直升机原理详解真实完整版 - 图文

更新时间:2023-11-08 01:58:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

发一套最完整的直升机原理(绝对完整,绝对精华)

这是我找到的最完整,最系统介绍直升机的原理及发展史的文章。转到这里,送给论坛里喜欢飞行,向往蓝天的朋友!!

自从莱特兄弟发明飞机以来,人们一直为能够飞翔蓝天而激动不已,同时又受起飞、着落所需的滑跑所困扰。在莱特兄弟时代,飞机只要一片草地或缓坡就可以起飞、着陆。不列颠之战和巴巴罗萨作战中,当时最高性能的“ 喷火

”战斗机和

Me 109

战斗机也只需要一片平整的草地就可以起飞,除了重轰炸机,很少有必须用“正规”的混凝土跑道起飞、着陆的。今天的飞机的性能早已不能为这些飞机所比,但飞机的滑跑速度、重量和对跑道的冲击,使对起飞、着陆的跑道的要求有增无减,连简易跑道也是高速公路等级的。现代战斗机和其他高性能军用飞机对平整、坚固的长跑道的依赖,日益成为现代空军的致命的软肋。为了摆脱这一困境,从航空先驱的时代开始,人们就在孜孜不倦地研制能够象鸟儿一样腾飞的具有垂直/短距起落能力的飞机。 自从人们跳出模仿飞鸟拍翅飞行的谜思之后,依据贝努力原理的空气动力升力就成为除气球和火箭外所有动力飞行器的基本原理。机翼前行时,上下翼面之间的气流速度差造成上下翼面之间的压力差,这就是升力。所谓“机翼前行”,实际上就是机翼和空气形成相对速度。既然如此,和机身一起前行时,机翼可以造成升力,机身不动而机翼像风车叶一样打转转,和空气形成相对速度,也可以形成升力,这样旋转的“机翼”就成为旋翼,旋翼产生升力就是直升机可以垂直起落的基本原理。

中国小孩竹蜻蜓玩了有 2,000 年了,流传到西方后,成为现代直升机的灵感 / 达·芬奇设计的直升机,到底能不能飞起来,很是可疑

旋翼产生升力的概念并不新鲜,中国儿童玩竹蜻蜓已经有 2,000 多年了,西方也承认流传到西方的中国竹蜻蜓是直升机最初的启示。多才多艺的达·芬奇在 15 世纪设计了一个垂直的螺杆一样的直升机,不过没有超越纸上谈兵的地步。1796 年,英国人 George Cayley 设计了第一架用发条作动力、能够飞起来的直升机,50 年后的 1842 年,英国人 W.H. Philips 用蒸气机作动力,设计了一架只有 9 公斤重的模型直升机。1878 年,意大利人 Enrico Forlanini 用蒸气机制作了一架只有 3.5 公斤重的模型直升机。1880 年,美国发明家托马斯·爱迪生着手研制用电动机驱动的直升机,但最后放弃了。法国人 Paul Cornu 在 1907 年制成第一架载人的直升机,旋翼转速每分钟 90 转,发动机是一台 24 马力的汽油机。Cornu 用旋翼下的“舵面”控制飞行方向和产生前进的推力,但 Cornu 的直升机的速度和飞行控制能力很可怜。

1796 年,英国人 George Cayley 设计了这么一个直升机,最高升到 90 英尺(约 30 米)

法国人 Paul Cornu 在 1907 年设计的第一架载人直升机

但是意大利人 Juan de la Cierva 在 1923 年设计旋翼机时,无意中解决了直升机的一个重大问题,他发明的挥舞铰解决了困扰直升机旋翼设计的一个重大问题。1930 年 10 月,意大利人 Corradino D'Ascanio 的直升机是公认的第一架现代意义上的直升机,在 18 米高度上前飞了 800 多米的距离,D'Ascanio 的直升机用共轴反转双桨。30 年代,德国人 Heinrich Focke 设计了 FA-61 直升机,不断在各种纳粹集会中作公关表演,但德国人 Anton Flettner 设计的 FL282 可算是第一种量产直升机,在二战中为德国海军生产了近 1,000 架,不过没有在战斗中起到什么作用。Igor Sikorsky 设计的 VS300(VS 代表 Vought-Sikorsky,当时 Sikorsky 是 Vought 飞机公司的一部分)第一次采用尾桨,真正奠定了现代直升机的雏形。

D'Ascanio 的直升机是第一个现代意义上的直升机,能完成前飞,具有基本的飞行控制能力

30 年代德国的 FW61直升机,被纳粹用作宣传纳粹“优越性”的工具 / 德国 FL282 应

该是第一架量产型直升机,在二战期间产量达到近 1,000 架,用于德国海军,不过没有对战斗造成什么影响

这是 FL282 的近容

39-40 年 Sikorsky 的 VS300 直升机是现代直升机的“老母鸡”,奠定了现代直升机最常用的尾桨布局 / 尽管贝尔飞机公司在 37 年才开张,45 年的贝尔 47 是第一种量产的实用型直升机,在朝鲜战场就广泛用于伤员救护、侦察、炮兵指引等,从长津湖突围的美国海

侧风下垂直着陆,要防止支点突然转移到外侧机轮而引起翻滚的问题 / 斜坡上起飞,要注意不能太猛,否则重心突然从后离地的机轮向重心转移,会造成突然而剧烈的摆动,危害飞行安全

旋翼是圆周运动,由于半径的关系,翼尖处线速度已经接近音速时,圆心处线速度为零!所以旋翼靠近圆周的地方产生最大的升力,而靠近圆心的地方只产生微不足道的升力。桨叶向前划行时,桨叶和空气的相对速度高于旋转本身所带来的线速度;反之,桨叶向后划行时,桨叶和空气的相对速度就低于旋转本身所带来的线速度,这样,旋翼两侧产生的升力还不均匀,不做任何补偿的话,升力差可以达到 5:1。这个周期性的升力变化不仅使机身向一侧倾斜,而且每片桨叶在圆周中不同方位产生不同的升力和阻力,周期性地对桨叶产生强烈的扭曲,既大大加速材料的疲劳,又引起很大的振动。所以旋翼的气动设计可以比高性能固定翼飞机的机翼设计更为复杂。

