具有防撞功能的遥控智能小车文献综述

更新时间:2024-07-02 12:46:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

毕业设计(论文)文献综述

题 目:具有防撞功能的遥控智能小车 姓 名:

学 号:

系 别:

专 业:年 级:

指导教师:

机械工程

机械设计制造及其自动化 2008级

(签名)

2012 年 月 日

摘要:随着电子工业的发展,智能技术广泛运用于各种领域,运用于智能家居中的产品更是越来越受到人们的青睐。在硬件设计方面,以51单片机为控制核心,以寻迹轨道为辅。在软件方面,利用汇编或C语言进行编程,通过软件编程来控制小车运转。根据具体环境的布局不同而使用不同的路径,从而使得智能小车智能化,人性化。该种小车能自动循迹,自动避障,有一定的实用价值。

关键词:单片机,自动循迹,自动避障

1.前言

汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究[1]。可见其研究意义很大。本设计就是在这样的背景下提出的,指导教师已经有充分的准备。本题目是结合科研项目而确定的设计类课题。设计的智能电动小车应该能够实现适应能力,能自动避障[2] ,可以智能规划路径。

智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。同遥控小车不同,遥控小车需要人为控制转向、启停和进退,比较先进的遥控车还能控制器速度。常见的模型小车,都属于这类遥控车;智能小车,则可以通过计算机编程来实现其对行驶方向、启停以及速度的控制,无需人工干预。操作员可以通过修改智能小车的计算机程序来改变它的行驶方向。因此,智能小车具有再编程的特性,是机器人的一种。

智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航、人工智能及自动控制等技术,是典型的高新技术综合体。

2.智能小车研究现状

智能车辆作为智能交通系统的关键技术,是许多高新技术综合集成的载体。智能车辆驾驶是一种通用性术语,指全部或部分完成一项或多项驾驶任务的综合车辆技术。智能车辆的一个基本特征是在一定道路条件下实现全部或者部分的自动驾驶功能,下面简单介绍一下国内外智能小车研究的发展情况[3]。

2.1 国外智能车辆研究现状

国外智能车辆的研究历史较长,始于上世纪50年代。它的发展历程大体可以分成三个阶段:

第一阶段 20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronics 公司研究开发了世界上第一台自主引导车系统AGVS(Automated Guided Vehicle System)。该系统只是一个运行在固定线路上的拖车式运货平台,但它却具有了智能车辆最基本得特征即无人驾驶。早期研制AGVS的目的是为了提高仓库运输的自动化水平,应用领域仅局限于仓库内的物品运输。随着计算机的应用和传感技术的发展,智能车辆的研究不断得到新的发展。

第二阶段 从80年代中后期开始,世界主要发达国家对智能车辆开展了卓有成效的研究。在欧洲,普罗米修斯项目于1986年开始了在这个领域的探索。在美洲,美国于1995年成立了国家自动高速公路系统联盟(NAHSC),其目标之一就是研究发展智能车辆的可能性,并促进智能车辆技术进入实用化。在亚洲,日本于1996年成立了高速公路先进巡航/辅助驾驶研究会,主要目的是研究自动车辆导航的方法,促进日本智能车辆技术的整体进步。进入80年代中期,设计和制造智能车辆的浪潮席卷全世界,一大批世界著名的公司开始研制智能车辆平台。

第三阶段 从90年代开始,智能车辆进入了深入、系统、大规模研究阶段。最为突出的是,美国卡内基.梅隆大学(Carnegie Mellon University)机器人研究所一共完成了Navlab系列的10台自主车(Navlab1—Navlab10)的研究,取得了显著的成就。

目前,智能车辆的发展正处于第三阶段。这一阶段的研究成果代表了当前国外智能车辆的主要发展方向。在世界科学界和工业设计界中,众多的研究机构研发的智能车辆具有代表性的有:

德意志联邦大学的研究 1985年,第一辆VaMoRs智能原型车辆在户外高速公路上以100km/h的速度进行了测试,它使用了机器视觉来保证横向和纵向的车辆控制。1988年,在都灵的PROMRTHEUS项目第一次委员会会议上,智能车辆维塔(VITA,7t)进行了展示,该车可以自动停车、行进,并可以向后车传送相关驾驶信息。这两种车辆都配备了UBM视觉系统。这是一个双目视觉系统,具有极高的稳定性。

荷兰鹿特丹港口的研究 智能车辆的研究主要体现在工厂货物的运输。荷兰的Combi road系统,采用无人驾驶的车辆来往返运输货物,它行驶的路面上采用了磁性导航参照物,并利用一个光阵列传感器去探测障碍。荷兰南部目前正在讨论工业上利用这种系统的问题,政府正考虑已有的高速公路新建一条专用的车道,采用这种系统将货物从鹿特丹运往各地。

