Supersymmetry breaking in ISS coupled to gravity
更新时间:2023-07-19 18:23:01 阅读量: 实用文档 文档下载
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
SupersymmetrybreakinginISScoupledtogravity
lak,O.J.Eyton-Williams
InstituteofTheoreticalPhysics,UniversityofWarsaw,00-681Warsaw,Poland
arXiv:0807.4120v3 [hep-th] 30 Jul 2008AbstractWeanalysethebreakdownofsupersymmetryinanISSmodelinthepresenceofgravity,undertherequire-mentthatthecosmologicalconstantvanishesdynamically.Thegravitationalbackreactioniscalculatedinthemetastableminimumand,inconjuctionwiththeconditionV=0,thisisshowntogeneratenon-zeroF-termsforthesquarks.Oncethesquarksarecoupledtothemessengersector,agaugemediationschemeisrealisedanditleadstoadistinctivesoftspectrum,withatwoorderofmagnitudesplitbetweenthegauginoandthesoftscalarmasses.1IntroductionInthisletterweanalysethemeta-stablepointofasimpleIntriligator,SeibergandShih(ISS)model,withintheframeworkofsupergravity.Thisallowsustocancelthecosmologicalconstant,whichweopttodobythesimplestpossiblemethod:addingaconstant,W0,tothesuperpotential.Thisissu cienttogenerateaphysicallyreasonablegravitinomassandbalancethenewnegativecontributionagainsttheoriginalpositivecontributioncomingfromtheISSpotential.Werecomputetheone-loope ectivepotentialinsupergravityandusethistocomputethegravitationalbackreactionontheglobalvacuum.Theperturbationsareshowntobesmall,asoneexpectsfromgravitationalcorrections,butnon-trivial.Themostinterestingdevelopmentisthatthemagneticquarksobtainnon-zero,butPlancksuppressed,F-terms.Hence,thereappeartwodistinctscalesinthesectorthatbreakssupersymmetry.Itisinterestingtocalculateinthissetuptherelativeimportanceofseveralmediationmechanisms,speci callyanomaly,gravityandgaugemediation.Wegiveorderofmagnitudeestimatesforthesoftmassesspectrumgeneratedbythesethreemechanismsandarguethatthespectrumcanhaveastrikinggapbetweenthegauginomassesandthesoftscalarmasses.ThisisreminiscentofsplitSUSYbutthesplitisnotallowedtobe
arbitrarilylargesinceitisconstrainedbytherequirementthatV=0inthemeta-stableminimum.
WenotethatsettingV=0attree-levelisclearlynotsu cienttoguaranteeitremainsclosetozerowhenloopcorrectionsareincluded.Asdiscussedindetailin[3,onegenericallyexpectsboththelogarithmiccorrectionspresentintheSUSYtheory(albeitwithgravitationallycorrectedmasses)andcontributionsoforderΛ2m23/2tobepresent,ifthetheoryiscut-o atΛ.However,asnotedin[4]anddiscussedfurtherinthiscontributionisdeterminedbythegeometryoftheK¨ahlerpotentialandthenumberofdegreesoffreedominthee ectivetheory,anditisperfectlypossibleforittovanish.Evenifitremains,itspresenceisnotnecessarilyparticularlydamaging,sinceitis xedbythesizeofm3/2.
Thepotentialcanbeparametrizedas(withMPsetto1andVlogcontribution):
(1 loop)V=VF+Vlog+(Z 3)m23/2
1(1 loop)denotingthelogarithmic1-loop(1)
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
whereZis,atmost,anO(1)toO(Nf)parameterencapsulatingourignoranceaboutUVe ects.IfZ<0,theconditionV=0issatis edbyasmallerW0thanisrequiredtocancelthetree-levelpotential.Sinceweexpectthat|Z|~Λ2thisimpliesthat,aslongasΛ 1,W0willnotchangedramatically,andourresultswillbequalitativelyunchangedwithrespecttothecasewiththequadraticallydivergenttermomitted.Naturally,westillhavetore-tunetogetV=0,buttheloopcorrectiondoesnotincreasethedegreeoftuningrequired.Finally,ifZ 3itisclearthatthesemodelsbreakdownandthecosmologicalconstantcannotbetunedtozero.