直升机以 130 公里/小时前行,主旋翼翼尖线速度 420 公里/小时,桨叶在不同位置和气流的相对速度是不同的,产生的升力也不同 / 固定桨叶的升力分布,等高线是与半翼展处产生的升力的比值

前面提到的 de la Cierva 是在实践中发现这个问题的。他的模型旋翼机试飞很成功,但是全尺寸的旋翼机一上天就横滚翻,开始以为是遇到突然的横风,第二架飞机上天同样命运。de la Cierva 经过研究,发现模型旋翼机的桨叶是用藤条材料做的,有弹性,而全尺寸旋翼机的桨叶是刚性的钢结构,由此认识到桨叶的挥舞铰的必要性。具体来说,为了补偿左右的升力不均匀,和减少桨叶的疲劳,桨叶在翼根要采用一个容许桨叶载回转过程中上下挥舞的铰链,这个铰链称为挥舞铰(flapping hinge,也称垂直铰)。桨叶在前行时,升力增加,桨叶自然向上挥舞。由于桨叶在旋转过程中同时上升,桨叶的实际运动方向不再是水平的,而是斜线向上的。桨叶和水平面的夹角虽然不因为桨叶向上挥舞而改变,但桨叶和气流的相对运动方向之间的夹角由于这斜线向上的运动而变小,这个夹角(而不是桨叶和水平面之间的夹角)才是桨叶真正的迎角。桨叶的迎角在升力作用下下降,降低升力。桨叶在后行时,桨叶的升力不足,自然下垂,变旋转边下降造成桨叶和气流相对运动方向之间的夹角增大,迎角增加,增加升力。由于离心力使桨叶有自然拉直的趋势,桨叶不会在升力作用下无限升高或降低,机械设计上也采取措施,保证桨叶的挥舞不至于和机体发生碰撞。桨叶在环形过程中,不断升高、降低,翼尖离圆心的距离不断改变,引起科里奥利效应(这个东西谁都“知道”,但说清楚不容易。谁要是能把这个东西说清楚,鲜花奉上),就像花样滑冰运动员经常把双臂张开、收拢,以控制旋转速度。要是一个手臂张开,一个手臂收拢,就不可能在原地旋转,就要东倒西歪了。所以桨叶在水平方向也要前后摇摆,以补偿桨叶上下挥舞所造成的科里奥利效应。摆振铰利用前行时阻力增加,使桨叶自然增加后掠角(即所谓“滞后”, 因为桨叶在旋转方向上的角速度低于圆心的旋转速度),这也变相增加桨叶在气流方向上剖面的长度,加强了减小迎角的作用;在后行时,阻力减小,阻尼器(相当于弹簧)使桨叶恢复的正常位置(即所谓“领先”,因为桨叶在旋转方向上的角速度高于圆心的旋转速度),当然也加强了增加迎角的作用,所以摆振铰(drag hinge 也称水平铰)也称领先-滞后铰(lead lag hinge)。挥舞铰和摆振铰是旋翼升力均匀的飞行平稳的关键。由于桨叶在旋转中容许上下挥动和前后摆动,这种桨叶称为柔性桨叶(articulated rotor)。除了用机械铰链容许

桨叶在环形过程中相对于其他桨叶有一定的挥舞外,材质也必须具有弹性,这就是为什么直升机停在地面时,桨叶总是“耷拉”着的原因。但机械铰链磨损大,可靠性不好,德国 MBB(战时著名的梅塞斯米特就是 MBB 中的 M)用弹性元件取代了挥舞铰,研制成功无铰桨叶,第一个应用无铰桨叶的是 MBB Bo-105,中国曾进口一批,用于支援海上采油平台。

挥舞铰示意图,前行桨叶可以在升力作用下向上有所挥舞,从而降低升力,达到平衡;后行桨叶则向下弯曲,从而提高升力,达到平衡 / 采用挥舞铰后的升力分布,要均匀得多 双叶旋翼是一个特例,桨叶和圆心的桨毂刚性连接,但用一个单一的“跷跷板”铰链同时代替挥舞铰和摆振铰,所以也称为半刚性桨叶(semi-rigid rotor)。跷跷板铰链在一侧桨叶上扬时,将另一侧桨叶自然下压;在一侧桨叶“领先”时,将另一侧桨叶自然“滞后”,既简化了机械设计,又完美地实现了更复杂的机械设计才能实现的功能。贝尔直升机公司用双叶用出了味道,越战期间漫天蝗虫似的 UH-1 就是双叶,后来的 AH-1 也是。不过“跷跷板”设计只能用于双叶旋翼。双叶旋翼有无可置疑的简洁性和由此而来的成本和可靠性上的优势,但双叶旋翼也只有两片桨叶可以产生升力和推力,和多叶桨叶相比,就要增加旋翼

直径,增加旋翼转速,前者增加总体尺寸和阻力,后者增加噪声。

第一个采用无铰桨叶的 Bo-105 / Bo-105 的无铰桨叶,用弹性元件代替了挥舞铰和摆振铰,但变距铰依然保留

EC-135 更进一步,甚至取消了使桨叶改变桨距的变距铰,也用弹性元件代替了 / EC-135 的先进技术桨叶(Advanced Technology Rotor,简称ATR,属hingeless bearingless),采用弹性元件代替所有机械铰链,避免机械磨损,减轻重量,改善飞行平稳性 [/url]

单桨直升机的起飞重量终归有限,要增大起飞重量,就要增加旋翼直径,增加旋翼转速,增加桨叶数目,加强传动轴,这些都增加了旋翼系统的机械复杂性和重量。旋翼直径和转速受到翼尖速度不能超过音速的限制,否则音障带来的阻力和振动将不可忍受,更大的旋翼直径也迫使尾撑长度增加,增加结构重量。较大的旋翼也对狭小场地的起落造成不便。大幅度提高起飞重量最有效的途径,还是采用两个甚至更多的旋翼,分担负担。除了一些设想中的四旋翼方案,三旋翼没有见到过,还是双旋翼最常见。既然采用两个旋翼,如果旋转方向相反,一个顺时针旋转,一个逆时针旋转,就自然抵消相互的反扭力。反转的双旋翼不需要特别考虑尾桨和尾撑的结构,也没有尾桨吃掉对推进和升力没有作用的功率的问题,可以把所有功率都用于升力和推进,这是双旋翼额外的优点。双旋翼(也称双桨)有多种方案,可以前后串列,可以左右并列,可以上下共轴,还可以上下不共轴。串列双桨的典型有美国的 CH-46、CH-47;并列双桨的典型有俄罗斯的米-12,直升机状态的美国 [url=http://www.afwing.com/intro/v22/1.htm] V-22

