光刻技术 - 图文

更新时间:2023-12-18 05:09:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

● 最困难的部分——“真正的”半导体工艺 一颗CPU/GPU的基本制造流程

晶圆生产线(图片源自ZDNet)

在不考虑多次掺杂顺序、栅极形成于热处理前还是热处理后以及CMP(化学机械研磨)等细节性问题的前提下,半导体的制作流程大体上可以被概括为这样一个链条:单晶硅锭生长—wafer切割—覆胶—光刻—清洗—蚀刻—清洗—覆胶—光刻—清洗—多次掺杂—多次沉积—芯片切割—封测。

半导体制造过程实际上是一个“自下而上”进行的二维单向过程,人们通过蚀刻形成沟道,透过掺杂形成栅极,经由沉积敷设导线,因为每个过程都需要破坏或者改变一部分wafer表面区域的结构,而且这种破坏和改变都是不可逆的,如果提前破坏了后续步骤需要加工的区域,整个芯片将无法完成。所以半导体芯片的制造必须而且只能按照设计好的顺序,从最底层向上逐级进行这一系列的破坏和改变。这样的特点,造就了以“覆胶遮盖—光刻—清洗暴露—区域处理”为核心半导体芯片制造的独特过程。

简单的芯片制造工艺流程(Intel提供)

对芯片的加工起点是从最基本的沟道形成开始的,在长成单晶硅锭并切割好wafer之后,我们首先要在wafer表面敷上一层对特定波长光线非常敏感的溶胶。接下来,我们会用事先标记好需要形成沟道区域位置的掩模作为“底片”对覆胶表

面进行特定波长光束的照射,这一过程就是我们所常说的“光刻”,所有被光束照到的溶胶都会发生光化学反应并产生性变,清洗会令其脱落并暴露出需要蚀刻的wafer表面。

光刻过程

在这些暴露的表面通过蚀刻完成沟槽的侵蚀“开挖”之后,我们需要清洗并去除wafer表面残存的对非沟道区域起保护作用的溶胶,然后在完成一次“覆胶—光刻—清洗”的过程,只不过这次被暴露出来的位置是需要透过渗透掺杂来形成栅极的区域。接下来,我们会根据不同需求以及不同Fab的特点多次完成注入/扩散掺杂过程,以此来创造出不同的电学特征区域,也就是形成栅极。 接下来需要进行的步骤是完成互联,无论是使用CVD还是PVD手段,在现有的铜互连工艺当中,我们都会在需要敷线的空间中事先预留好空白和保护区域,然后将接触材料(在铜中毒敏感场合使用的其他金属材料)以及铜以气相沉积的形式扩散进区域并沉积形成导线。至此,芯片的制造主体过程大体上就算完成了,在经过切割和封装测试之后,它就成了我们所熟悉的半导体芯片。

制造完成等待切割的芯片

当然,这样的过程并不是一上手就可以成功的。依旧受“自下而上进行且不可逆的二维单向过程”影响,整个半导体工艺过程中的每一个步骤都会对后面的步骤产生影响,这种影响不仅造成了下游效应这一影响芯片良率的现象,更让半导体制造变成了一个需要多次学习和经验积累的过程。这样的学习过程就是我们通常所说的tape out/retape out,也就是多次流片过程。通过多次流片并观察和调整工艺细节,最终成型的工艺将会被用来部署在流水线上进行批量化的快速芯片加工,但被调整的部分均属细节,整体步骤通常依旧会维持我们前面所接触的这一顺序来进行。

● 晶体管可不是“管”哦

在看过半导体芯片制造的大体流程之后,我们需要明确几个容易出“状况”的地方,这些小问题不仅产期困扰了很多的爱好者,还在认知层面给我们带来了许多的误区。想要理解CPU/GPU究竟是怎样制作出来的,这些小问题需要被首先纠正。

