinSectionIII.WealsodiscussinthisSectionthephysicalquantitiesmeasured,thedatacollectionprocedure,testsofequilibrationandotherrelatedmatters.TheresultsobtainedfromthenumericalworkaredescribedindetailinSectionIV.WealsocompareandcontrastourresultswiththoseobtainedfromMDsimulationsofthehard-sphereandsimilarsystemsandthepredictionsofMCtheories.
II.THEMODEL
WehaveexplainedintheIntroductionthatwewillanalyzethenumericalsolutionofasetofLangevinequationsappropriatetoadensehard-sphere uid.Webeginherebydiscussingthestaticsofthemodel.Thesearegivenintermsofafreeenergywhichisafunctionalofthetwo eldsintheproblem:thedensity eldρ(r,t)andthecurrent eldg(r,t).Thisfreeenergyhastwoterms:
g2
FTot[ρ,g]=(m0/2)dr
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
whereF[ρ]isoftheRYform
F[ρ]=Fl[ρ0]+kBT 35: drdr′C(r r′)δρδρ′ (2.2)dr(ρlog(ρ/ρ0) δρ) (1/2)
In(2.1)and(2.2)ρisthenumberdensity eldandδρ≡ρ ρ0thedeviationofthat eldfromitsaveragevalueρ0.Flisthefreeenergyoftheuniformliquid,TisthetemperatureandkBtheBoltzmannconstant.Inthe rstequationm0denotesthemassofahardsphere.Finally,C(r r′)isthedirectcorrelationfunction.Theinclusionofthisfunctioninthefreeenergyensuresthatuponlinearizationofthelogarithminthe rsttermontherighthandsideof(2.2)oneobtainstheusualexpressionforthestaticstructurefactorofasimple uidintermsofC.ForhardspheresasimpleexpressionforC(r r′)canbeobtainedinthePercus-Yevickapproximation37:
ξ<1(2.3a)
(2.3b)C(ξ)= λ1 6ηfλ2ξ (1/2)ηfλ1ξ2;C(ξ)=0;ξ>1
whereξ≡|r r′|/σ,ηfisthepackingfraction:
ηf=(π/6)ρ0σ3≡(π/6)n
and:
λ1=(1+2ηf)2/(1 ηf)4
λ2= (1+ηf/2)2/(1 ηf)4(2.4)(2.5)(2.6)
Wehavewrittenρ0inthedenominatoroftheg2terminEq.(2.1),ratherthanρasinRef.(39),sothatthefulldensitydependenceofthefreeenergyisgivenbytheRYform.AspointedoutinRef.(41),ifweusedρwewouldobtainuponfunctionalintegrationwithrespecttothegaussianvariableg2alog(ρ)contributioninvolvingdensity uctuationsassociatedwiththekineticenergy.ThesearealreadyincludedinEq.(2.2).
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
Itisconvenienttochooseunitsatthispoint,whichwillsimplifysubsequentexpres-sions.Wetakem0astheunitofmass.Wechoosealsoaunitoflength,h,whichweshalllateridentifywiththelatticeconstantofthecomputationallattice.Fortheunitoftimewechooset0suchthat:
t0=h/c(2.7)
wherecisthespeedofsound.Thischoiceoftheunitoftimeismotivatedasfollows:thecharacteristicphonontimeforthesystemistp=1/(cq)whereqisawavevector.Hencetp/t0=1/(qh).Weshallchoosebelowtheratioσ/hsothatqhisoforderunityinthewavevectorrangeofinterest.Hencethechoice(2.7)correspondstoacharacteristictimeofordertp.ThesamechoicewastakeninRef.(39).