V-22 的半刚性旋翼清晰可见 / V-22 的宽弦、大弯度、无铰、无轴承桨叶清晰可见

起飞、着陆时,襟翼放下,最大限度地减小对下洗气流的遮挡 / 为了适合上舰的需要,V-22 的旋翼可以折叠,机翼还可以横转90度,和机体平行,以节约占地空间

V-22 着舰试验,一侧旋翼在甲板上空、一侧旋翼在舷外时,两侧升力不均匀,容易造成事故。一架接一架紧接着快速降落时,前面飞机造成的空气涡流容易使后面的飞机进入危险的“涡流环”状态(vortex ring),造成旋翼吃不上劲,导致坠机 / 这是在两栖登陆建“塞班”号机舱内的情景

V-22 的性能被说得如此出众,人们不禁疑惑,为什么总统的“海军陆战队一号”要选新机时,没有选 V-22?

贝尔在 V-22 的成功之后,向两条战线出击,一是将倾转旋翼技术用于无人机,以最大限

度地利用其垂直起落和速度、航程上的优势,二是将倾转旋翼技术推向民航市场。早先雄心勃勃的中短程支线客机看来一时还难以实现,但小型公务机已经开始了,贝尔和意大利的 Agusta 合作,正在研制 BA-609,其垂直起落的能力和速度、航程将对大公司、政府机构的要员从城市中心到城市中心的空中旅行有很大的诱惑力。欧洲从 80-90 年代开始,也展开了倾转旋翼的研究。法、德合作的 Eurotilt 和英、意合作的 Eurofar 最后合并成一个计划,但在 V-22 和 BA-609 面临一系列技术困难后,速度放慢,估计现在处于观望状态,在等待倾转旋翼的技术进一步成熟、技术风险进一步降低后再行动。

BA-609 的 BA 代表 Bell Agusta,将成为倾转旋翼在民用领域里“吃螃蟹的人”09 是面对有钱的阔佬的

/ BA-6

BA-609 在警方和海岸警卫队中也有望得到青睐 / BA-609 已经试飞,正在欧洲大力推销,力图抢在欧洲公司的前面霸占市场

法国主导的 Eurotilt 倾转旋翼飞机方案

Eurotilt 的倾转和 V-22 稍有不同,只有发动机前半部分倾转,介于 tilt rotor 和 tilt shaft 之间

贝尔当然不会把倾转旋翼的概念只用在载人飞机上,在如火如荼的无人机领域,贝尔也推出了采用倾转旋翼的“鹰眼”(Eagle Eye) / “鹰眼”预计要和海军或海岸警卫队的舰船配合行动,所以有很高的上舰要求

尽管 V-22 在研制过程中遇到严重的问题,美国军方对用具有垂直/短距起落能力的运输机作为战术空运主力的概念依然不肯放弃,在 V-22 尚未大规模服役时,已经开始对更大型垂直/短距起落运输机的研制,贝尔的方案自然是 V-22 的延伸:采用四旋翼的倾转旋翼方案,即所谓 quad tilt rotor。值得注意的是,倾转旋翼的发动机通常都是成双布置的。除非在机顶重心处安装一根很高的桅杆,倾转旋翼基本不可能是单旋翼的。

也可以算作并列双桨;共轴双桨(co-axial 或 contra-rotating)的典型当然非俄罗斯的 K-25、K-31 等卡莫夫直升机莫属;异轴双桨(更准确地说,是交替双桨,也称交叉双桨,intermeshing)的只有美国卡曼的 H-34 Husky 和 K-Max 等少数例子。

串列和并列双桨布局示意图

串列双桨的 CH-47 / 并列双桨的米-12

共轴双桨示意图 / 共轴双桨的卡-31

交替双桨示意图 / 交替双桨的 K-Max

串列双桨对于最大限度地利用机身长度有利,CH-46、CH-47 机舱长但并不累赘,总长并不为此增加多少,而单桨的米-6 就“横阔竖大”了。串列双桨中离发动机较远的那副旋翼(一般是前旋翼)的功率要求比驱动尾桨高得多,为了保证前后旋翼的同步,串列双桨需要长长的沉重的同步传动轴,而不能简单地由前发动机驱动前旋翼,后发动机驱动后旋翼。串列双桨的前后旋翼一般上下错开一点,这样可以容许前后旋翼之间在高度上有一定的重合,缩短全机长度。上下的高度差太少了,不能保证安全,尤其是大幅度机动动作时,上下桨叶可能发生碰撞。高度差太大了,支撑后旋翼的“柱子”太过高大,阻力巨大。 并列双桨通常是安装在机翼翼尖的,翼展由旋翼半径决定,没有办法靠上下重合而缩短翼展,在气动上难于优化。左右旋翼之间要设交叉的同步轴,以保证左右两副旋翼永远同步。还有一个问题是,左右旋翼都在机身中段附近,仅靠周期距,俯仰控制力矩不足。但这都不是最大的问题,最大的问题是横滚稳定性,两侧旋翼升力不均匀时,飞机会发生横滚,如果在急速下降过程中,飞机不幸进入自己的下洗气流,旋翼效率急剧降低,旋翼越用力,越使不上劲,好像汽车轮子打滑一样,加剧横滚的不稳定倾向,飞机在几秒钟内就可以倾覆失控,V-22 的几次坠毁就是这样造成的。强烈的不对称气流扰动也可以造成这个现象。发动机安装在机身还好说,要是发动机安装的机翼翼尖,离重心很远,进一步加强了横滚不稳定的倾向。