日本大阪大学的研究 大阪大学的Shirai实验室所研制的智能小车,采用了航位推测系统(Dead Reckoning System),分别利用旋转编码器和电位计来获取智能小车的转向角,从而完成了智能小车的定位。

另外,斯特拉斯堡实验中心、英国国防部门的研究、美国卡内基梅隆大学、奔驰公司、美国麻省理工学院、韩国理工大学对智能车辆也有较多的研究。

2.2 国内智能车辆研究现状

相比于国外,我国开展智能车辆技术方面的研究起步较晚,开始于20世纪80年代。而且大多数研究处在于针对某个单项技术研究的阶段。虽然我国在智能车辆技术方面的研究总体上落后于发达国家,并且存在一定得技术差距,但是我们也取得了一系列的成果[3 ],主要有:

(1)中国第一汽车集团公司和国防科技大学机电工程与自动化学院与2003年研制成功我国第一辆自主驾驶轿车。该自主驾驶轿车在正常交通情况下的高速公路上,行驶的最高稳定速度为13km/h,最高峰值速度达170km/h,并且具有超车功能,其总体技术性能和指标已经达到世界先进水平。

(2)南京理工大学、北京理工大学、浙江大学、国防科技大学、清华大学等多所院校联合研制了7B.8军用室外自主车,该车装有彩色摄像机、激光雷达、陀螺惯导定位等传感器。计算机系统采用两台Sun10完成信息融合、路径规划,两台PC486完成路边抽取识别和激光信息处理,8098单片机完成定位计算和车辆自动驾驶。其体系结构以水平式结构为主,采用传统的“感知-建模-规划-执行”算法,其直线跟踪速度达到20km/h,避障速度达到5-10km/h。

智能车辆研究也是智能交通系统ITS的关键技术。目前,国内的许多高校和科研院所都在进行ITS关键技术、设备的研究。随着ITS研究的兴起,我国已形成一支ITS技术研究开发的技术专业队伍。并且各交通、汽车企业越来越加大了对ITS及智能车辆技术研发的投入,整个社会的关注程度在不断提高。交通部已将ITS研究列入“十五”科技发展计划和2010年长期规划。相信经过相关领域的共同努力,我国ITS及智能车辆的技术水平一定会得到很大提高。

可以预计,我国飞速发展的经济实力将为智能车辆的研究提供一个更加广阔的前景。我们要结合我国国情,在某一方面或某些方面,对智能车进行深入细致的研究,为它今后的发展及实际应用打下坚实的基础。

3.信息融合的智能汽车

信息融合( Information Fusion) 又称数据融合(Data Fusion) ,最早出现

在70 年代末期,是从军事C3I (Command ,Control andCommunication

Integration)系统中提出的。它与信号处理、计算机技术、概率统计、图像处理、人工智能和自动控制等学科密切相关,是一门新发展起来的多学科交叉的前沿学科。同时由于其巨大的应用潜能(如目标检测、战术警告与防御系统、机器人、遥测遥感、导航和制导、制造系统、设备监控和故障诊断等)和广阔的发展前景,从诞生之初就备受关注。信息融合技术简言之,即利用计算机技术对按时序获取的若干传感器的观测信息在一定准则下加以自动分析、综合,以完成需要的决策和估计任务而进行的信息处理过程。近二十年来,人们提出了多种信息融合模模型[4 ],其共同点或中心思想是在信息融合过程中进行多级处理。Body 控制回路如图1 所示。

下面仅就本文相关的Body 控制环模型进行简单描述。

Boyd 控制环(OODA 环,即观测、定向、决策、执行环) ,它首先应用于军事指挥处理,现在已经大量应用于信息融合。Boyd控制回路使得问题的反馈迭代特性显得十分明显。它包括四个处理阶段: ①观测,获取目标信息; ②定向,确定大方向,认清态势; ③决策,制定反应计划; ④行动,执行计划。OODA 环的优点是,它使各个阶段构成了一个闭环,表明了数据融合的循环性。随着融合阶段不断递进,传递到下一级融合阶段的数据量将不断减少。融合主要有数据级、特征级和决策级融合三种方方式[5 ] 。(1) 数据级融合:在传感器的原始信息未经处理之前进行的信息综合分析,以达到尽量多地保持景物信息。这种融合方式的信息处理量大、处理时间长、实时性较差。(2) 特征级融合: 在对信息预处理和提取特征后,对所获得的景物特征信息(如边沿、形状、轮廓、方向、区域和距离等)进行综合处理,以达到保留足够数量的重要信息和实现信息压缩,从而有利于实时处理。

