数字电路习题解答
更新时间:2024-06-01 22:58:01 阅读量: 综合文库 文档下载
- 数字电路设计推荐度:
- 相关推荐
1数字逻辑基础习题解答 1
自我检测题
1.(26.125)10=(11010.001)2 =(1A.2)16 2.(100.9375)10=(1100100.1111)2 3.(1011111.01101)2=( 137.32 )8=(95.40625)10 4.(133.126)8=(5B.2B)16 5.(1011)2×(101)2=(110111)2 6.(486)10=(010010000110)8421BCD=(011110111001)余3BCD 7.(5.14)10=(0101.00010100)8421BCD 8.(10010011)8421BCD=(93)10
9.基本逻辑运算有 与 、或、非3种。
10.两输入与非门输入为01时,输出为 1 。 11.两输入或非门输入为01时,输出为 0 。 12.逻辑变量和逻辑函数只有 0 和 1 两种取值,而且它们只是表示两种不同的逻辑状态。
13.当变量ABC为100时,AB+BC= 0 ,(A+B)(A+C)=__1__。
14.描述逻辑函数各个变量取值组合和函数值对应关系的表格叫 真值表 。 15. 用与、或、非等运算表示函数中各个变量之间逻辑关系的代数式叫 逻辑表达式 。
16.根据 代入 规则可从AB?A?B可得到ABC?A?B?C。
17.写出函数Z=ABC +(A+BC)(A+C)的反函数Z=(A?B?C。 )(A(B?C)?AC)18.逻辑函数表达式F=(A+B)(A+B+C)(AB+CD)+E,则其对偶式F'= __(AB+ABC+(A+B)(C+D))E。 )?CD,其对偶式F'=19.已知F?A(B?C(A?B?C)?C?D。
20.Y?ABC?C?ABDE的最简与-或式为Y=AB?C。
21.函数Y?AB?BD的最小项表达式为Y= ∑m(1,3,9,11,12,13,14,15)。 22.约束项是 不会出现 的变量取值所对应的最小项,其值总是等于0。 23.逻辑函数F(A,B,C)=∏M(1,3,4,6,7),则F(A,B,C)=∑m( 0,2,5)。 24.VHDL的基本描述语句包括 并行语句 和 顺序语句 。
25.VHDL的并行语句在结构体中的执行是 并行 的,其执行方式与语句书写的顺序无关。
26.在VHDL的各种并行语句之间,可以用 信号 来交换信息。
27.VHDL的PROCESS(进程)语句是由 顺序语句 组成的,但其本身却是 并行语句 。
28.VHDL顺序语句只能出现在 进程语句 内部,是按程序书写的顺序自上而下、一条一条地执行。
29.VHDL的数据对象包括 常数 、 变量 和 信号 ,它们是用来存放各种类型数据的容器。
1数字逻辑基础习题解答 2 30.下列各组数中,是6进制的是 。
A.14752 B.62936 C.53452 D.37481 31.已知二进制数11001010,其对应的十进制数为 。
A.202 B.192 C.106 D.92 32.十进制数62对应的十六进制数是 。 A.(3E)16 B.(36)16 C.(38)16 D.(3D)16 33.和二进制数(1100110111.001)2等值的十六进制数是 。 A.(337.2)16 B.(637.1)16 C.(1467.1)16 D.(C37.4)16
34.下列四个数中与十进制数(163)10不相等的是 。 A.(A3)16 B.(10100011)2 C.(000101100011)8421BCD D.(100100011)8 35.下列数中最大数是 。 A.(100101110)2 B.(12F)16 C.(301)10 D.(10010111)8421BCD
36.和八进制数(166)8等值的十六进制数和十进制数分别为 。 A.76H,118D B.76H,142D C.E6H,230D D.74H,116D 37.已知A=(10.44)10 ,下列结果正确的是 。 A. A=(1010.1)2 B.A=(0A.8)16 C. A=(12.4)8 D.A=(20.21)5
38.表示任意两位无符号十进制数需要 位二进制数。 A.6 B.7 C.8 D.9
39.用0、1两个符号对100个信息进行编码,则至少需要 。 A.8位 B.7位 C.9位 D.6位 40.相邻两组编码只有一位不同的编码是 。
A.2421BCD码 B.8421BCD码 C.余3码 D.格雷码 41.下列几种说法中与BCD码的性质不符的是 。 A.一组4位二进制数组成的码只能表示一位十进制数 B.BCD码是一种人为选定的0~9十个数字的代码
