2009年天津市中考数学试卷及答案

更新时间:2023-12-17 03:32:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2009年天津市初中毕业生学业考试试卷

第Ⅰ卷(选择题 共30分)

一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2sin30°的值等于( )

A.1 B.2 C.3 D.2

2.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )

A.2个 B.3个 C.4个 D.5个

E H I N A

?x?y?2?0,则???y?20093.若x,y为实数,且x?2?的值为( )

A.1 B.?1 C.2 D.?2 4.边长为a的正六边形的内切圆的半径为( ) A.2a B.a C.32a D.

12a

5.右上图是一根钢管的直观图,则它的三视图为( )

A. B. C. D. 6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是( )

A.8.5,8.5 B.8.5,9 C.8.5,8.75 D.8.64,9

7.在△ABC和△DEF中,AB?2DE,AC?2DF,?A??D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为( ) A.8,3 B.8,6 C.4,3 D.4,6

?1?,B?1,1?,将线段8.在平面直角坐标系中,已知线段AB的两个端点分别是A??4,2?,则点B?的坐标为( ) AB平移后得到线段A?B?,若点A?的坐标为??2,C 3? B.?3,4? C.??1,?2? D.??2,?1? A.?4,9.如图,△ABC内接于⊙O,

若?OAB?28°,则?C的大小为( )

O A 第(9)题

B

A. 28° B.56° C.60° D.62°

210.在平面直角坐标系中,先将抛物线y?x?x?2关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A.y??x?x?2 B.y??x?x?2 C.y??x?x?2 D.y?x?x?2

22222009年天津市初中毕业生学业考试试卷

第Ⅱ卷(非选择题 共90分)

二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11.化简:18?28= .

12.若分式

x?x?2x?2x?12的值为0,则x的值等于 .

13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形

ABCD的中点四边形是一个矩形,则四边形ABCD可以是 .

5?与??4,?9?,则该函数的图象与y轴交点的坐标为14.已知一次函数的图象过点?3,__________ _.

15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x本,付款金额为y元,请填写下表:

x(本) y(元) 2 16 7 10 22 16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜. 株数

D C 20 15 10 5 A B 0 10 12 14 15 黄瓜根数/株 第(17)题 第(18)题

第(16)题

17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.

18.如图,有一个边长为5的正方形纸片ABCD,要将其剪拼成边长分别为a,b的两个小正方形,使得a?b?5.①a,b的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:

222

__________________________________________ _________________________________________ _________________________________________

三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分)

?5x?1?2x?5,解不等式组?

x?4?3x?1.?

20.(本小题8分)

已知图中的曲线是反比例函数y?m?5x(m为常数)图象的一支.

(Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数y?2x的图象在第一象内限的交点为A,过A点作

x轴的垂线,垂足为B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.

y

x O 21.(本小题8分)

有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.

(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率. 22.(本小题8分)

如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,?BAC?30° (Ⅰ)求?P的大小;

(Ⅱ)若AB?2,求PA的长(结果保留根号).

P

C A O

23.(本小题8分)

在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC?30m,BC?70m,?CAB?120°,请计算A,B两个凉亭之间的距离.

C

B A 24.(本小题8分)

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.

如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?

D C

30cm 30cm

B A

20cm 20cm

图① 图②

分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.

结合以上分析完成填空:如图②,用含x的代数式表示: AB =____________________________cm;

AD=____________________________cm;

矩形ABCD的面积为_____________cm;

列出方程并完成本题解答. 25.(本小题10分)

已知一个直角三角形纸片OAB,其中?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D. (Ⅰ)若折叠后使点B与点A重合,求点C的坐标;

y

B

x O A

(Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;

26.(本小题10分)

22y B O A x (Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标.

y B O A x 已知函数y1?x,y2?x?bx?c,?,?为方程y1?y2?0的两个根,点M?1,T?在

函数y2的图象上. (Ⅰ)若??13,??12,求函数y2的解析式;

(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为

112时,求t的值;

(Ⅲ)若0?????1,当0?t?1时,试确定T,?,?三者之间的大小关系,并说明理由.

2009参考答案及评分标准

评分说明:

1.各题均按参考答案及评分标准评分.

2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.

一、选择题:本大题共10小题,每小题3分,共30分.

1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.

11.2 12.2

13.正方形(对角线互相垂直的四边形均可)

?1? 14.?0,D 2 3 C 15.56,80,156.8

E 1 16.60;13

B A 17.21 2 3

18.①3,4(提示:答案不惟一);

②裁剪线及拼接方法如图所示:图中的点E可以是以BC为直径的半圆上的任意一点(点B,C除外).BE,CE的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分

?5x?1?2x?5,①解:??

x?4?3x?1②?由①得x?2, ························································································································ 2分 由②得,x??52 ···················································································································· 4分

?原不等式组的解集为x?2 ································································································ 6分

20.本小题满分8分.

解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ························································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以m?5?0,解得m?5. ································································································ 3分

y (Ⅱ)如图,由第一象限内的点A在正比例函数y?2x的图象上,

y=2x 2x0??x0?0?,则点B的坐标为?x0,0?, 设点A的坐标为?x0,?S△OAB?4,?12x0·2x0?4,解得x0?2(负值舍去).

A O B x 4?.·?点A的坐标为?2,·········································································································· 6分

又?点A在反比例函数y??4?m?52m?5x的图象上,

,即m?5?8.

8x?反比例函数的解析式为y?. ··························································································· 8分

21.本小题满分8分.

