循环水中氯离子去除方法 过量石灰-铝技术
更新时间:2023-10-15 03:37:01 阅读量: 综合文库 文档下载
- 循环水中的氯离子怎么去除推荐度:
- 相关推荐
循环冷却水中氯离子去除方法 过量石灰-铝技术(UHLA)
摘要:在循环冷却水中,氯离子是一种有害的成分,一方面氯离子易引发腐蚀,另一方面大多数的缓蚀阻垢剂对水中氯离子浓度都有限值。氯离子可通过沉淀方式去除:Ca4Al2Cl2(H)12,由此本文开展平衡实验和动力学实验评估UHLA技术对氯离子的去除能力和反应条件。平衡实验共进行48组,其中NaCl溶液为30mM,Ca(OH)2为0~200mM,偏铝酸钠为0~100mM。实验结果表明UHLA可通过形成氯铝酸钙固体去除,同时这一过程可以通过一个反应动力学表达式证实。实验结果也表明Ca4Al2Cl2(H)12的溶度积为10-94.75。
1、前言
2000年,美国工业废水排放量约为120亿吨,接近80%的废水来源于电力产业。工业废水主要来源于冷却水,主要污染包括了高温、有毒化学物质、有机和无机污染物等,同时冷却水也是美国水资源的重要消费者。
为了污染物减排、节水和节约开支,必须提高水冷却水的循环倍数。但循环倍数的提高必然导致难挥发物质的浓缩,进而引发腐蚀、结垢以及生物黏泥等问题。为了减少这些问题的产生,需要去除冷却水中某些物质,包括Ca2+、Mg2+、磷、硅酸盐、硫酸盐和氯离子。
氯离子是其中一种难挥发且易导致腐蚀的物质,同时氯离子也会影响缓蚀阻垢剂的使用效果,一些研究表明在高氯浓度下,药剂的使用量也会增加。
石灰软化在冷却水中应用去除Ca2+和Mg2+,降低硬度和碱度,同时也可部分去处硅酸盐,但这和Mg2+含量有关。石灰软化在去除硫酸盐和氯离子方面无效果。
UHL是一种改进型的石灰软化方法,可以去除Ca2+、 Mg2+、PO43-、CO32-、硅酸盐等。UHLA去除硅酸盐是通过高含量的石灰投加提高水体pH并形成硅酸钙沉淀。UHL的流程如图1所示,该流程分两步进行,第一步投加过量的Ca(OH)2使水中钙离子提高同时pH达到11~12,硅酸盐、Mg2+、PO43-在这一阶段得到去除;第二步通过加入CO2或Na2CO3去除多余的Ca2+,同时调节pH到适宜值。该技术可应用于制水,也可应用于旁滤系统。此外该工艺也可以根据补给水特点进行改进,如图2所示,旁滤水通过UHL处理,同时软化处理补给水。UHL的
优势有很多,包括去除绝大多数的成垢离子和盐、去除重金属等。
图1 UHL流程图
图2 改进型UHL流程图
2、UHLA工艺介绍
石灰软化和UHL工艺虽然能够去处绝大多数的成垢物质,但在处理硫酸盐
和氯离子方面效果甚微。虽然反渗透、离子交换、电渗析等技术能够达到这一目的但成本要高很多。此外,硫酸盐和氯离子问题在其他领域也存在,如膜污染、制盐结垢等,因而前处理去除迫切需要解决。
UHLA是一种改进型技术,该技术在去除硫酸盐和氯离子方面具有优势,其中去除硫酸盐的研究在1985年即被研究,在高pH和高Ca2+含量情况下(图2的第一步),形成Ca6Al2(SO4)3(OH)12沉淀,当Ca2+充分时硫酸根和铝的摩尔比率是1.5:5.0,符合理论的化学计量。该沉淀的溶度积很低(10-109.9),同时该反应属快速反应。此外,该反应也会通过协同沉淀和吸附去除硅酸盐。该方法也可去除氯离子,形成弗雷德尔盐。
目前针对液相中Ca4Al2Cl2(H)12的研究较为缺乏,更多的研究集中在混凝土和水泥合成中。一些研究表明当在氯化钙溶液中投加氧化铝和氧化钙时,氯铝酸钙结晶沉淀会迅速产生。该反应机理有数种解释,1974年,Ben-Yair提出该反应是通过三钙盐(CaO)3Al2O3和CaCl2直接反应。1988年Yonezawa提出F盐的