(3) 决策级融合:融合之前,每种传感器的信号处理装置已完成决策或分类任务。信息融合只是根据一定的准则和决策的可信度做最优决策,以便具有良好的实时性和容错性,使在一种或几种传感器失效时也能工作。

4.未来智能车系统

车载信息技术是无线电技术与微处理器技术的汇聚,即利用计算机和卫星通信等信息技术来实现智能车辅助驾驶、In2ternet 网上登录、实时交通信息查询等。通过应用电子信息技术,使车辆实现高智能化,极大地改善车辆人机系统的安全性,避免事故的发生和减少伤害程度。从此角度出发,以系统工程的观点来看待智能车信息系统,可以划分为环境识别子系统、状态判断子系统、车辆控制子系统、司机—车载计算机交互界面子系统[6 ]等。这些子系统之间的框架结构如图2 所示。

车行驶速度、发动机转速、发动机状态、车门状态(锁死/ 微开) 、燃油状态 ,还监控转向盘上用来选择合适娱乐工作模式的各按钮状态;顶视显示系统安装于汽车挡风玻璃上,可以为驾驶员传递路况信息、卫星导航信息;控制中心显示系统的液晶显示触摸屏能够为驾驶员提供各种信息界面显示,如电话、温度控制、电视、车辆状态(1) 便携式GPS 定位与导航:便携式卫星导航集成了卫星定位技术(GPS) 、地理信息管理(GIS) 和互联网技术,以电子地图为基础,通过GPS 接收卫星信号,能够完成智能路径规划、全程语音提示、电子地图浏览、卫星定位导航等功能。GPS 主要由卫星与接收器两部分构成。卫星向地面广播编码位置与时间信号,而接收器则负责接收这些信号,实现全天候、大范围、多车辆的实时动态定位、调度、监控,改进车辆运行管理,增强突发事件的反应能力,提高车辆运行率和行车安全度,并为应用的行业规避经营风险,提高经济效益。其经济廉价、精度定位、全球覆盖的魅力,使其迅速超越传统的定位手段,成为需要定位、定姿、定时的首要选择。(2) 视觉子系统:视觉子系统是智能汽车的图像信号检测机构,由摄像头、图形卡等硬件设备和图像处理软件组成。它主要依靠安装在前、后保险杠及车身两侧的红外线摄像机,对汽车前、后、左、右的一定区域进行不停地

扫描和监视,根据捕获图像和计算位置,实时采集、处理环境场景,对物体大小、 形状和动作进行分析,判断出障碍物运动的方向、姿态、速度、加速度等信息,并将辨识数据提供给决策系统进行分析决策使用。(3) 微波多普勒雷达探测系统:车载微波探测雷达由窄波束天线、集成化发射机和接收机以及数字信息自理装置等组成。利用目标对电磁波的反射(或称为二次反射) 现象来发现目标,并测定其位置及速度等参数,综合判断车辆行驶的潜在危险性,及时将探测结果提供给一级决策系统。微波单片集成电路(MMIC) 的最新发展,使固态收发模块在雷达中的应用达到实用阶段[7] 。集成接收机、发射机及高性能数字信号处理器(DSP) ,使价格低廉、高性能的便携式车载探测雷达的实现和普及成为现实。(4) 决策系统:决策系统主要是根据现场的情况,如交通状况信息、环境信息完成决策或分类任务,安排汽车行走路线。在此基础上根据一定的准则和决策的可信度对上述结果进行融合,再由策略库进行汽车动作部署,做出最优决策(如车辆优化调度、路径规划、汽车加减速、超车及停车等) ,以便具有良好的实时性和容错性,使在一种或几种传感器失效时也能工作。策略应根据经验进行提取,并存在知识库中。 知识库还应有一个学习智能体,用于不断丰富策略。各种智能算法如神经网络、模糊算法、遗传算法等也可以应用到构造策略库以及策略选择过程中。系统根据 采取的对策,决策汽车的任务和动作。(5) 通讯系统:通讯系统保证各模块之间以及车载体与控制中心之间的高质量通讯[8]。目前大多数采用无线数字通讯。为了提高通讯的质量,要精心设计通讯电路及通讯协议。蓝牙技术为车载通讯系统提供了很好的解决方案,它将取代目前多种电缆连接方式,以低成本的近距离无线连接为基础,通过嵌入式微电子芯片,使所有相关设备在有效范围内完成相互交换信息、传递数据的工作,使各种电子装置在无线状态下相互连接传递数据。(6) 控制系统:智能车控制系统车辆动力学稳定性与汽车的横摆运动密切相关。智能车控制系统主要是通过制动力控制汽车的横摆运动,根据各传感器输入到计算机的信号推测驾驶员所期望的汽车转向运动,对发动机输出扭矩和各车轮制动力进行控制,以减小汽车转向时的过度转向特性,以及抑制因后轮侧滑所引起的急旋转运动发生,提高汽车操纵响应能力和紧急躲避障碍能力。(7) 显示系统:它包括底视显示系统、顶视显示系统和控制中心显示系统。底视显示系统显示汽信息、车载移动办公、导航、网站浏览、娱乐等。乘客通过连接在座椅上的通讯接口,也能享受这些功能。