共轴双桨用套筒轴驱动上下两副反转的旋翼,同样有串列双桨的上下旋翼之间的间距问题,间距小了,上下旋翼有可能打架;间距大了,不光阻力高,对驱动轴的刚度要求也高,

而大功率的套筒轴本来在机械上就难度很大。套筒轴不光要传递功率,还要传递上面旋翼的总距、周期距控制,在机械设计上有相当的难度。由于非对称升力的缘故,反向旋转的上下旋翼的旋转平面有在一侧“交会”的倾向,这进一步增加了对上下旋翼之间间距的要求,并且带来向交会一侧转弯必须比向另一侧转弯轻缓的要求。上旋翼处在“干净”空气中,下旋翼处在上旋翼的下洗气流中,这样,上下旋翼之间有相当的气动耦合,增加了气动设计的难度。由于共轴双桨没有尾桨,短短的尾撑用于支持垂直安定面,后者在前飞中提供像固定翼飞机一样的气动控制,减小周期距控制的负担。由于共轴双桨的机身短,受侧风影响较小。共轴双桨的振动也由于两副反转的旋翼而较好地对消了,平稳性和悬停性好。共轴双桨在同等升力下,旋翼直径可以较小,直升机总尺寸较紧凑,“占地面积”较小,特别适合海军上舰的需要。

交替双桨可算是共轴双桨的一个变种,从正面看,两副旋翼的翼尖路径(tip path plane,TPP)有交叉,会打架,但只要在算好时间差,你方唱罢我登场,不会打架的。最简单的情况,两副旋翼都是双叶,也就是只有一直线的前后两片桨叶,左旋翼的起始位置是东西向,右旋翼的位置是南北向,两副旋翼同步反向旋转,一个转到东西向的时候,另一个转到南北向,永远不会交会。交替双桨的优点是机械上比串列、并列和共轴双桨简单得多,缺点是旋翼的桨叶数也受到限制,到现在为止,没有超过双叶的,所以只适用于不超过一定尺寸的直升机。

所有双桨布局均采用分别的总距和周期距控制,所有桨叶都有各自的“三铰”(变距铰、挥舞铰、摆振铰,或起同等作用的相应的弹性元件)。对于共轴双桨和交替双桨布局来说,转向是通过改变上下或左右旋翼的扭力来实现的。增加顺时针旋翼的桨距,使其更能吃上劲,减少逆时针旋翼的桨距,使其吃劲小一点,就造成扭矩差,使直升机向逆时针方向偏转,反之亦然。交替双桨的方向控制和共轴双桨相同。由于上下或左右旋翼的桨距增减是对称的,共轴双桨或交替双桨向左右转向的速度是一样的。主旋翼也比尾桨更能吃上劲,所以转向也更快捷,可以作所谓的“急转”(snap turn)。 对于串列和并列双桨布局来说,转向是通过使前后或左右旋翼在水平方向上通过周期距控制产生差动的扭转推力来实现的。换句话说,前旋翼向左倾斜,在产生升力的同时,产生向右的水平推力分量;后旋翼向右倾斜,同样在产生升力的同时,产生向左的水平推力分量。前后一“夹攻”,飞机就向右偏转,反之亦然。前后旋翼反向倾斜,偏转的支点是机身中央。如果光倾斜前旋翼,就可以绕后机身打转转;光倾斜后旋翼,当然也就可以绕前机身打转转;如果控制得当,甚至可以一面转一面侧飞。事实上,串列双桨几乎像超市里四个轮子可以分别转向的购物车一样,爱怎么走就可以怎么走,爱怎么转就可以怎么转,不过有的时候太灵活了,选择太多了,反而容易弄糊涂,这个道理是一样的。并列双桨也是同样道理,只是把前后双桨变成左右双桨。

直升机不光可以垂直起落,还可以悬停、侧飞、倒飞、原地转弯。直升机的这些非常规机动动作提供了空前的战术灵活性,比如,反坦克直升机可以在低于树梢的极低空高度悬停,在战机恰当的时刻,突然冒起来发射武器,然后迅速下降到树梢以下高度隐蔽,既可以躲避对方直射武器的打击,又有利于隐蔽地转移阵地。如果装备桅杆顶的观察装置装置的话,可以更好地隐蔽观察敌情、掌握战机。同样的战术也适用于山脊、建筑物等适当的隐蔽物背后。在巷战中,直升机可以隐蔽在建筑物后悬停,在适当时机侧飞出来发射武器,然后迅速返回隐蔽位置,这样可以避开敌人从远处房顶的观察和伏击。在营救和精确定点空降作业中,悬停中的侧飞和倒飞更是必不可少的。然而,成也萧何,败也萧何,直升机的旋翼不光提供了空前的机动能力,也从根本上限制了前飞速度。旋翼尺寸和桨叶数的限制不谈,飞机的前飞速度不可能超过旋翼翼尖的线速度,在极限情况下,假定飞机的前飞速度和翼尖速度都为音速的一半,前行方向上,翼尖速度在 3 点钟方向已经达到音速,而后行方向上,翼尖在 9 点钟方向的速度就为零,要发生失速。实际上,翼尖失速速度要高于零速度,所以飞行速度

比理论上的极限情况要低。另外,由于半径的关系,旋翼前倾时,旋翼翼尖附近是产生推力的部分,中间部分的线速度低,实际上不产生推力,是在迎风气流的作用下像风车一样地自旋,靠近圆心的部分的线速度低于失速速度,已经处在失速区了。由于前飞时旋翼前倾,阻力在旋翼上形成一个向下的分量,造成速度越大,“降力”越大的尴尬局面,必须用增加的升力来补偿,白白浪费发动机功率。据计算,直升机的理论速度不能超过 420 公里/小时。英国 Westland 公司对旋翼翼尖进行加大后掠角的修形,使直升机速度有了不小的提高,但还是没有突破这个理论限制。

英国 Westland 的先进旋翼翼尖采用复杂形状的后掠角 / 桨

叶的截面(翼型)也从翼根到翼尖不断变薄,以延迟激波的产生,这个道理和超音速飞机用大后掠角、薄翼型的机翼一样

这是一架 Westland 大山猫直升机在做斤斗特技,其先进桨叶的特别形状清晰可见

理论上,只要旋翼线速度突破音障,直升机速度进一步提高就是可能的。固定翼超音速飞机的机翼理论早已解决。但固定翼飞机的机翼处于相对简单的气流流场,直升机旋翼所处的流场实在太复杂了,不光有前进方向,还有旋转的切向和径向方向,此外,在机身上发动机结构和旋翼之间,还有复杂的纵向的马蹄形流和横向的涡漩。即使这些问题都解决了,理论上有可能研制出一种弯弯的马刀形状的桨叶,延迟超音速激波的产生,但桨叶受力情况十分复杂,包括扭曲、拉伸,在材料上要制造足够坚固耐用又轻巧的旋翼很困难,旋翼要突破音障不是一件容易的事。要突破直升机速度的限制,只有突破旋翼既作为升力装置又作为推力装置的局限。