Wethende nethedimensionlessquantities:
x=r/h(2.8)
n=ρh3
j=gh3/c(2.9)(2.10)
andintroducealsothedimensionlessfreeenergyF[n,j]intermsoftheabovequantities:
F[n,j]=(1/2) dxj2
m0c2
(2.13)
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
ThequantityKisforhardspheresafunctionofonlythedensity.Thisfollowsfrom:
c2=1
πn g(σ)√
t=Vα[ψ] ΓδFα,β
β
δjj(x)]
(2.18)
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
Vji= n(x) iδFn
n0 jjj(x) ijj(x)
t
and:
ji
δn (1/n0) j+(1/n0) (nj)=0(2.20) j(jijj) (1/n0) jjj ijj+(1/n0)η 2ji+Θi(2.21)
whereηisthebareshearviscosityinourunits45.Thenoise eldsΘi(x,t)satisfythesecond uctuation-dissipationtheoremintheform:
<Θi(x,t)Θj(x′,t′)>= 2Kληn0δi,j 2δ(r r′)δ(t t′).(2.22)
Werecallthatintheseequations,andintheremainderofthepaper,thetimeismeasuredinunitsasgivenin(2.16).In(2.22)theangularbracketsdenotethethermody-namicaverage.Thequantityλisadimensionlessmeasureoftheequilibrium uctuations.Theaveragevaluen0isrelatedton =nσ3throughn0=n (h/σ)3.Forhardspheres,onecanwriteηintermsofKandthedensityintheform:
η=(h/σ)246√π)][g(σ) 1+0.8(2πn /3)+0.761(2πn /3)2g(σ)](2.23)Theequationsofmotion(2.20)and(2.21)areslightlymorecomplicatedthanthecor-respondingequationsforthemodelinRef.(39).Thereisanadditionalconvectionterminthesecondequationandsomeadditionalfactorsofn/n0.Thesecomplicationscanbedirectlytraceddowntothedi erentdensitydependenceofthe rsttermin(2.11)asdis-cussedabove,thatis,tothefactthatakineticenergycontributionisnowincludedinthe
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
rsttermofFn.Thesedi erencesthenarisebecauseofthedi erentformofδF/δjwhichresultsinmorecomplicatedexpressionsforthestreamingvelocities.Ourexpressionscor-rectlyreducetothecontinuityandNavier-Stokesequationsinthelinearlimit.Ingeneral,onecaninterpret(2.20)asthecontinuityequationifthe eldgisthoughtofasρ0timesthevelocity.Thecurrentdensityisthennotgivensimplybyg,however.Thesequestionsdonota ect,obviously,thevalidityoftheconclusionsobtainedfromthismodel.
AsalientfeatureofEq.(2.21)ofconsiderableimportanceisthattheterminδFn/δnwhichinvolvesthedirectcorrelationfunctionCisanintegraloverspacewithrangeσ.Thus,wehavetosolveinthiscasenotmerelyasetofpartialdi erentialequationswithstochastictermsbutasfarasthespatialdependenceisconcernedanintegrodi erentialequation.Thiscomplicationmakesthisadi cultproblemtosolvenumerically.Themethodsusedwillbeexplainedbelow.
III.METHODS
InthisSectionwediscussthemethodsweusetosolveourequationsofmotion,thephysicalquantitieswefocuson,thedatacollectionmethodsandstatistics,therangeofparametervalueswehavestudied,andrelatedmatters.
Ourobjectiveistostudythedynamiccorrelationsofoursystemasde nedbelow.InordertodosowesolvenumericallyEqns.(2.20)and(2.21)onathreedimensionalcubiclatticeofsizeN3.ThemaincomplicationwemustconsideristhespatialintegralinvolvingthedirectcorrelationfunctionC(r).ForeachintegrationstepthisintegralmustbedoneN3timessinceitiscomputedoveraspherewithitsoriginateachoneofthelatticesites.Toavoidrepeatedcalculationswecreate,intheinitializationofourprogram,atablelistingforeachlatticesitethelocationofallneighboringsitestobeintegratedoverandtheircorrespondingvaluesofC(r).Additionally,sincethesphereisimbeddedona
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
coarsediscretelatticeweusea nermeshthande nedontheoriginallatticetoimprovetheaccuracyoftheintegration.Theproceduresemployedtointegratetheremainingsetofdi erentialequationsovertimeandgeneratethegaussiannoiseareidenticaltothoseusedinRef.(39)andreferencescitedthere.