C.BCD码是一组4位二进制数,能表示十六以内的任何一个十进制数 D.BCD码有多种
42.余3码10111011对应的2421码为 。
A.10001000 B.10111011 C.11101110 D.11101011
43.一个四输入端与非门,使其输出为0的输入变量取值组合有 种。 A.15 B.8 C.7 D.1
44.一个四输入端或非门,使其输出为1的输入变量取值组合有 种。 A.15 B.8 C.7 D.1 45.A?1?0?1?1?0?1= 。
A.A B.A C.0 D.1
46.下列四种类型的逻辑门中,可以用 实现与、或、非三种基本运算。
1数字逻辑基础习题解答 3 A.与门 B. 或门 C.非门 D.与非门
47.若将一个异或门(设输入端为A、B)当作反相器使用,则A、B端应 连接。
A.A或B中有一个接高电平; C. A和B并联使用;
B.A或B中有一个接低电平; D.不能实现。
48.下列逻辑代数式中值为0的是 。
A.A ? A B.A ? 1 C.A ? 0 D.A?A 49.与逻辑式A?ABC相等的式子是 。 A.ABC B.1+BC C.A D.A?BC 50.下列逻辑等式中不成立的有 。 A.A?BC?(A?B)(A?C) B.AB?AB?AB?1 C.A?B?AB?1 D.AABD?ABD
51.F?(A?B?C)?A的最简与-或表达式为 。
A.F=A B.F?A?BC?BC C.F=A+B+C D.都不是
52.若已知XY?YZ?YZ?XY?Y,判断等式(X?Y)(Y?Z)(Y?Z)?(X?Y)Y成立的最简单方法是依据 。
A .代入规则 B.对偶规则 C.反演规则 D.反演定理 53.根据反演规则,逻辑函数F?AB?CD的反函数F= 。
A.AB?CD B.(A?B)(C?D) C.(A?B)?(C?D) D.A?BC?D 54.逻辑函数F?AB?BC的对偶式F'= 。 A.(A?B)(B?C) B.(A?B)(B?C) C.A?B?C D.AB?BC
55.已知某电路的真值表如表T1.55所示,该电路的逻辑表达式为 。 A.F=C B.F=ABC C.F=AB+C D.都不是
表T1.55
A B C 0 0 0 0 0 1 0 1 0 0 1 1 F 0 1 0 1 A B C 1 0 0 1 0 1 1 1 0 1 1 1 F 0 1 1 1 56.函数F =AB +BC,使F=1的输入ABC组合为 。
A.ABC = 000 B.ABC = 010 C.ABC = 101 D.ABC = 110 57.已知F?ABC?CD,下列组合中, 可以肯定使F=0。
1数字逻辑基础习题解答 4 A.A = 0 , BC = 1 B.B = 1,C = 1 C.C = 1,D = 0 D.BC = 1,D = 1 58.在下列各组变量取值中,能使函数F(A,B,C,D)=∑m(0,1,2,4,6,13)的值为l是 。 A.1100 B.1001 C.0110 D.1110 59.以下说法中, 是正确的? A.一个逻辑函数全部最小项之和恒等于1 B.一个逻辑函数全部最大项之和恒等于0 C.一个逻辑函数全部最小项之积恒等于1 D.一个逻辑函数全部最大项之积恒等于1
60.标准或-与式是由 构成的逻辑表达式。
A.与项相或 B.最小项相或 C.最大项相与 D.或项相与 61.逻辑函数F (A,B,C)=Σ m (0,1,4,6)的最简与非-与非式为 。
A.F?AB?AC B.F?AB?AC C.F?AB?AC D.F?AB?AC 62.若ABCDEFGH为最小项,则它有逻辑相邻项个数为 。 A.8 B.82 C.28 D.16
63.ABC?AD在四变量卡诺图中有 个小方格是“1”。 A.13 B.12 C.6 D.5 64.VHDL是在 年正式推出的。
A.1983 B.1985 C.1987 D.1989
65.VHDL的实体部分用来指定设计单元的 。 A.输入端口 B.输出端口 C.引脚 D.以上均可 66.一个实体可以拥有一个或多个 。
A.设计实体 B.结构体 C.输入 D.输出
67.在VHDL的端口声明语句中,用 声明端口为输入方向。 A.IN B.OUT C.INOUT D.BUFFER
68.在VHDL的端口声明语句中,用 声明端口为具有读功能的输出方向。 A.IN B.OUT C.INOUT D.BUFFER
69.在VHDL标识符命名规则中,以 开头的标识符是正确的。 A.字母 B.数字 C.字母或数字 D.下划线 70. 在VHDL中,目标信号的赋值符号是 。 A. =: B.= C. := D.<=
1数字逻辑基础习题解答 5
习 题
1.有人说“五彩缤纷的数字世界全是由‘0、1’及‘与、或、非’组成的。”你如何理解这句话的含义?
