短时傅里叶变换
更新时间:2023-08-31 01:08:01 阅读量: 教育文库 文档下载
短时傅里叶变换
Chapter 10 Fourier analysis of signals using discrete Fourier transform10.1 Fourier analysis of signals using the DFT 10.2 DFT analysis of sinusoidal signals 10.3 the time-dependent Fourier transform For finite-length signals, the DFT provides frequencydomain samples of the Discrete-time Fourier transform. In many cases, the signals do not inherently have finite length. The inconsistency between the finite-length requirement of the DFT and the reality of indefinitely long signals can be accommodated exactly or approximately through the concepts of windowing, block processing, and the time-dependent Fourier transform 1 (短时傅立叶变换).
短时傅里叶变换
10.1 Fourier analysis of signals using the DFT
One of the major applications of the DFT is in analyzing the frequency content of continuous-time signals.
Figure 10.1
短时傅里叶变换
真实频谱
抗混迭滤波器频响
由滤波器非理想引入误差
由量化和混迭引入误差
窗序列频谱
时域加窗和频域取样引入误差
Figure 10.2
短时傅里叶变换
采样率与抗混迭滤波器的截止频率的关系:f s= 2 fc
相临谱线间的频率间距与DFT点数的关系:Δω= 2π/ NΔΩ=Δω/ T= 2πf s/ NΔf=ΔΩ/ 2π= f s/ N每条谱线对应的频率:ω k= 2πk/ NΩ k= 2πf s k/ Nfk= fsk/ N
频率分辨率与窗形状和窗长的关系:矩形窗:Δ ml= 4π/ N汉宁/明窗:Δ ml= 8π/ N布莱克曼窗:Δ ml= 12π/ N
短时傅里叶变换
10.2 DFT analysis of sinusoidal signals
10.2.1 the effect of windowing 10.2.2 the effect of spectral sampling
We choose sinusoidal signals as the specific class of examples to discuss, but most of the issues raised apply more generally.
6
短时傅里叶变换
10.2.1 the effect of windowingX ( e jω ) V ( e jω )
Before windowing:x[n]= A0 cos(ω0n+θ0 )+ A1 cos(ω1n+θ1)
A0 jθ0 jω0n A0 jθ0 jω0n A1 jθ1 jω1n A1 jθ1 jω1n= e e+ e e+ e e+ e e 2 2 2 2∞< n<∞
A0 jθ0 A0 jθ0 X (e )= 2π[ eδ (ωω0 )+ eδ (ω+ω0 ) 2 2 A1 jθ1 A1 jθ1+ eδ (ωω1 )+ eδ (ω+ω1 )] 2 2jω7
短时傅里叶变换
After windowing:v[n]= x[n]w[n]A0 A0 jθ 0 jω 0 n= w[n]e e+ w[n]e jθ 0 e jω0 n 2 2 A1 A1 jθ1 jω1n+ w[n]e e+ w[n]e jθ1 e jω1n 2 21 V (e )= X (e jω ) *W (e jω ) 2π A0 jθ0 A0 jθ0 j (ωω0 ) n= e W (e )+ e W (e j (ω+ω0 ) n ) 2 2 A A+ 1 e jθ1W (e j (ωω1 ) n )+ 1 e jθ1W (e j (ω+ω1 ) n ) 2 2jω
8
短时傅里叶变换
EXAMPLE Example 10.3
| X (e
jω
加窗后)|
加窗前
(1)谱线展宽成窗频谱的主瓣宽 (2)产生旁瓣,衰减等于窗频谱的旁瓣衰减9
Figure 10.3(a)(b)
短时傅里叶变换
Figure 10.3(c)(d)(e)
(3)谱泄露谱线展宽和谱泄露导致:难以确定频率的位置和幅度;降低频率分辨率.产生旁瓣导致:产生假信号; 10淹没小信号.
