控制理论实验报告线性定常系统的串联校正

更新时间:2023-10-14 20:28:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

实验报告

课程名称:控制理论(乙)指导老师:成绩:__________________

实验名称:线性定常系统的串联较正实验类型:______________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得

一、实验目的

1.通过实验,理解所加校正装置的结构、特性和对系统性能的影响; 2.掌握串联校正几种常用的设计方法和对系统的实时调试技术。

二、实验设备

1.THBDC-2型控制理论·计算机控制技术实验平台;

2.PC机一台(含“THBDC-2”软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。

三、实验内容

1.观测未加校正装置时系统的动、静态性能;

2.按动态性能的要求,分别用时域法或频域法(期望特性)设计串联校正装置;

3.观测引入校正装置后系统的动、静态性能,并予以实时调试,使之动、静态性能均满足设计要求;

4.利用上位机软件,分别对校正前和校正后的系统进行仿真,并与上述模拟系统实验的结果相比较。

四、实验原理

图6-1为一加串联校正后系统的方框图。图中校正装置Gc(S)是与被控对象Go(S)串联连接。

图6-1 加串联校正后系统的方框图

串联校正有以下三种形式:

1) 超前校正,这种校正是利用超前校正装置的相位超前特性来改善系统的动态性能。 2) 滞后校正,这种校正是利用滞后校正装置的高频幅值衰减特性,使系统在满足稳态性能的前提下又能满足其动态性能的要求。

3) 滞后超前校正,由于这种校正既有超前校正的特点,又有滞后校正的优点。因而它适用

系统需要同时改善稳态和动态性能的场合。校正装置有无源和有源二种。基于后者与被控对象相连接时,不存在着负载效应,故得到广泛地应用。

下面介绍两种常用的校正方法:零极点对消法(时域法;采用超前校正)和期望特性校正法(采用滞后校正)。

1. 零极点对消法(时域法)

所谓零极点对消法就是使校正变量Gc(S)中的零点抵消被控对象Go(S)中不希望的极点,以使系统的动、静态性能均能满足设计要求。设校正前系统的方框图如图6-2所示。

图6-2 二阶闭环系统的方框图

1.1性能要求

静态速度误差系数:KV=25 1/S,超调量:?P?0.2;上升时间:tS?1S。 1.2 校正前系统的性能分析

校正前系统的开环传递函数为:

525 G0(S)??0.2S(0.5S?1)S(0.5S?1)系统的速度误差系数为:KV?limSG0(S)?25,刚好满足稳态的要求。根据系统的闭环传

S?0递函数

2G0(S)?n50?(S)??? 21?G0(S)S2?2S?50S2?2??nS??n求得?n?50,2??n?2,??1?n?1?0.14 50代入二阶系统超调量?P的计算公式,即可确定该系统的超调量?P,即

???1??2?P?e?0.63,ts?3??n?3s(???0.05)

这表明当系统满足稳态性能指标KV的要求后,其动态性能距设计要求甚远。为此,必须在系统中加一合适的校正装置,以使校正后系统的性能同时满足稳态和动态性能指标的要求。 1.3 校正装置的设计

根据对校正后系统的性能指标要求,确定系统的?和?n。即由

???1??2?P?0.2?ets?3,求得??0.5 (???0.05),解得?n???n?1S3?6 0.5根据零极点对消法则,令校正装置的传递函数GC(S)?则校正后系统的开环传递函数为:

0.5S?12525G(S)?Gc(S)G0(S)???