答:任何复杂的数字电路都可由与、或、非门组成。数字电路处理的都是0、1构成的数字信号。
2.用4位格雷码表示0、1、2、?、8、9十个数,其中规定用0000四位代码表示数0,试写出三种格雷码表示形式。
解:
G3G2G1G0 G3G2G1G0 G3G2G1G0 0000 0001 0011 0010 0110 1110 1111 1101 1100 1000 0000 0010 0110 0100 0101 0111 1111 1101 1100 1000 0000 0100 1100 1000 1001 1011 1010 1110 0110 0010 3.书中表1.2-4中列出了多种常见的BCD编码方案。试写出余3循环码的特点,它与余3码有何关系?
解:余3循环码的主要特点是任何两个相邻码只有一位不同,它和余3码的关系是: 设余3码为B3B2B1B0,余3循环码为G3G2G1G0,可以通过以下规则将余3码转换为余3循环码。
(1)如果B0和B1相同,则G0为0,否则为1; (2)如果B1和B2相同,则G1为0,否则为1; (3)如果B2和B3相同,则G2为0,否则为1; (4)G3和B3相同。
4.如果存在某组基本运算,使任意逻辑函数F(X1,X2,?,Xn)均可用它们表示,则称该组基本运算组成完备集。已知与、或、非三种运算组成完备集,试证明与、异或运算组成完备集。
解:将异或门的其中一个输入端接高电平即转化为非门,根据A?B?AB可知,利用与门和非门可以构成或门,因此,与、异或运算可以实现与、或、非三种运算,从而组成完备集。
5.布尔量A、B、C存在下列关系吗?
1数字逻辑基础习题解答 6 (1)已知A+B=A+C,问B=C吗?为什么? (2)已知AB=AC,问B=C吗?为什么?
(3)已知A+B=A+C且 AB=AC,问B=C吗?为什么? (4)最小项m115与m116可合并。 解:(1)×,因为只要A=1,不管B、C为何值,A+B=A+C即成立,没有必要B=C。 (2)×,不成立,因为只要A=0,不管B、C为何值,AB=AC即成立,没有必要B=C。 (3)√,当A=0时,根据A+B=A+C可得B=C;当A=1时,根据AB=AC可得B=C。 (4)×,115=1110011B 116=1110100B逻辑不相邻。 6.列出逻辑函数 Y?AB?BC 的真值表。
(B?C)?AB?ABC?ABC?ABC 解:Y?AB?BC?AB?BC?ABA 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 Y 0 0 0 0 1 1 0 0 AB7.写出如图P1.7所示逻辑电路的与-或表达式,列出真值表。
AB&&&&F=1&FBC≥1
图P1.7 图P1.8
解:F?AABBAB?AAB?BAB?AB?AB?A?B
A 0 0 1 1 B 0 1 0 1 F 0 1 1 0
8.写出如图P1.8所示逻辑电路的与-或表达式,列出真值表。 解:表达式
1数字逻辑基础习题解答 7 F?(AB?AB)(B?C)?AB?ABC?ABC?ABC?ABC?ABC
真值表
A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 9.试用与非门实现逻辑函数L=AB+BC 。 解:L?AB?BC?ABBC 逻辑电路图
0 0 0 1 1 1 0 0 ABC&&&L
10.根据图P1.10所示波形图,写出逻辑关系表达式Z= f(A,B,C),并将表达式简化成最简或非-或非表达式和最简与-或-非表达式。
ABCZ
图P1.10
解:根据波形图列出真值表:
A 0 0 0 0 1 1 B 0 0 1 1 0 0 C 0 1 0 1 0 1 Z 0 1 0 1 0 0 1数字逻辑基础习题解答 8
1 1 利用卡诺图化简得到:
Z?AB?AC
1 1 0 1 1 1 ?A?C?A?B 或非-或非表达式
?A?C?A?B 与或非表达式 11.用公式法证明:AB?BC?CA?AB?BC?CA
解:解法一:
Y1?AB?BC?CA?ABC?ABC?ABC?ABC?ABC?ABC?m(1,2,3,4,5,6) Y2?AB?BC?CA?ABC?ABC?ABC?ABC?ABC?ABC?m(1,2,3,4,5,6)∴Y1=Y2