WewillfocusouranalysisonthetimedependenceofthedynamicstructurefactorS(q,t):
S(q,t)=dxe3iq·(x x′)<δn(x,0)δn(x′,t)>(3.1)
Speci cally,wewillconsidertheangularaverageofS(q,t).Onacubiclattice,itisappropriatetode nethee ectivelengthofq,q,as:
q2=2(3 cosqx cosqy cosqz),(3.2)
andweperformangularaveragesofq-dependentquantitiesbyaveragingovervaluesofqinthe rstBrillouinzone,inasphericalshellofmeanradius(asgivenbyq)correspondingtothatofthevector(πQ/N,0,0)andthicknessπ/N.ThevalueofQrangesfrom1toapproximately31/2N,althoughonlyasmallerrangeisfreeof nitesizee ects.Wewill,forsimplicityofnotation,denotequantitiesaveragedinthiswaybysimplydroppingthevectorsymbolfromthewavevectorargument:S(q,t),andoftenwewillindicatethevaluesofqbythe‘shellnumber’Q.
Nextweturntoourchoicesforparametervalues.Thecorrelationfunctionsthatweareinterestedinarespatiallyshortranged.Itisthereforenotnecessarytouseextremelylargelatticesizes.TheresultspresentedwereobtainedusingN=15.AsinRef.(39),thisprovedtobeadequate.Wecheckedthat nitesizee ectsdonota ectthedynamicsinthewavevectorregionforwhichresultsarepresentedhere,(5<Q<15,seeSection
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
IV)byperformingaportionofthecalculations(withreducedstatistics)atN=25.Ourchoiceoftheratioσ/hwhich xesthelengthscalefortheproblem,isdictatedbytwoconcerns.The rstisthatwewishtobeabletostudythedependenceofthedynamicsonwavevectorinthemainregionofinterestfromthepointofviewofthestaticstructurefactorS(q)≡S(q,t=0).Thus,wewishtochooseourunitoflengthsothatthemainpeakinS(q)fallsinthemiddlepartoftherangeofwavevectorswithinthe rstBrillouinzoneofthecomputationallattice.Secondly,toavoidcrystallizationatthehigherdensitiesstudied,wehavefoundthatweneedNandσtobeincommensurate.Selectingσ/h=4.6leavesqmaxwellawayfromthezoneedgeforalldensities,neartheQ=8shell,andisclearlyincommensuratewithN.Thedensityrangewehaveinvestigatedincludesn =0.5,0.75≤n ≤0.90at0.05intervals,andn =0.93.The rstoftheseiswellwithinthediluteliquidregion,andwasusedonlytocheckthatlimit.AsexplainedinRef.(39),itisnecessarytoincludetheparameterλinordertorepresenttheactual uctuationsthroughgaussiannoise.Itsprecisevalueisnotcrucial,sinceitessentiallyamountstoachoiceofthenormalizationofthestatic uctuationsS(q),butitclearlymustbesmallsincethedensitymustalwaysbepositive.Wehavetakenhereλ=0.001.TheremainingparametersKandηarefunctionsofn andmaybecalculatedasdiscussedinthepreviousSection.
Weturnnowtotheveryimportantquestionofdatacollection.Weareparticularlyconcernedwithensuringthatwithinstatisticalerrortheaveragescollectedbeequilibrated,thatis,stationaryinthetimescalesstudied.We ndthat,withthedatacollectionprocedureasoutlinedbelow,theinitialconditionsthatweusetobegintheintegrationoftheequationsofthemotionareunimportant(exceptinthattheydeterminetosomeextentthedurationoftransientbehavior)andweusuallytakethemtobea atdistributionofnequaltoitsaveragevalue,n0,andvanishingcurrents.Wethenmonitorthecurrent-current
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
correlationsasafunctionofrunningtimet0.AfterarelativelyshorttimetKoforder10thecurrentcorrelationsreachtheirequilibriumvalueasgivenbytheequipartitiontheorem.ItmightbetemptingtoassumethatthedensitycorrelationshavealsoequilibratedbythattimeandsuchanassumptionissometimesmadeinMDwork,butwe ndthatforoursystematleastthisassumptiondoesnothold.