形成需要OH-参与Cl-和C3A的反应。1985年,Lambert提出去除水中的Cl-或者的需要同时取出相同摩尔的阳离子或者加入相同摩尔的阴离子以保持水电中性;Ca(OH)2中电离OH-是阴离子的主要补充源。另一些研究提出了在NaCl存在的情况下,F盐形成存在吸附和阴离子交换两种机理。在水泥间隙水中F盐的溶度积很低,但在液相水处理领域F盐的性状仍未研究。本文的目的是研究UHLA去除Cl-的效果,同时研究其沉淀反应的平衡条件。
3、试验方法
静态实验是在盛有NaCl溶液浓度为30mM密封塑料容器中投加固体Ca(OH)2和NaAlO2,室温(23~25℃)振荡2天,为防止CO2进入,该实验容器放置在装有CO2吸附剂的密封箱中。样品取出后通过0.45nm的滤膜过滤,Ca2+通过原子吸收分析,Cl-通过色谱法,Al3+通过分光光度法,。过滤前利用标准玻璃电极测pH(10.00和12.45缓冲液标定)。动力学实验把40mM的Ca(OH)2,20mM的NaAlO2放入30mM NaCl中,固定间隔时间取样分析,方法和静态实验相同。
4、结果与讨论
静态沉淀实验:图3是不同铝和钙含量情况下Cl-的去除率。假设Cl-的去除主要为F盐的形成,实验对各点F盐的离子活度积(IAP)进行了计算,覆盖了表2给出的范围。
IAP计算方程如下:
4Ca2++2Al3++2Cl-=≡Ca4Al2Cl2(OH)12 (1) IAP=[Ca2+]4[Al3+]2[Cl-]2[OH]12 (2)
利用MINTEQA2(稀溶液化学平衡模型)戴维斯方程计算离子活度,取临界状态离子活度计算溶度积,pH则为固定值。(实际计算认为各种水体是一种理想溶液,各离子之间无相互作用,而实际上各种天然水体是一种真实溶液,水中各种离子总是存在相互作用的,作用的结果使得化学反应相对减缓,在反应中起作用的离子小于实际的离子总数。并且随着离子总浓度的增加,自由离子活度减小。SARP的计算中,各离子含量用浓度表示,忽略了由于离子对或络合离子的形成而使自由离子活度减小的因素.因此在计算水体的SAR值时,应考虑水体中离子活度。对活度系数的计算,选用适用于总溶解固体(TDS)高的咸水戴维斯方
程[9]:)
计算结果表明,F盐的溶度积为10-94.75,结果分析表明,线性回归方程中log(IAP),log(CaT),log(AlT),log(ClT),(pH)的数据可以证实沉淀物为F盐Ca4Al2Cl2(OH)12。现行回归方程的相关系数R2和斜率很低,表明该化学式可信度很高。
图3显示高含量的铝会导致Cl浓度的升高,这可能是因为在Ca2+不足情况下,形成Al-Cl-OH复合物。图4为溶液中Ca2+,Al3+关系图,当初始Ca2+很低的情况下,稍高含量的Al3+较为适合,当Al含量进一步升高,溶液中Cl-含量也会增大,预示着Al-Cl-OH复合物的形成,最佳的Ca:Al=2.5(见图5),接近化学计量比2.0。
正在阅读:
循环水中氯离子去除方法 过量石灰-铝技术10-15
2017年9月宁波十校联考化学04-22
记一次体育比赛作文500字07-05
2.5亿粒年感冒清胶囊车间设计09-27
基于simulink编程的闭环控制小车上位机软件设计 - 图文10-30
java程序设计练习题有答案10-30
小区物业保安员岗位职责08-24
ARM的内存映射04-03
51地震震动报警03-24
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 石灰
- 过量
- 去除
- 离子
- 水中
- 循环
- 方法
- 技术