1、半导体工艺经常会提及“光刻”工艺,但绝大部分“光刻”并不像很多人想象的那样用硬X射线、强力激光、中子波束、1096beam或者黑龙波什么的在晶圆上直接以轰杀的方式挖沟拓渠。除很少一部分直接激光通孔之外,光刻工艺所“刻”的都不是wafer本身,而是wafer表面的覆胶。它的目的是让需要形成被加工的晶圆部位“露出来”,以便后续的蚀刻、掺杂、沉积等工艺的开展,并让不需要被加工的地方继续为覆胶所保护。

晶体管可不是“管”哦

2、“晶体管”并不是“管”,更不是用一把小镊子夹起来再插到wafer表面的。微观电路中被我们讨论的晶体管尽管具有本质上与早期的晶体管完全相同的电学特性,但它早已经不再是矗立在包覆电极的一大坨晶体那样的尊荣了,实际上我们可以用“特殊电学性能区域”来称呼平时被我们叫做晶体管的那个东西。如果要对栅极的形象进行描述,它其实就是wafer表面的一小块凸起或者凹陷,经由在其周围掺杂而具备了特定的电学特性,再借由栅极形成控制机制来达成对开关的控制,可以达到“晶体管”相同的功能和作用。

3、“XXnm工艺”所说的并不是晶体管或者说栅极的尺寸,这里说的是刻线宽度,亦即光刻过程预设的沟槽的宽度。

4、芯片并非只有一层,因为需要大量以公里为单位计的微观连线,芯片需要在栅极所在的逻辑层之上完成多达6~8层甚至10层的金属层,这些层被用来以空间的形式完成导线和互联,这就是我们常说的多层互联工艺。原则上互联层空间利用越有效,导线在逻辑层中出现的距离和所需空间也就越少。因此,优化互联方式或者直接上攻互联层都有助于芯片面积的减小以及功耗的控制。

多层金属互联

● 制作“wafer”

一切的起点——单晶硅锭

单晶硅的生长需要经历一个类似的过程。单晶体生长是一个平衡延展的过程,任何杂质、应力处理不当或者不均匀的热力学起伏都可能诱发缺陷以及对称破却,并导致晶格变形的发生,让硅晶格从有序对称延伸转变成无序或近程有序状态,进而让单晶硅变成多晶硅。所以硅被熔融提炼之后,晶胚需要在一个严格

控制温度及其他要素的纯净环境中完成冷却生长过程,一直到单晶收尾都是如此。稍有差池,整个单晶硅锭都可能会报废。成长完成之后,经过高精度的切削加工,被切成片的单晶硅就成了我们所说的wafer,也就是晶圆。 ● 覆胶,光刻

半导体芯片制造过程中的“覆胶——光刻”过程。

“覆胶——光刻”过程

我们在前面的文章中提到过,“覆胶——光刻”过程的操作细节和目的在于暴露需要加工的wafer区域,同时保护不需要加工的区域。因为蚀刻并不具备自主选择性,必须加以约束才能达到定向加工的目的,所以覆胶之后,我们只需要对需要加工的区域进行照射,接着只剥离因反应而性变的胶体部分并暴露下方的wafer区域,就可以达到为下一步的蚀刻提供“渠道”了。 ● 沟槽形成

作为半导体加工工艺的重要步骤,沟槽的形成同面胚中的气孔有着异曲同工之妙。无论是形成PN结还是用于敷设线路,沟槽在半导体上芯片中都扮演着重要的角色。在经历了先前的“覆胶——光刻”过程之后,wafer表面已经露出了所有需要形成沟槽的区域,人们接下来所进行的工作,就是利用这些没有覆胶区域所形成的“沟渠”,通过物理或者化学侵蚀手段来完成这些区域内不同深度的沟槽开挖工作。覆胶的沟渠起到了导向的作用,可以让侵蚀沿人们规定的方向定向进行,而覆胶本身尤其到了保护待加工的作用。