5.信息融合对智能车系统的改进

多传感器信息融合技术充分利用多个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在时间和空间上的冗余或互补信息依据

某种准则进行组合,以获取被观测对象的一致性解释或描述。OODA 环在信息融合

[8]

系统中极具代表性,包括四个处理阶段:观测、定向、决策和行动。下面通过引

入OODA 环的模型,建立基于信息融合的智能车系统模型,如图3 所示。

智能车系统中信息融合方法的引入信息融合是一种数据综合和处理技术,是许多传统学科和新技术的集成和应用,如通讯、模式识别、决策论、不确定性理论、信号处理、估计理论、最优化技术、计算机科学、人工智能和神经网络等。近年来,不少学者又将遗传算法、小波分析技术、虚拟技术引入到信息融合 。下面就相关融合方法与智能车系统结合做简单描述[9]。(1) 数据层融合,直接对数据源操作:如加权平均、神经元网络等。主要是通过图像处理和识别以及多传感器集成等技术,得到环境中汽车、人和其他障碍物的位置(得到速度、加速度则更好) ,预测下一步(或下几步) 其位置的变化,从而为决策的形成奠定基础。(2) 特征层的融合,利用对象的统计特性和概率模型进行操作:如卡尔曼滤波、贝叶斯估计、多贝叶斯估计、统计决策理论等。主要是根据环境中形势与已有的知识进行关联,识别现在环境中形势的特征。(3) 决策层的融合:主要是根据各种特征的关联概率,以及该策略的成功概率、风险程度、能量消耗等综合因素,采用基于规则推理的方法(如模糊推理、证据推理、产生式规则等) ,最后形成一个决策。

6.总结

信息融合技术给智能汽车带来了更加光明的前景,信息融合技术使得车辆能够利用多传感器集成技术以及融合技术,结合环境信息、交通状况信息做出一个最优决策,实现车辆自动感知前方的障碍物,及时采取措施进行避让;通过对前方信号的识别,自动停车或继续运行;通过对路标的自动识别,避免违章行为等,从而可以大大降低车辆事故的发生,同时减轻司机驾驶的负担,尽量降低司机疲劳驾驶的可能性。但需说明,车辆的智能化功能包括很多方面,而本文仅仅阐述了基于信息融合技术在实现智能车系统的应用领域,也仅仅介绍了与信息融合技术相

关的车辆智能化功能模块,并就相关融合方法的引入做了简单描述。尽管车载信息技术的发展前景非常广阔,但要将它们彼此无缝地链接还有一些技术问题有待解决,如软件和硬件技术方面还需实现技术的飞跃,多媒体的接口问题,电子设备的物理连接,改进无线电通讯系统,解决无线电通讯的带宽问题,以及开发价格相对合理的软件技术等。另外,为了实现彼此设备的兼容,还要制定统一的工业标准。虽然技术的障碍还不少,但攻克这些难关的日子已经指日可待。

参考文献

[1] 赵海兰,基于单片机的红外遥控智能小车的设计,电子世界,2011,8:45-47. [2] 全国大学生电子设计竞赛作品选,1999年;National Undergraduate Electronic Design Contest Selected Works, 1999

[3] 胡汉才, 单片机原理与接口技术,清华大学出版社,1999.4;SCM Principle and Interface Technology, Beihang University Press, 1999.4

[4] 于京;张景璐,51系列单片机C程序设计与应用案例,北京:中国电力出版社,2006 [5] 电子系统设计,浙江大学出版社2000;Electronic System Design, Zhejiang University Press, 2000

[6] 王艳, 基于51单片机的红外遥控小车设计和制作, 机电信息2010,12:4-5.

[7 王建平,袁申,韩俊博,孟庆丰,刘军萍,郭新朋,红外遥控小汽车设计,机电技术,2011,3: 89-91.

[8] 周剑; 胡锦; 郑子明; 阮正坤; 基于at89s51单片机的防碰撞智能车, 硅谷,2009,19:11-12. [9] 朱向庆,陈志雄,一种语音控制的自主寻迹与避障智能小车设计,计算机测量与控制,2011,19(7):1674-1677.

本文来源:https://www.bwwdw.com/article/5az.html

Top