Thebreakingofsupersymmetryisbestdescribedbythelowenergyvariablesinthemagnetictheory.Assuch,therelevantcut-o isthescaleatwhichthemagneticdescriptionisnolongervalid.Abovethisscalethe,SUSYpreserving,electricdescriptioniscorrectandhencetherearenofurthercontributionstoinherentlySUSYbreakinge ects.
Toobtaincontroloverloopcorrectionstothecosmologicalconstant,wemustpostulatethateithera)theUV’scontributiontoSUSYbreakingissub-dominanttotheIR’sandtheIRtheoryiscuto belowMP.orb)theK¨ahlergeometryconspireswiththenumberof avourstosuppresstheloope ects.
Whilethesecondoptionispossible(andonemighthopethattheapparentconspiracywillberesolvedbyaparticularstringconstruction)weprefertomakethesomewhatmilderassumptionofUVirrelevance.Wedo
notattempttoconstructadetailedUVsectorinthispaper,foranexamplewhereaKKLTmodel[6]isusedintheUVsee [7].Wereturntothisquestionbrie yinsection7.Essentially,wepostulatethatW=WISS+WUV, WUV=W0=0andthatFUV FΦ.
2GlobalISSreview
ISSshowedthatmeta-stableSUSYbreakingispossibleinawideclassofremarkablysimplemodels.OneoftheirmainexamplesissupersymmetricQCDwithNf avoursandNccolours.Ifoneliesinthefreemagneticrange,Nc<Nf<3
Nf,φ:(N),N=Nf Nc,thenumberofsquark avours
inthetheoryandwedenotethepartsofΦthatwilllaterobtainexpectationvaluesasfollows: magnetic Φ10.TheK¨ahlerpotentialiscanonical.Φ=0Φ0Consideringthetree-levelsuperpotentialinisolationone ndsthatthelowestenergystateisamodulispaceparametrisedby
φ000φ0 T= 0=µ2IN×N.,φ(3),φ=,φ0φΦ=cc00Φ00
SinceSUSYhastobebroken,thepotentialispositivede niteandisfoundtohaveanexpectationvalueofV=Ncµ4.Whentheone-loope ectsareincludedthemodulispaceisliftedand,asidefrom atdirectionsidenti edwithGoldstonebosons,auniqueminimumisfoundat:
Φ=0, 0=µIN×N.φ0=φcc(4)
Inadditiononemustincludethenon-perturbative,R-symmetryviolatingcontribution:
(N 3N) 1/NW=NhNfΛmfdet(Φ).(5)
NoticethattheexponentofΛm, (Nf 3N)= (3Nc 2Nf),isalwaysnegativeinthefreemagneticrange.Hencethecoe cientofthedeterminantgrowsasthecut-o shrinks.
2
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
Sincethenon-perturbativepieceisR-symmetryviolatingitnecessarily[9]impliesthataSUSYpreservingminimummustexist,createdbythenon-perturbativepiece.InglobalSUSY1thismustbeatalowerenergythantheSUSYbreakingminimum.
2.1Anoteondynamicalscales
Wenowcalculatetherelationshipbetweenthedynamicalscales,ΛandΛm,oftheelectricandmagnetictheories,respectively.WemakeuseoftherelevantpartofthedictionarygiveninISS’spaperandthedualityrelation,givenby:
√(6)h= Λ
and
Λ3Nc NfΛm2Nf 3Nc Nf.=( 1)Nf NcΛ(7)
isadimensionalparameterinthemagnetictheory,relatedtotheelectricquarkmass,m0,andthewhereΛ = µ2magneticquarkmass,µthroughthefollowingrelation:Λ
situationcouldbeimprovedinSUGRAiftheSUSYpreservingpointalsohadW=0andtheSUSYbreakingpointV=0,butthisisdi culttoobtain,andnotthecasehere.In-fact,thedi erenceintheenergydensityisincreasedbythenegativecontributionsfromW=0.12KM=1The
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
TheconstantcreatesanAdSminimumwithanegativeexpectationvalueequalinmagnitudetotheglobalISStheory’s,namelyVADS Ncµ4.However,thedi erencebetweenVintheAdSminimumandinthemetastableminimumisessentiallythesameasthethedi erencebetweenVintheSUSYminimumandinthemetastableintheglobalcase.Theheightofthebarrierisalsoessentiallythesameinbothcases.