Tostudythedensitycorrelations,westore,forrunningtimest0≥tK,wheret0isthetimemeasuredfromtheinitiationofthecomputation,atalargenumberofperiodictimebins,theproductsoftheformδn(x,t0)δn(x′,t0+t)forallxx′.WethenmonitorthesphericallyaveragedspatialFouriertransform,S(q,t,t0)ofthequantity:
S(x,x′,t,t0)=<δn(x,t0)δn(x′,t0+t)>(3.3)
wheretheaverageisunderstoodtobeoveranumbernboftimebinsseparatedbyaninterval t.ThetimerangecoveredbytheaveragingprocessistR=nb t.InorderforS(q,t,t0)tobeanadequateapproximationtothethermodynamicaverageS(q,t)itisrequiredthatitbenotonlyindependentoft0,butalsoindependentoftRwithinstatisticalerror.Dependenceonthet0indicatesthepresenceofatransient.DependenceontRindicatesthattheaveragingtimeistooshortforergodicitytohold.Averyimportantpointisthatwe ndthattheminimumvalueofthetransienttimefordensity uctuationsisnottK,butitisoftheorderoftheslowestcharacteristicdecaytimet inthesystem.AsdiscussedinthenextSection,t isastronglyincreasingfunctionofdensity,andismuchlongerthantheequilibrationtimeforthekineticenergy.Similarly,itisnecessaryfortheaveragetoincludearangetRoforderofseveraltimest .We ndthatS(q,t,t0)athigherdensitieshasconsiderableoscillationsoverttimerangessmallerthant .Asoneincreases
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
thedensityanestimatefort canbefoundbyextrapolationfromthelowerdensities,sincethebehavioroft withdensityturnsouttoobeytheVogel-Fulcherlaw22.
Workingwithintheseconstraints,obtainingstatisticallyreliableresultsstillrequiresaveragingoveralargenumberoftimebinswhichmeansverylargetotalrunningtimes.Inaddition,inordertoeliminateanypossibilityofspuriouscorrelationsduetoapeculiartransient,wehaverepeatedthewholeprocedurethreeto vetimesateachdensity.Theresultspresentedherecorrespondtoacombinedtotalofbetween1000and3900bins,dependingonthedensity,atalldensitieswepresentresultsforexceptn =0.75whereatotalof600wastaken.Theseverylargenumbers,muchlargerthanthecorrespondingnumbersinRef.(39),shouldbeconsideredascomparabletothe‘numberofruns’inastandardsimulationforanonequilibriumproblemsuchasspinodaldecompositionandleadtoverygoodqualitydata.Thecostofobtainingthedatarisesaccordingly,ofcourse:atotalof200hoursofCray2andCrayX/MPtimewererequired.
Wehavealsoveri edthatthequantityS(q,t=0)calculatedfollowingtheaboveprocedureandoverthetimerangesjustdescribedisconsistentwiththepurelystaticresult.Todothis, rstwecalculatethestaticresult:weevaluatenumerically,usingfastFouriertransforms,thediscreteFouriertransformC(q)of(2.3)forasystemofthesizeconsidered,andweobtainfromthatresultthestaticresultSs(q)∝1/(1 n C(q)).Toobtainthisequationonemustexpandthe rsttermin(2.12)tosecondorderinδn.ThecomparisonbetweenS(q)andSs(q)isshowninFig.1.Wecanseethatthetworesultsareinverygoodagreementatthedensitiesplotted.ThePYstaticvaluesareknowntobe(seee.g.Fig2inRef.(42))ingoodagreementwithMDresultsinthisdensityrange.OurresultsarethenalsoinagreementwithMDinthislimit.Athigherdensities,thecomputedresultrepresentsahigherdegreeoforderthanthatcalculatedfromthestatics.
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
Thisisduetothefactthattheexpansionofthefreeenergyjustalludedtoisnotaswelljusti edatthosedensities.Whenaveragedovertimescalesoflessthanseveraltimest ,S(q,0)oscillatesbroadlyaboutitsstationaryvalue.OurresultsforS(q,0)atalldensitiesstudiedshowthatwearedealingwithaliquid-likestatehere.Ifweuseacommensuratevalueofσ,orifweincreasen to0.95,we ndindicationsthatcrystallizationbegins.Weplantostudythiscrystallizationquestioninfuturework.
Thestabilityofourdynamicallyobtainedresultsoverlongcomputationalruns,andtheiragreementwithstaticresultsconstituteaverystringentcheckofthestabilityofournumericalalgorithms.
