一元二次方程与二次函数的应用题精选题
更新时间:2023-11-18 04:48:01 阅读量: 教育文库 文档下载
一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x,依题意得 ………………………1分
5000(1-x)2= 4050 ………………………………………3分
解得:x1=10% x2=
19(不合题意,舍去) …………………………4分 10答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分
方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵<
∴选方案①更优惠. ……………………………………………8分
2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x。根据题意,得 150(1?x2?)2 16解得x1?0.2?20%,x2??2.2(不合题意,舍去)。 答:该市汽车拥有量的年平均增长率为20%。
(2)设全市每年新增汽车数量为y万辆,则2010年底全市的汽车拥有量为216?90%?y万辆,2011年底全市的汽车拥有量为(216?90%?y)?90%?y万辆。根据题意得
(216?90%?y)?90%?y?231.96
解得y?30
答:该市每年新增汽车数量最多不能超过30万辆。
3.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的16米 长.
A D
草坪
B C 第21题图
.解:设BC边的长为x米,根据题意得 ············································ 1分 x32?x······························································· 4分 ?120, ·
2 解得:x1?12,x2?20, ···························································· 6分
∵20>16,
∴x2?20不合题意,舍去, ···················································· 7分
答:该矩形草坪BC边的长为12米.
4.(2010山东烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?
答案:解:设原计划每天打x口井,
由题意可列方程30/x-30/(x+3)=5, …………………………………………4分 去分母得,30(x+3)-30x=5x(x+3),
2
整理得,x+3x-18=0……………………………………………………………5分 解得x1=3,x2=-6(不合题意舍去)…………………………………………6分 经检验,x2=3是方程的根,…………………………………………7分
答:原计划每天打3口井………………………………………………………………8分
5.(2010·浙江温州)23.(本题l2分)在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.
(1)下图是小芳家2009年全年月用电量的条形统计图。
根据图中提供的信息,回答下列问题:
①2009年小芳家月用电量最小的是 月,四个季度中用电量最大的是第 季度; ②求2009年5月至6月用电量的月增长率; (2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?
6..(2011山东日照,20,8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
7. 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?
解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31.
因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答 需要进货100件,每件商品应定价25元.
8. 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?
如果人数不超过25人,人均旅游费用为1000元. 如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元. 图1
解 设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.
则根据题意,得[1000-20(x-25)]x=27000.
整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30. 当x=45时,1000-20(x-25)=600<700,故舍去x1; 当x2=30时,1000-20(x-25)=900>700,符合题意. 答:该单位这次共有30名员工去天水湾风景区旅游.
9. 在如图8中,每个正方形有边长为1 的小正方形组成:
图8
(1)观察图形,请填写下列表格: 正方形边长 黑色小正方形个数
正方形边长 黑色小正方形个数
2
4
6
8
… …
n(偶数)
1
3
5
7
… …
n(奇数)
(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.
解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n 时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形的个数为4、8、12、16、2n(偶数).
(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.
正在阅读:
一元二次方程与二次函数的应用题精选题11-18
网络直播面临的问题及发展趋势03-11
辽宁2010年高考理综试题(Word版)05-18
开展安全宣传月活动总结多篇06-02
生命的绽放作文500字06-18
Visual_C++面向对象编程教程第1章_Visual_C++集成开发环境04-21
浅谈计算机网络的未来发展趋势09-03
成稿钓鱼的启示说课稿04-07
《模拟电子技术》复习题03-16
让色彩动起来 说课 教案 反思 - 图文05-31
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 一元二次方程
- 应用题
- 选题
- 函数