三角形四心的向量性质及证明

更新时间:2023-09-04 01:41:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

收集(部分证明)了三角形四心相关性质,对高中生更加了解向量和三角形有一定帮助。

符号说明:“AB”表示向量,“|AB|”表示向量的模
【一些结论】:以下皆是向量
1 若P是△ABC的重心PA+PB+PC=0
2 若P是△ABC的垂心PA*PB=PB*PC=PA*PC(内积)
3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)
4 若P是△ABC的外心|PA|=|PB|=|PC|
(AP就表示AP向量 |AP|就是它的模)
5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心
6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心
7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)
或 AP=λ(AB+AC),λ∈[0,+∞) 经过重心
8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,∠C的外角平分线的交点
【以下是一些结论的有关证明】
1.
O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量
充分性:
已知aOA向量+bOB向量+cOC向量=0向量,
延长CO交AB于D,根据向量加法得:
OA=OD+DA,OB=OD+DB,代入已知得:
a(OD+DA)+b(OD+DB)+cOC=0,
因为OD与OC共线,所以可设OD=kOC,
上式可化为(ka+kb+c) OC+(aDA+bDB)=0向量,
向量DA与DB共线,向量OC与向量DA、DB不共线,
所以只能有:ka+kb+c=0,aDA+bDB=0向量,
由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,
所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。
必要性:
已知O是三角形内心,
设BO与AC相交于E,CO与AB相交于F,
∵O是内心
∴b/a=AF/BF,c/a=AE/CE
过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,
所以四边形OMAN是平行四边形
根据平行四边形法则,得
向量OA
=向量OM+向量ON
=(OM/CO)*向量CO+(ON/BO)*向量BO
=(AE/CE)*向量CO+(AF/BF)*向量BO
=(c/a)*向量CO+(b/a)*向量BO
∴a*向量OA=b*向量BO+c*向量CO
∴a*向量OA+b*向量OB+c*向量OC=向量0
2.
已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},
求证P点轨迹过三角形的垂心
OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},
OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},
AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},
AP*BC=入{(AB*BC /|AB|^2*sin2B)+AC*BC /(|AC|^2*sin2C)},
AP*BC=入{|AB|*|BC|cos(180° -B) /(|AB|^2*sin2B) +|AC|*|BC| cosC/(|AC|^2*sin2C)},
AP*BC=入{-|AB|*|BC| cos B/(|AB|^2*2sinB cos B) +|AC|*|BC| cosC/(|AC|^2*2sinC cosC)},
AP*BC=入{-|BC|/ (|AB|*2sinB) +|BC|/(|AC|*2sinC )},
根据正弦定理得:|AB|/sinC=|AC|/ sinB,
所以|AB|*sinB=|AC|*sinC ∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,
即AP*BC=0,
P点轨迹过三角形的垂心
3. OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))
OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))
AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))
AP与AB/|AB|sinB+AC/|AC|si
nC共线
根据正弦定理:|AB|/sinC=|AC|/sinB,
所以|AB|sinB=|AC|sinC,
所以AP与AB+AC共线 AB+AC过BC中点D,
所以P点的轨迹也过中点D,
∴点P过三角形重心。
4. OP=OA+λ(ABcosC/|AB|+ACcos

收集(部分证明)了三角形四心相关性质,对高中生更加了解向量和三角形有一定帮助。

B/|AC|) OP=OA+λ(ABcosC/|AB|+ACcosB/|AC|)
AP=λ(ABcosC/|AB|+ACcosB/|AC|)
AP*BC
=λ(AB*BC cosC/|AB|+AC*BC cosB/|AC|)
=λ([|AB|*|BC|cos(180° -B)cosC/|AB|+|AC|*|BC| cosCcosB/|AC|]
=λ[-|BC|cosBcosC+|BC| cosCcosB] =0,
所以向量AP与向量BC垂直, P点的轨迹过垂心。
5. OP
=OA+λ(AB/|AB|+AC/|AC|) OP
=OA+λ(AB/|AB|+AC/|AC|) OP-OA
=λ(AB/|AB|+AC/|AC|) AP
=λ(AB/|AB|+AC/|AC|)
AB/|AB|、AC/|AC|各为AB、AC方向上的单位长度向量,
向量AB与AC的单位向量的和向量,
因为是单位向量,模长都相等,构成菱形, 向量AB与AC的单位向量的和向量为菱形对角线, 易知是角平分线,所以P点的轨迹经过内心。

本文来源:https://www.bwwdw.com/article/5sgi.html

Top