TS?1S(0.5S?1)S(TS?1)相应的闭环传递函数

0.5S?1

TS?1?nG(S)2525/T ?(S)??2?2?22G(S)?1TS?S?25S?S/T?25/TS?2??nS??n于是有:?n2?225,2??n?1 TT为使校正后系统的超调量?P?20%,这里取??0.5(?P?16.3%),则2?0.525?1,

TTT?0.04s。

这样所求校正装置的传递函数为:

0.5S?1 Go(S)?0.04S?1设校正装置GC(S)的模拟电路如图6-3或图6-4(实验时可选其中一种)所示。

图6-3校正装置的电路图1 图6-4校正装置的电路图2

其中图6-3中R2=R4=200K,R1=400K,R3=10K,C=4.7uF时

T?R3C=10 ?103?4.7?106?0.04S

R2R3?R2R4?R3R42000?40000?2000?C??4.7?10?6?0.5

R2?R44001?R2R3?R2R4?R3R4CSR2?R40.5S?1 ?R3CS?10.04S?1则有Go(S)?R2?R4?R1而图6-4中R1?510K,C1?1uF,R2?390K,C2?0.1uF时有

Go(S)?R1C1S?10.51S?10.5S?1??

R2C2S?10.039S?10.04S?1图6-5 (a)、(b)分别为二阶系统校正前、后系统的单位阶跃响应的示意曲线。

(a) (?P约为63%) (b) (?P约为16.3%) 图6-5 加校正装置前后二阶系统的阶跃响应曲线

2.期望特性校正法

根据图6-1和给定的性能指标,确定期望的开环对数幅频特性L(?),并令它等于校正装置的对数幅频特性Lc(?)和未校正系统开环对数幅频特性Lo(?)之和,即

L(?)= Lc(?)+ Lo(?) 当知道期望开环对数幅频特性L(?)和未校正系统的开环幅频特性L0(?),就可以从Bode图上求出校正装置的对数幅频特性Lc(ω)= L(ω)-Lo(ω) 据此,可确定校正装置的传递函数,具体说明如下: 设校正前系统为图6-6所示,这是一个0型二阶系统。

图6-6二阶系统的方框图

其开环传递函数为:

K1K22,其中T1?1,T2?0.2,K1?1,K2?2,G0(S)??(T1S?1)(T2S?1)(S?1)(0.2S?1)K=K1K2=2。

则相应的模拟电路如图6-7所示。

图6-7 二阶系统的模拟电路图

由于图6-7是一个0型二阶系统,当系统输入端输入一个单位阶跃信号时,系统会有一定的稳态误差。

2.1 设校正后系统的性能指标如下:

系统的超调量:?P?10%,速度误差系数Kv?2。

后者表示校正后的系统为I型二阶系统,使它跟踪阶跃输入无稳态误差。 2.2 设计步骤

2.2.1绘制未校正系统的开环对数幅频特性曲线,由图6-6可得: L0(?)?20lg2?20lg1?()2?20lg1?()2

15??其对数幅频特性曲线如图6-8的曲线L0(虚线) 所示。

2.2.2 根据对校正后系统性能指标的要求,取?P?4.3%?10%,Kv?2.5?2,相应的开环传递函数为: G(S)?2.5,其频率特性为:G(j?)?S(1?0.2S)2.5j?j?(1?)5

据此作出L(?)曲线(KV??C?2.5,?1?5),如图6-8的曲线L所示。 2.2.3 求Gc(S)

因为G(S)?Gc(S)?Go(S)。 所以Gc(S)?G(S)(1?S)(1?0.2S)1.25(1?S)2.5??? Go(S)S(1?0.2S)2S由上式表示校正装置Gc(S)是PI调节器,它的模拟电路图如图6-9所示。

图6-8 二阶系统校正前、校正后的幅频特性曲线

图6-9 PI校正装置的电路图 ?Uo(S)R21?R2CS?S?1???K由于Gc(S)?

Ui(S)R11?R1CS?S其中取R1=80K(实际电路中取82K),R2=100K,C=10uF,则??R2C?1s,K?校正后系统的方框图如图6-10所示。

R2?1.25 R1

图6-10 二阶系统校正后的方框图

图6-11 (a)、(b)分别为二阶系统校正前、后系统的单位阶跃响应的示意曲线。

本文来源:https://www.bwwdw.com/article/5djf.html

Top