发动机舱周边有马蹄形流 / 发动机舱两侧也有横向的涡流

[url=http://www.mx3g.com/misc.php?action=viewratings&tid=755&pid=1996][/url]

突破旋翼既作为升力装置又作为推力装置的第一步就是为旋翼减轻负担,用单独的推进装置提供推力。从 50 年代开始,大量方案就是从在普通直升机上加装推进发动机开始,将常规直升机改装为复合直升机(compound holicopter)。采用专用的推进发动机,前飞时,旋翼就不必前倾,既减小迎风面积带来的阻力,又避免了前倾旋翼造成的“降力”。为了进一步减轻旋翼的负担,直升机还可以安装短翼,在前飞时提供气动升力,这样,对旋翼产生升力的要求可以降到最低,后行桨叶失速也就不成为问题,消除了直升机速度上不去的一大障碍。

很多常规直升机并没有专用的推进发动机,但安装了短翼,就是为了在前飞中产生升力,减低对旋翼升力的依赖,以提高前飞速度。对于攻击直升机来说,短翼还是提供武器挂架的好地方。采用短翼的典型直升机有米-6、AH-64 等,米-24 的短翼也有提供升力的作用,但最主要的目的却是加强横滚稳定性。就像世上所有的好事一样,没有免费的午餐。短翼不光增加结构重量,最大的问题是遮挡旋翼的下洗气流,削弱了旋翼的效率。所以强调悬停和直升机特有的非常规机动性能的直升机常常不选用短翼,即使采用短翼,也使短翼有较大的下反,以减小对旋翼下洗气流的不利遮挡。有人把这种采用短翼的直升机也称为复合直升机,因为升力的产生已经不再单纯依靠旋翼,但通常人们还是把升力和推力两者都不再依靠旋翼的直升机称为复合直升机。

米-6的短翼用于在平飞时产生升力,为旋翼卸载 / AH-64 的短翼同时兼作武器挂架,一物两用

卡莫夫 Ka-22 是早期复合直升机的一个典范,曾创造多项速度和载重记录 / MBB 的 BBH 攻击直升机,采用常规的“开放”推进螺旋桨作推动力,计划被取消后,转入和法国合作发展“虎”式直升机

西科斯基 S-66,和洛克希德 AH-56“夏延”竞争落败,但速度比“夏延”更快,号称世界第一。S-66 的尾部螺旋浆可以转向,向后做推进用,向左作反扭力用,而不像“ 夏延

”那样,用两个专用的推进螺旋桨和反扭力尾桨 50-60 年代时,采用单独的推力发动

机的复合直升机方案如雨后春笋,有不少达到试飞阶段,其中 Piasecki 的 16H 是其中的佼佼者。Piasecki 16H 采用一个尾置的涵道螺旋桨提供推力,涵道螺旋桨后有控制舵面,利用后洗气流提供偏航和俯仰控制。主旋翼依然保留周期距控制,用于悬停或非常规机动时提供控制。Piasecki 的方案在 60 年代没有引起足够的兴趣,但是在 90 年代,重新引起美国军方的兴趣。Piasecki 将 16H 的概念用在 UH-60 上,试制了所谓“速度鹰”(Speed Hawk),不仅提高了速度,还将航程提高了 3 倍,使“速度鹰”的航程和 F-18 战斗机相当,用作海军的搜索救援直升机十分有利。同样的概念还用在 AH-64“阿帕奇”攻击直升机上,速度提高 25%。环形尾的问题主要有两个:环形尾套件增加重量,“速度鹰”比基型的 UH-60 要重 800 公斤。另一个问题是即以对旋翼下洗气流的遮挡减低旋翼效率,旋翼功率要增加,否则悬停性能要受到损失。

Piasecki 16H 采用尾置涵道螺旋桨(也称“环形尾”,ringtail)作为平飞的推进器,短翼提供平飞升力,将旋翼“解放”出来,大大提高平飞速度,也大大降低机械振动和疲劳

“速度鹰” (Speed Hawk),这是 Piasecki 用 UH-60 的机体和主要机械系统作基础,研制的“推力转向涵道推进”(Variable Thrust Duct Propeller)研究机

VTDP 前飞时的状态,略微向前进方向的左侧偏转,反扭力作用部分由气动舵面完成 / VTDP 在悬停时的状态,可伸缩的“斗篷”向左偏转 90 度,加强反扭力作用

Piachecki 也推出了“速度眼镜蛇”和“速度阿帕奇”方案

[url=http://www.mx3g.com/misc.php?action=viewratings&tid=755&pid=1997][/url]

30 年代末,大学刚毕业的 Friedrich von Doblhoff 异想天开,建议在旋翼翼尖上安装法国工程师 Rene Leduk 早年发明的冲压式喷气发动机,驱动旋翼,现在称之为喷气翼尖(tip jet)。发动机驱动旋翼旋转是造成反扭力的原因,即使新奇的方案如“夏延”,依然逃脱不了采用尾桨平衡反扭力的布局。喷气翼尖在桨叶内通过管路向翼尖输送高压压缩空气,压缩空气从翼尖向后喷出,就可以推动桨叶转动。喷气翼尖的极端是直接在旋翼翼尖安装微型喷