解法二:
Y1?AB?BC?CA?ABC?ABC?ABC?ABC?ABC?ABC
?ABC?ABC?ABC?ABC?ABC?ABC?AB(C?C)?BC(A?A)?CA(B?B)?AB?BC?CA
12.证明不等式AC?BC?AB?D?BC?AB?AC?D。 解:令Y1?AC?BC?AB?D Y2?BC?AB?AC?D
当D=0时,Y1?AC?BC?AB,Y2?BC?AB?AC 列出函数真值表:
A 0 0 0 0 1 1 1 1 从真值表可知:
Y1≠Y2
13.已知逻辑函数F?ABC?ABC?BC,求:最简与-或式、与非-与非式、最小项表
达式。
解:最简与-或式:
B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 Y1 0 1 0 1 1 1 0 1 Y2 1 0 1 1 1 1 1 1 1数字逻辑基础习题解答 9
F?ABC?ABC?BC?AB?BC
与非-与非式: F?AB?BC?AB?BC
最小项之和:
F?ABC?ABC?ABC
14.已知F(A,B,C)=AB+BC,求其最大项之积表达式(标准或-与式)。 解:方法一:先求最小项之和,再求最大项之积。
F?ABC?ABC?ABC??m(3,6,7)??M(0,1,2,4,5)?(A?B?C)(A?B?C)(A?B?C)(A?B?C)(A?B?C)
方法二:直接求。
F?AB?BC?B(A?C)?(A?B)(A?B)(A?C)?(A?B?C)(A?B?C)(A?B?C)(A?B?C)(A?B?C)(A?B?C) ?(A?B?C)(A?B?C)(A?B?C)(A?B?C)(A?B?C)15.某组合逻辑电路如图P1.15所示: (1)写出函数Y的逻辑表达式; (2)将函数Y化为最简与-或式; (3)用与非门画出其简化后的电路。
Y≥1ABC&11=1=1S&ABC&&&&CO
图P1.15
解:Y?ABC?ABC?ABC?AB?AC
Y?AB?AC?AB?AC
AB&&YC&
16.与非门组成的电路如图P1.16所示: (1)写出函数Y的逻辑表达式;
1数字逻辑基础习题解答 10 (2)将函数Y化为最简与-或式; (3)用与非门画出其简化后的电路。
ACY2&BC&Y3DY5&Y7&Y1&1Y4&Y6&YB
图P1.16
解:Y1?AC,Y2?B,Y3?BC,Y4?Y1B?AC?B Y5?Y2Y3?B?BC?B?C
Y6?Y4Y5?(AC?B)(B?C)?AC?BC Y7?Y3D?BC?D
Y?Y6Y7?AC?BC?BC?D?AC?BC?BCD?AC?BC?D?ACBCD
ACBD&&&Y&
17.列出如图P1.17所示逻辑电路的真值表。
ABC111&&≥11L1&L2&
图P.17
解:L1?ABC?ABC
正在阅读:
数字电路习题解答06-01
定量分析简明教程习题05-24
抵房协议书10-28
2020至2021学年部编版语文三年级上册期末冲刺专项突破卷:2词语05-05
基于Web图书管理系统设计与实现04-25
全国硕士研究生入学统一考试数学(一)历年真题(1987-2010)08-16
小班教学论文:浅析部队院校任职教育改革中推行小班教学的利弊点08-20
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 习题
- 电路
- 解答
- 数字
- 自动对位装置调试说明书 - 图文
- 素质教育对教师素质的要求
- 基于Java的人事管理系统文献综述
- 东财《微观经济学》在线作业二15秋100分答案
- 电脑维修知识大全
- 小学数学三年级下册第五单元课程纲要
- 2015全国大学生电子设计竞赛I题设计报告
- 原电池 化学电源(教学设计)-2017届高三化学一轮复习
- 英语考研命题特点和规律
- 【精品】2018年四川省德阳市中考生物试卷及答案
- 环保教案(三)
- 奉贤区塘外小学教学常规管理细则(试行稿) 2008年2月 - 图文
- 尔雅世界建筑史课后练习答案
- 建筑装饰材料复习题4
- 建设工程档案预验收
- 从我国弱势群体角度浅谈人权保护
- 劳保所 五年前工作总结及五年后工作计划
- Avizo 9安装图文详细流程
- 《行政法学》第02章在线测试
- 绍兴市初级卫生技术人员继续医学教育