Toanalyzeourresults,itisconvenienttointroducethenormalizedquantityC(q,t)de nedas:
C(q,t)=S(q,t)
We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that th
alldatauptoeitherthemaximumtimeforwhichwehavedataattheparticularvaluesofn andqunderconsiderationoruptothetimewhereC(q,t)issosmallthatitfadesintothenoise.ThisoccurswhenC(q,t)<0.025exceptinsomeveryfewcaseswherethedatabecomesnoisyatthe0.05level.AsinRef.(39)thestatisticalnoiseseemstohaveanadditivecomponentwhichcausestherelativeerrorstoincreasewhenC(q,t)becomessmaller.WerecallthattherelationbetweenourtimeunitsandEnskogcollisiontimeisgivenby(2.16).Thefactorrelatingthetwoinversetimesvariesfrom1.52atn =0.75to
1.90atn =0.93.Therelationbetweenourunitoflengthandσisthetrivialfactorofσ/h=4.6.
Webeginbyattemptinga ttoastretchedexponentialform:
C(q,t)=e (t/τ0)β(4.1)
wheretheparametersτ0andβarefunctionsofn andq.Thisstepismotivatedinpartbytheexpectationfrompreliminaryinspectionofthedatathatthereisawideregionofqandn valuesforwhichthisformisadequate.Indeedwe ndthatforaconsiderablepartofthedataparticularlyinthelowerdensityregionthisturnsouttobeasatisfactory t.Eveninthecaseswherethedataisnotwell ttedbytheformofEq.(4.1),thenumberτ0(q,n )stillgivesauseful gureofmeritoroverallestimateofthedecaytime.Theresultsofthis tareinTablesIandII.WehaveindicatedintheseTablesthecaseswherethe ttotheaboveformisagood ttothedataandthoseinwhichitisactuallynotthebest tbyenclosingthelattercasesinparentheses.Thequalityofthe tscanbejudgedvisuallyandbytheχ2valuesthatweobtain.
ThesalientpointsoftheresultsinTableIareapparent:thecharacteristictimeisatconstantdensityaverystrongfunctionofq,andithasamaximumatthewavevectorshellsclosetowherethestaticstructurefactorS(q)hasitsmaximum.Alesswellde ned
正在阅读:
Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glass Transition05-26
在全县中小学校后勤工作会议上的讲话09-13
谷歌黑客入侵语法整理10-31
音乐欣赏曲目(mp3目录)104-07
福建工程学院 - 大学物理(下)期末试题及答案 209-25
2022年安全月知识竞赛试题及答案07-31
教师轮岗交流工作个总结05-12
传播学教案09-17
- 1Quark Pair Production in the Chiral Phase Transition
- 2Quark Pair Production in the Chiral Phase Transition
- 3Phase Transition in Anyon Superconductivity at Finite Temperature
- 4China Low-E glass report 2009
- 5Fluid–structure interaction between a two-dimensional
- 6Nonlinear pricing with self-control preferences
- 7英语作文Success comes from hard work
- 8Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints
- 9Enhancement of the anomalous Hall effect and spin glass beha
- 10Quantum Anti-de Sitter space and sphere at roots of unity
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Hydrodynamics
- Transition
- Nonlinear
- Sphere
- Fluid
- Glass
- Hard
- Near
- 六小民务主要做法及成效
- 几何图形初步检测题及答案
- 2015年湖北省技能高考试题数学部分
- 微课程的设计、开发与应用研究-以教育技术学专业两门微课程为例
- 城市道路跨既有铁路立交工程施工组织设计(实施 中铁)_yg
- 合同执行档案登记表(试行稿)
- 城乡交通一体化建设
- 高一(必修1)物理教材
- 浙江省2009年7月自学考试认知心理试题及答案
- 陈川厅长在全省水利工作会议上的讲话
- 高考前班主任讲话
- javascript replace使用详解
- 进一步推动农产品加工业扶持政策贯彻落实
- 杭州少儿英语培训中心经典范文环境资源与交通问题 (1)
- 国内SNS网站的差异化经营
- SPSS 确切概率法(1)
- 第五章 作物栽培措施和技术
- 中国保险业发展沿革与保险公司介绍
- 雅思所有生活用语
- 大学生创业计划书范文