解(Ⅰ)法一:根据题意,可以画出如下的树形图:

3 2 1 第一个球

1 2 第二个球 2 1 3 3

从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:

第二个球 (1,3) (2,3)

3 (1,2) (3,2)

2

(2,1) (3,1) 1

1 2 3 第一个球

从上表中可以看出,摸出两球出现的所有可能结果共有6种. ············································· 4分 (Ⅱ)设两个球号码之和等于5为事件A.

3?,2?. 摸出的两个球号码之和等于5的结果有2种,它们是:?2,?3,?P?A??26?13. ··················································································································· 8分

P

22.本小题满分8分.

解(Ⅰ)?PA是⊙O的切线,AB为⊙O的直径, C ?PA⊥AB.

A B ??BAP?90°.

O

??BAC?30°,

??CAP?90°??BAC?60°. ················································································· 2分 又?PA、PC切⊙O于点A,C. ?PA?PC.

?△PAC为等边三角形. ??P?60°. ··························································································································· 5分

(Ⅱ)如图,连接BC, 则?ACB?90°.

在Rt△ACB中,AB?2,?BAC?30°,

?AC?AB·cos?BAC?2cos30°=?△PAC为等边三角形, ?PA?AC.

3.

?PA?3. ···························································································································· 8分

23.本小题满分8分

解:如图,过C点作CD垂直于AB交BA的延长线于点D. ············································· 1分 在Rt△CDA中,AC?30,?CAD?180°??CAB?180??120??60?. ···················· 2分

?CD?AC·sin?CAD?30·sin60°?153. AD?AC·cos?CAD?30·cos60°=15.

C 又在Rt△CDB中,

?BC?70,BD2?BC-CD,

22D A B ?BD?70?1532??2?65. ··························································································· 7分

?AB?BD?AD?65?15?50,

答:A,B两个凉亭之间的距离为50m. ················································································ 8分 24.本小题满分8分.

30?4x,24x?260x?600; ·解(Ⅰ)20?6x,································································· 3分

2(Ⅱ)根据题意,得24x?260x?600??1??22?1?············································ 5分 ??20?30. ·

3?整理,得6x?65x?50?0. 解方程,得x1?则2x?53,3x?5652,x2?10(不合题意,舍去).

53答:每个横、竖彩条的宽度分别为cm,

52cm. ································································· 8分

y B C O A 图①

225.本小题满分10分.

解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.

设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.

22y B D x C O B′ 图②

x D B C y D x O B′ 图③

在Rt△AOC中,由勾股定理,得AC?OC?OA, 即?4?m??m?2,解得m?22232.

?3??点C的坐标为?0,?. ········································································································· 4分

?2?

(Ⅱ)如图②,折叠后点B落在OA边上的点为B?, 则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,

在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.

??4?y??y?x,

222222即y??18x?2····················································································································· 6分

2由点B?在边OA上,有0≤x≤2,

? 解析式y??18x?22?0≤x≤2?为所求.

? ?当0≤x≤2时,y随x的增大而减小, ?y的取值范围为

32≤y≤2. ······················································································· 7分

(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D.

??OCB????CBD,有CB??∥BA. 又??CBD??CB??D,?Rt△COB??∽Rt△BOA. 有

OB??OA?OCOB,得OC?2OB??. ···················································································· 9分

在Rt△B??OC中,

设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??18x20?2,

?x0?0,?x0??8?45. 解得x0??8?45.85?16. ·?点C的坐标为0,···················································································· 10分

??26.本小题满分10分.

解(Ⅰ)?y1?x,y2?x?bx?c,y1?y2?0,

?x??b?1?x?c?0. ··································································································· 1分

22将??213,??12分别代入x??b?1?x?c?0,得

2211?1??1??b?1??c?0,?b?1??c?0, ????????3322????

解得b?16,c?16.

2?函数y2的解析式为y2?x?2621256x?16. ····································································· 3分

(Ⅱ)由已知,得AB?,设△ABM的高为h,

?S△ABM?12AB·h?h?1123,即2h?1144.

根据题意,t?T?16162h,

56161144由T?t?56562t?,得?t?114412t??.

当t?2t?1616??时,解得t1?t2?5?125122;

5?122当t?2t??144时,解得t3?,t4?.

?t的值为

5?25?2,,. ······················································································ 6分 1212125(Ⅲ)由已知,得

????b??c,????T????t??T????t??222?b??c,T?t?bt?c.

2??t???b?,

??t???b?,

2???????b??c?????b??c?,化简得??????????b?1??0.

?0?????1,得????0, ?????b?1?0.

有??b?1???0,??b?1???0. 又0?t?1,?t???b?0,t???b?0,

?当0?t≤a时,T≤?≤?;

当??t≤?时,??T≤?;

当??t?1时,????T. ································································································· 10分

解得b?16,c?16.

2?函数y2的解析式为y2?x?2621256x?16. ····································································· 3分

(Ⅱ)由已知,得AB?,设△ABM的高为h,

?S△ABM?12AB·h?h?1123,即2h?1144.

根据题意,t?T?16162h,

56161144由T?t?56562t?,得?t?114412t??.

当t?2t?1616??时,解得t1?t2?5?125122;

5?122当t?2t??144时,解得t3?,t4?.

?t的值为

5?25?2,,. ······················································································ 6分 1212125(Ⅲ)由已知,得

????b??c,????T????t??T????t??222?b??c,T?t?bt?c.

2??t???b?,

??t???b?,

2???????b??c?????b??c?,化简得??????????b?1??0.

?0?????1,得????0, ?????b?1?0.

有??b?1???0,??b?1???0. 又0?t?1,?t???b?0,t???b?0,

?当0?t≤a时,T≤?≤?;

当??t≤?时,??T≤?;

当??t?1时,????T. ································································································· 10分

本文来源:https://www.bwwdw.com/article/5lf5.html

Top