短时傅里叶变换
We can find that windowing smears or broadens the impulse in theoretical Fourier representation, and thus reduces the ability to resolve sinusoidal signals that are closely spaced in frequency . The amplitude of one spectrum is affected by the amplitude of another
and vice versa when two components are closely spaced in frequency. This interaction is called leakage(泄露). The component at one frequency leaks into the vicinity of another component due to the spectral smearing introduced by the window. So reduced resolution and leakage are the two primary effects on the spectrum as a result of applying a window to the signal. The resolution is influenced primarily by the width of the main lobe of W (e jω ),while the degree of leakage depends on the relative amplitude of the main lobe and the side lobes of W (e jω ) . We define the frequency resolution(频率分辨率) is equal to the width of the main lobe of W (e jω ) . 11注意:频率分辨率=主瓣宽>DFT谱线间距
短时傅里叶变换
EXAMPLE
V (e jω )
L= 32
example 10 .8: 2π x[ n]= (cos( n) 14 4π n ))+ 0 .75 cos( 15 w[ n]= kaiser ( L= 32~ 64,β= 5 .48 )
L= 42
L= 54
L= 64
Conclusion: increase L can increase resolution Figure 10.10
12
短时傅里叶变换
EXAMPLE
2π v[ n]= (3 .5 * cos( n) 14 2π n ))+ 3 .5 * 0 .75 cos( 25 w R[ n]: red w hanning[ n]: blue L= 32
13 Conclusion: shape of window has effect on frequency resolution
短时傅里叶变换
Determine window's shape and length(1) for Kaiser windows:0.12438( Asl+ 6.3) β= 0.76609( Asl 13.26) 0.4+ 0.09834( Asl 13.26) 0L= 24π ( Asl+ 12)+1 155Δ mlΔ ml: main lobe width Asl: relative side lobe level
60< Asl< 120 13.26≤ Asl≤ 60 Asl< 13.26
(2)for Blackman window: look up the table14
短时傅里叶变换
10.2.2 the effect of spectral samplingV ( e jω ) V[ k]
The DFT of the windowed sequence provides samples of V (e jω ) . Spectral sampling can sometimes produce misleading results.
17
短时傅里叶变换
EXAMPLE
Before sampling
2π example 10 .4: x[ n]= (cos( n) 14 4π+ 0 .75 cos( n )) R 64[ n] 15 w[ n]' s length L= 64
峰值未取到
After samplingN=64
N=128
Figure 10.5(a)(b)(f)18
增加N峰值取到
短时傅里叶变换
EXAMPLEexample 10 .5: x[ n]= (cos(+ 0.75 cos( 2π n )) R64[ n] 8 w[ n]' s length L= 64 2π n 16
V[k]= X (e jω )≠ V (e jω )
N=64增加N其他值也取到 N=128
只取到峰值和零值 Figure 10.6 Conclusion: increase N can fine the sampling of the spectrum. Figure 10.719
短时傅里叶变换
N=32
EXAMPLE
example 10 .7:
N=64
N=128
2π x[ n]= (cos( n) 14 4π+ 0 .75 cos( n )) 15 w[ n]= kaiser ( L= 32,β= 5 .48 ) N= 32~ 1024
N=1024
Conclusion: increase N can't increase frequency resolution. Figure 10.920
短时傅里叶变换
EXAMPLE
MATLAB分析窗长对 DFT的影响
f ( t )= cos( 2π f 1t )+ cos( 2π f 2 t ), f 1= 2 Hz, f 2= 2 . 5 Hz, f s= 64 Hz, 0≤ n≤ 63 f ( t )|t= nT f1[ n]=,T= 1/ fs 64≤ n< 128 0 f 2[ n]= f ( t )|t= nT 0≤ n< 128分别作 128点 DFT,比较二者的不同.
F1[n]:窗长64,矩形窗,DFT点数128 F2[n]:窗长128,矩形窗,DFT点数128
21
短时傅里叶变换
L1=64; L2=128; N=128; T=1/64 n1=0:L1-1; x1=cos(2*pi*2*n1*T)+ cos(2*pi*2.5*n1*T) n2=0:L2-1; x2=cos(2*pi*2*n2*T)+ cos(2*pi*2.5*n2*T) k=0:N-1; X1=fft(x1,N); X2=fft(x2,N) stem(k,abs(X1)); hold on; stem(k,
abs(X2),'r.');
思考:如何用加窗DFT求周期为N的周期序列的DFS?即使峰值正好被取样到,且谱线间隔=主瓣宽的一半.条件:采用矩形窗;DFT点数=窗长.22
正在阅读:
短时傅里叶变换08-31
Join in Book 2 Starter unit Good to see you again Part 1,406-08
耳疾病12-23
收费运营管理工作流程图12-15
94-08高考情景对话汇编09-17
高三作文纯粹做人痛快行事01-02
流行病学复习笔记第十章 病因和因果推断05-05
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 短时
- 变换
- 傅里
- 2007年广西区农村信用社招聘考试试题
- 新时代交互英语视听说2答案完整版
- 法宣在线-章节练习及答案-中华人民共和国消防法
- 论文之希尔顿酒店集团进入中国的战略研究
- 希腊人创立了三种柱式
- 代理报检委托书(全国统一格式)
- 三位数乘以两位数应用题练习题
- 猪预混料配方
- 机械制图习题集答案 第四版 主编 杨皓
- 雁栖湖上篇-周边规划
- 转述句练习
- SQL SERVER 2005 数据库原理与应用试题C卷及答案
- 关系代数查询
- 师生诗歌朗诵稿亲爱的老师我们爱您
- 小课文1
- 2012-2013学年度第二学期麻风病防治知识主题班会教案
- 供应商评估报告范本
- 第十章 中国特色社会主义外交和国际战略选择题带答案
- 培育和践行社会主义核心价值观考试试题
- 电大资源网《人文英语1》形成性考核册作业题目和答案