沟槽对PN结非常重要

● 掺杂,沉积

顾名思义,掺杂就是在原本“纯净”的基体表面及浅表以渗透的形式加入原本没有的东西。在半导体芯片的制作过程中,掺杂就是通过物理化学手段将归于硅以外的元素注入到wafer浅表。

“半导体”本身并不是一个严谨的翻译,实际上我们可以将之理解成“电流只能在特定条件下定向单向流动”的特殊导体。半导体的导电并非像正常金属导体那样以电子气体定向移动的形式来完成,它必须经由硅晶格共价键空穴的载流子定向迁移过程来完成,其性能亦由此决定。而掺杂过程的作用,就是通过混入其他元素来改变硅晶格的结构,进而大幅改变局部区域的电学性能。一旦某一区域的电学性能达到了人们的要求,并且形成了以栅极为形式的控制开关,我们就可以将这一区域看做是“晶体管”的存在了。

掺杂形成N结

掺杂是一个物质下渗混合的过程。再又一次的覆胶——光刻过程之后,氧、氮、磷、硼等等元素按照人们的需要被带入到了特定的裸露出来的区域当中,并在不同扩散驱动力的作用下深入到了wafer的表面。元素的渗入改变了被渗入区域包括电阻以及电容量在内的大部分电学性能,让该区域成了有别于基体的可以为人们所用的半导体结构,再加上沉积形成的栅极,一个“晶体管”就算是完成了。 ● 上层互联

芯片中的互联

半导体芯片的制造童颜要经历这样的过程。无论是CPU还是GPU芯片,布满晶体管的逻辑层都需要与外部电路进行对应的连接。动辄十数亿甚至数十亿的晶体管总量显然是一个非常庞大的数字,将它们连在一起的连线长度也是相当可观的。要布置这些连线,而且同样是“自下而上”不可逆的单向布置这些连线,我们需要的是一个复杂的多次沉积过程,通过各种保护和气体扩散,将金属元素以PVD(物理气相沉积)或者CVD(化学气相沉积)的方式扩散到了特定的区域,并在该区域形成连线,这就是互联形成的过程。有了互联,芯片才有了存在的意义和工作的基础。

● tape out和retape out

半导体生产的过程同样经常会出现各种各样意料之外的不可控问题,披萨烤砸了会变得难吃,芯片工艺搞砸了就要面对良率低下甚至完全无法生产的结局,尤其是芯片试制的初期阶段更是如此。光溶胶的反应速率、蚀刻的速度和深度、热处理的温度时间、甚至是前后驱室中反应物的配比,各种纷繁复杂的过程彼此之间存在大量的相互关联和影响,这些影响都需要观察,收集经验以及悉心调整,这就是我们所熟悉的流片及工艺调整过程。一款芯片通常会在经历过多次流片、寻找工艺缺陷并改进之后才能送入流水线中进行批量生产,甚至调整的过程到此也依旧不会停止,它将会伴随芯片的几乎整个生产周期。

G80芯片在生产后期已经进化到了A3版本

● 切割封测

与前面的步骤相比,切割封测应该算是一个技术含量相对较低的过程了。在进行上述加工过程的初期,也就是第一步的“覆胶——光刻”时,人们已经已经按照芯片的边缘尺寸在掩膜上划分好了区域,后续的所有步骤均以这些区域为单位在整个wafer表面规则的重复着。当所有加工工作完成之后,人们只需要沿划分区域的边缘完成线切割,并将芯片的互联同最终的封装引脚连接在一起,整颗芯片就算大功告成了。

话虽如此,切割和封测也并非是一个可以漫不经心随意完成的简单任务。同wafer切片过程一样,芯片线切割同样是一个精度极高的机械操作过程,通常都需要由激光切割来完成。如果切割不当,芯片的边缘便可能产生缺陷,我们常见的关闭部分单元的“低阶产品”,其中有一部分就来源于这一过程。

GF100就是一颗并未完全开放单元的芯片

本文来源:https://www.bwwdw.com/article/55v5.html

Top