气发动机,喷气驱动旋翼旋转。由于桨轴不是驱动轴,旋翼转动没有反扭力,所以不需要尾桨。桨叶内输导压缩空气的能力有限,结构也复杂,但发动机可以放在机体内。翼尖喷气发动机的方案在技术上更有诱惑力,燃料在离心力的作用下,可以容易地向翼尖输送,燃烧用的空气也主要由管路输送过来的压缩空气提供,因为在翼尖的发动机进气受圆周运动的影响太大。发动机必须轻小,一般采用结构简单的脉动喷气发动机(pulse jet)或冲压喷气发动机(ram jet)。喷气翼尖的问题是噪声不仅巨大,而且尖厉,有规则,特别烦人。不过最大噪声实际上延续时间不长,只有起飞和着陆的一、两分钟时间,不过这没有能够使环保组织的反对声轻下去。Doblhoff 在战时的研究工作取得了有限的成果,战争结束时,Doblhoff 用卡车拉着样机和资料,和工作人员一起从苏军正在逼近的奥地利往西撤退,最后在德奥边境向美军投降。战后,Doblhoff 和他的样机一起到了美国,Doblhoff 到美国麦克唐纳工作,主持了麦克唐纳 XV-1 的设计,这是美国第一架喷气翼尖的直升机。但与此同时,Doblhoff 的主要结构设计师和试飞员 August Stepan 去了英国,日后成为 Fairey Rotodyne 的主要设计人之一。然而,喷气翼尖、推进发动机和固定的机翼相结合,有效地将直升机、旋翼机和固定翼飞机的优点结合起来。

Hiller 应该说是喷气翼尖的另一个先驱,在 50 年就推出了 HOE-1 研究直升机

麦克唐纳在从德国“俘虏”过来的喷气翼尖鼻祖 Feiedrich von Doblhoff 的主持下,在 50 年代研制了 XV-1 研究直升机,除采用喷气翼尖外,还在机身尾部单独采用推进螺旋桨提供推力,尾撑顶端的小型螺旋桨用于方向控制

最著名的采用喷气翼尖的旋翼-直升机要数英国 Fairey 的 Rotodyne。60 年代城际交通迅速发展,短途航空旅行的诱惑力日增,但固定翼飞机需要远离城市的机场的问题,始终限制了短途航空旅行的发展,很多垂直-短距起落飞机的方案应运而生。城际中短途空运不要求悬停或非常规机动性能,垂直/短距起落能力更为重要,所以旋翼-直升机具有相当的吸引力。Fairey Rotodyne 用喷气翼尖实现垂直起落,用旋翼的周期距控制俯仰和横滚,翼下双发差动推力控制在直升机状态下的方向,在平飞阶段,气动舵面辅助飞行控制。机翼在平飞阶段产生一半以上的升力,旋翼 的桨距减到最低,靠空气动力自旋,以减小阻力。Fairey Rotodyne 在试飞期间,创造了伦敦市中心到巴黎市中心的速度记录。旋翼-直升机的无滑跑倾斜起飞和准垂直降落,不仅极大地降低了对机场跑道和净空的要求,也由于起落空间不

重叠,实际上增加了同等机场空间内起落架次的容量。由于噪声、资金和 60 年代初英国航空工业的全面重组,Fairey 被 Westland 收购,Westland 把重点转移到以引进的西科斯基技术为基础的常规直升机的研制上,Fairey Rotodyne 下马了,所有资料和工具被销毁,样机被肢解,至今还有不少人惋惜。进入 21 世纪,喷气翼尖又有死灰复燃的迹象。美国 Groen Brothers 提出用喷气翼尖驱动旋翼,研制 C-130 一级的大型旋翼-直升机,作为战场空运的主力,满足从 CH-47 到 C-130 之间的战术空运需要。Groen Bothers 方案最大的诱惑在于,这个改装思路可以用于任何现成的上单翼运输机,比如 C-130。旋翼的支点在上单翼和机身的结合部,可以最大限度地减小对飞机重心和气动特性的影响,理论上可以以比重型直升机或倾转旋翼飞机低得多的代价,开发具有垂直起落能力的大型飞机。如果不强调悬停和非常规机动的话,旋翼-直升机的魅力确实是很大的。

采用喷气翼尖最著名的还是 Fairey Rotodyne,本来是很有潜力成为中短途城市航运的主力的

Fairey Rotodyne 在飞行中的雄姿 / Rotodyne 在一开始接到很多航空公司的意向订货,但英国的“国航”BAE 最终没有下订单,别的意向订货也在一夜之间蒸发了,堪称是“协和”式的前奏

Fairey 被 Westland 收购后,由于英国政府资金不足,英国空军和英国“国航”的订单不到位,在成功的试飞后下马了,设计资料、工具、样机全部销毁,今天只能在画上自慰了

美国的 Groen Brother 公司是旋翼机的最新热衷者,Groen Brothers 向美国军方建议,用 C-130 一级的机身,配以带喷气翼尖的旋翼系统,实现垂直起落

Groen 还想诱惑海军,用作航母上的运输机 / Groen Brothers 也在向森林灭火部门推销这个方案

限制直升机速度的一个重要因素是旋翼桨叶的挥舞,桨叶的惯性在不断地挥舞中增加了机械振动,铰链的磨损(或弹性元件的疲劳)使直升机的可靠性总是不如固定翼飞机。常规直升机的柔性桨叶虽然是非常规机动成为可能,但柔性的桨叶也限制了直升机的机动性,难于像固定翼飞机一样做迅猛的滚翻、拉起、俯冲、盘旋动作,过于激烈的机动动作可能使桨叶和机体碰撞,严重危害飞行安全。刚性桨叶的限制要小得多,采用刚性桨叶的直升机或许有这样、那样的问题,但都具有比常规直升机远为出色的机动性。为此,刚性桨叶一直是直升机研究的一个目标。洛克希德“夏延”的下马给刚性桨叶的发展蒙上阴影,但刚性桨叶的研究并没有就此偃旗息鼓,近来又柳暗花明的迹象。 为了大幅度提高直升机性能,美国从 70 年代开始,进行了一系列直升机研究机项目。西科斯基的“前行桨叶概念”(Advancing Blade Concept,简称 ABC)在较早就获得成功。如前所述,刚性旋翼的一个大问题是由于前飞的相对速度叠加在旋翼旋转速度引起的非对称升力,但对于刚性的共轴反转双桨来说,两边的非对称升力叠加起来,就对称了,刚性的桨叶和桨轴吸收所有的扭力,这就是 ABC 可以免去挥舞铰的基本思路。由于刚性桨叶没有挥舞,上下旋翼可以离得很近,而没有碰撞的危险。差动式地加减上下旋翼的桨距以形成扭力差不仅形成水平方向上的转向,还由于刚性旋翼非对称升力造成横滚,进一步加速转弯过程,所以 ABC 具有异乎寻常的机动性,大大超过常规直升机。ABC 直升机有专用的推进发动机,高速平飞时,用气动舵面实现飞行控制。采用 ABC 的 S-69(军用代号 XH-59A)参加了 LHX 竞争,但技术终究不够成熟,在悬停中低头或抬头也比较困难,落选于同出于西科斯基的常规旋翼加涵道尾桨的方案,后者最终成为 RAH-66“科曼奇”,现在也下马了。

西科斯基 XH-59A“前行桨叶”概念研究机,用共轴反转的刚性旋翼,既抵消扭力,又抵消非对称升力

流线型的 S-69 蛮俊俏的

前行桨叶在无人机的大潮中得到复苏,西科斯基的 Mariner/Cypher II 将前行桨叶和涵道风扇结合起来,动力从“碗边”通过传动轴传递,可以分别传递给上下旋翼,而不必用套筒轴驱动,大大简化机械设计和制造。理论上涵道可以改变气流方向,解决后行桨叶失速(retreating blade stall)问题,提高直升机速度。但涵道本身增加重量,更是增加迎风阻力,如果像 Mariner 那样开在中机身,还妨碍机内载荷和设备的布置。西科斯基在 Mariner 上使用前行桨叶,与其说是为了速度,不如说是为了减小旋翼直径。涵道的采用和和后行桨叶失速没有太大关系,主要是无人机整体布置上的方便,涵道结构本身容纳发动机和机载设备,加上涵道有良好的侧向隔音作用,特别有利于巷战或特种作战使用。

西科斯基的 Mariner/Cypher II,是美国海军无人机竟标中的候选之一 / Mariner/Cypher II 的前身 Cypher 在美国陆军本宁堡步兵学校的演习场作巷战演示

作为美国直升机工业的龙头老大,西科斯基在 80 年代和国防部和 NASA 合作,研制了所谓 X 形翼研究机,其基本思路是在直升机和固定翼飞机之间架一座桥,机顶的 X 形机翼可以在直升机状态下旋转,产生升力;前飞达到一定速度后,X 形翼锁住固定,作为机翼使用,飞机转入固定翼状态。X 形翼在气动上虽然少见,但并非不可思议,这就是一对后掠翼加一对前掠翼。直升机状态下,反扭力问题有尾桨解决,比较难的是采用刚性的单旋翼,如何解决非对称升力的问题。西科斯基采用独特的“环流控制技术”(Circulation Control Technology),将发动机压缩机后引出高压气流,通过宽大的桨叶内的管路,像吹气襟翼一样,向桨叶后缘开缝襟翼吹气。吹气襟翼在下垂的襟翼表面喷吹高压空气,加速机翼上表面的气流流动,使机翼达到超过实际空速下能够产生的升力,50-60 年代第一代超音速战斗机的低速性能就是靠吹气襟翼“救命”的。环流控制桨叶根据桨叶在圆周运动中的不同位置,控制开缝宽度和吹气强度,控制升力的增减,以补偿非对称升力。

西科斯基的 X 翼研究机将宽弦“桨叶”和机翼合二为一,在直升机状态作旋翼旋转,在固定翼状态固定,作为 X 形机翼,在直升机和固定翼之间架桥 / 用普通直升机旋翼先行试验的西科斯基“旋翼系统研究机”(Rotor System Research Aircraft,简称 RSRA)

按固定翼飞机试飞的 RSRA,可以看到,RSRA 用机翼就可以产生足够的升力,并不需要 X 形翼的额外升力

90 年代时,波音接过接力棒,将 X 形翼的概念推向新的高度,用麦道直升机和 NASA 的合作结果,研制了“蜻蜓”(Dragonfly)研究机。“蜻蜓”有鸭式前翼和宽大的水平尾翼,机顶上有一字形的旋翼-机翼。在直升机状态下,旋翼-机翼在喷气翼尖的作用下旋转,产生升力。一字形的旋翼-机翼相当于双叶旋翼,可以用跷跷板铰链完成挥舞和领先-滞后动作,所以“蜻蜓”对非对称升力的补偿还是常规的。“蜻蜓”的动力装置是一台涡扇发动机,从压缩机引出高压气流,通过管路输送到旋翼-机翼的翼尖,驱动喷气翼尖。由于喷气翼尖不产生反扭力,“蜻蜓”没有尾桨。达到一定的平飞速度后,鸭翼和平尾产生足够的升力,旋翼-机翼锁住,作为固定的机翼,飞机转入固定翼状态。“蜻蜓”正在试飞,美国军方对它寄予厚望,甚至有想法把它放大到载人攻击直升机。

波音的“蜻蜓”Dragonfly 研究机

“蜻蜓”在悬停中

这张三视图清楚地显示了旋翼-机翼的两重性

“蜻蜓”垂直起飞到平飞的过程

“蜻蜓”的鸭翼-旋翼(canard rotor wing)概念对海军很有吸引力,海军有将其开发成舰载无人机的打算 / 载人的“蜻蜓”长满牙齿,蛮凶的

X 形翼到“蜻蜓”有一个共同的特点:采用宽弦刚性桨毂可锁定的两用旋翼-机翼(所谓stopped rotor)。粗短宽厚的刚性旋转机翼从根本上解决了很多细长的柔性旋翼桨叶难以解决的问题,但是和常规直升机相比,这些飞机的悬停和非常规机动性能还是受到一点损失的,正可谓有得必有失。最主要的技术困难还是来自于升力产生机制转换期间的飞行控制问题,处理不好,就容易失事。事实上,所有在升力产生机制中转换的所谓 convertiplane 都有这个机制转换期间的控制问题,机制转换动辄几十秒,快的也要 10 秒,就是不敢动作太猛,怕失控,同时也有速度和高度的限制,不是随时随地想转换就可以转换的。在战斗中,这个转换时间和高度、速度的要求给战术动作带来很大的困扰,升力机制的转换只好在进入战斗前完成,使 convertiplane 在实用中的吸引力受到不小的损失。

“蜻蜓”的鸭式布局为旋翼和机翼的关系提供了一个新思路。机翼可以在平飞中为旋翼卸载,但机翼对旋翼的下洗气流造成遮挡也是不争的事实,鸭式布局把机翼和旋翼的位置错开来,互不遮挡,如果没有胃口直接上两用旋翼-机翼,将“蜻蜓”的鸭式布局、Piasecki 的涵道螺旋桨和 S-69 的 ABC 桨叶结合起来,在技术上没有太了不起的困难,但可以成就一架相当先进的直升机,如果没有胃口直接上这样布局的载人直升机,至少可以从无人直升机开始。从复合直升机,到直升-旋翼机,到可锁定的旋翼-机翼,这是一条从直升机向固定翼飞机过渡的路径。与此对应,当然也有一条从固定翼飞机向直升机过渡的路径。如果能使固定翼飞机的推进装置改变方向,不就能实现垂直起落了吗? 贝尔的 XV-3 是采用倾转动力的固定翼飞机的先驱之一。XV-3 的处在翼尖的发动机是固定的,但驱动旋翼的桨轴可以倾转,所以叫倾转轴(tile shaft)。平飞时,旋翼向螺旋桨飞机一样驱动飞机,垂直起落和悬停时,旋翼通过桨轴向上偏转 90 度。为了保持直升机状态的飞行控制,XV-3 的旋翼是和直升机一样的柔性旋翼,具有全套的总距和周期距控制。XV-3 的动力不足,无法在超出地面效应的高度悬停,作为直升机的功效有限,但 XV-3 证明了将直升机和固定翼飞机结合起来的可能性,为贝尔日后争取到 XV-15 乃至 V-22 的合同至关重要。

以固定翼状态飞行的贝尔的 XV-3,发动机不转动,旋翼的驱动轴转动,所以称 tilt shaft,日后成为 V-22 的重要先驱 / 以直升机状态飞行的 XV-3

XV-3 在悬停状态,由于功率不足,XV-3 不能在超出地面效应以上的高度悬停 / 与贝尔 XV-3 竞争落选的 Transcendental 1G,这是由从 Piasecki 分出来的一批人设计的

XV-3 从直升机状态向固定翼飞机状态转换的过程

和贝尔 XV-3 的技术相似,Transcendental 1G 也是采用倾转轴 / Vertol(以 CH-46、CH-47 出名,后为波音收购)XV-21,同样是 Tilt Shaft

贝尔对柔性桨叶的局限清楚得很,在 70 年代,以 XV-3 的研究结果为基础,和 NASA 和美国军方合作,研制了采用半刚性桨叶的 XV-15。XV-15 的发动机舱和旋翼一起倾转,所以成倾转旋翼(tilt rotor)。半刚性桨叶可算是贝尔的看家本领了,当年红透直升机世界半边天的 UH-1,就是采用半刚性的双叶旋翼,桨叶和桨毂刚性连接,但桨毂和桨轴通过跷跷板轴承柔性连接,利用前行侧桨叶的自然升起和滞后,带动后行侧桨叶的自然降落和超前。很神妙的设计,可惜只能用于双叶旋翼。贝尔将跷跷板的原理推广到三叶(理论上也可以更多片桨叶),估计就是在万向接头外包覆一个刚性的整流罩,所有桨叶和整流罩刚性连接。

桨叶和桨毂的经典的分立铰链式连接,挥舞铰、摆振铰“五毒俱全” / 紧凑一点的重合式铰链连接

双叶桨叶特有的跷跷板式连接,省却了挥舞铰和摆振铰,贝尔的经典之作 UH-1 和 AH-1 就是用这种结构 / 从跷跷板进一步发展而来的万向接头式连接,估计贝尔的半刚性旋翼就是在万向接头外包覆一个刚性的整流罩

贝尔的半刚性旋翼保留了直升机的总距和周期距控制,用于在悬停或直升机飞行状态时的飞行控制。贝尔还采用了宽弦、大弯度的桨叶,是桨叶最大限度地在前飞时接近常规螺旋桨的特性。XV-15 引起了军方极大的兴趣,飞行试验远远超过简单的悬停、平飞和直升机-固定翼飞机之间的状态转换等概念证明型的试飞科目,而是进入了演习场、两栖登陆舰等接近实战的条件下的试验。美国军方对实验结果相当满意,这直接导致最终的四大军种联合研

制的 V-22“鱼鹰”项目。V-22 是历史上第一架也是仅有的一架可以垂直/短距起落的量产型运输机,V-22 故事的细节请看 “鱼鹰”杂谈 。

贝尔 XV-15 在悬停中 / XV-15 在平飞中

XV-15 在起飞

为了尽可能减小迎风阻力,倾转旋翼的旋翼直径应该在不影响直升机状态下的性能的前提下尽可能减小。但较小的旋翼不可能不影响直升机状态的性能,最突出的就是所谓“涡流环”现象。直升机在快速下降过程中,要使旋翼进入自己的下洗气流,或下洗气流造成的涡流,旋翼和周围空气之间的相对气流方向和相对速度出现本质变化,可能出现“打滑”而失去升力,这时候越是增加旋翼功率,打滑越严重,这就是所谓的“涡流环”现象。常规直升机也会出现“涡流环”现象,但小直径的旋翼更容易进入这一状态。V-22 在试飞中几次引人注目的坠机,大多出自这个原因。在悬停或直升机状态时,倾转旋翼在理论上可以通过控制左右发动机的推力来控制横滚,用旋翼的前后转动来控制俯仰,偏航比较难办,可以用旋翼下洗气流作用在机翼的襟翼上,辅以一定的横滚作用来实现。但事实上,增减发动机推力的灵敏度不够,反映不够快,控制量也不够精细。用机电控制倾转旋翼来实现俯仰控制,灵敏度问题更大,无法适应恶劣天气时的飞行要求。实用化的倾转旋翼的 V-22(及其前身 X

V-15)都是采用直升机桨叶,即保留了全套直升机的总距和周期距控制,而不是只可以调节桨距的螺旋桨,所以直升机状态的 V-22 的操控和直升机无异。在以螺旋桨-旋翼为基础的垂直/短距起落飞机中,倾转旋翼是最成熟的方案。美国的 V-22 在饱经千难万险之后,终于开始量产。

直升机状态前飞中的 V-22 在空投伞兵

本文来源:https://www.bwwdw.com/article/5n32.html

Top