FinallyournumericalstudiesdemonstratethatifW0~µ2thenΦ0getsexpectationvaluesoforder1,buttheexpectationvalueshrinksasW0→0,goingtozerointhatlimit.
4Onelooppotential
Sincetheinterplaybetweenthesupergravityandone-loope ectsissoimportanttoourresultsitisworthdiscussingthedetailsoftheone-loopcalculation,highlightingtheapproximationswehavemade.Firstofallwenotethatthemassmatrices,M,inthewell-knownformula:
1
64π2M2Vone loop=STrMlog4
isincontrasttoglobalISS,orindeedISSwithnoadditionalphysics,becauseinourcase Φ =0.When Φ =0theGoldstonebosonsaresolelylinearcombinationsofthemagneticquarks,butwhen Φ =0itcontributestothebreakingofSU(Nf)andhencetheGoldstonebosons.ThismeansthatanycontributionstotheGoldstonebosons’potentialthatviolatetheoriginalSU(Nf)symmetrygive(spurious)massestotheGoldstones.Henceoneshouldcomputethefullpotential,atleastto2ndorderinthe elds,toobtainreliableresults.
4This
4
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
5Non-perturbativecontributions
Toestimatethevalueofthecut-o forwhichthenon-perturbativepiece(5)
dominates,anddestabilisesthepotential,wecalculatethesecondderivativeofthenon-perturbativecorrectiontothepotential,evaluatedat
2Vnon-pert.theminimumofthetree-level+one-loope ectivepotential.If,thenthenon- Φ2
perturbativepiecewilllikelydominateandthe eldswillrolltothesupersymmetricminimum.Thisallowsustoputroughlowerboundsonthecut-o ,suchthatthemeta-stablesolutionisstable.Thisisincontrasttotheglobalcaseinwhichthenon-perturbativee ectsvanishinthetree-level+one-loopminimum.Considering,forsimplicity’ssake,Nf=Nc+1:
2Vnon-pert.
Φ2ii
8π2~log(4) 1itisclearthatthenon-perturbativepiecewilldominate
andthe eldswillevolveintotheSUSYminimum.However,wecanseethat,evenifthecut-o hasthesameorderofmagnitudeasµ,thenon-perturbativepotentialalonewillnothaveasigni cante ect.ItissuppressedbythesmallexpectationvaluesofΦ0,givenbytheperturbativepotential.If Φ µthenon-perturbativepotentialcandominate,butthisisfarfromthecasehereandwecould ndnoexamplesintheliteraturewhereitwas.
Wealsonotethat,whiletherearenon-perturbativecontributionstotheone-loope ectivepotential,thesee ectsaregenericallysmall.Theywillonlyneedcloseconsiderationwhen Φ µandeveninthiscase,thenon-perturbativecontributionstothetree-levelwillbemoreimportant,exceptatsingularpointswheretheperturbativeexpansionbreaksdown.
Finally,thefullcalculationwithafullyrealisticnumberof avoursisnumericallyintractable,andweareonlyabletocomputeeverythingforthecasewhereNf=3andNc=2.Whilethiscasedoesnotcorrespondtoadualizedtheory,itdoescapturetheimportantlowenergyphenomena:therankconditionstillholdsandSUSYisstillbrokenspontaneously.However,thenon-perturbativecontributionsarequalitativelydi erent.Firstlythecoe cientisautomatically1,irrespectiveofthesizeofthecut-o ,andthedeterminantpieceislargerbyroughlyµ 2,sinceitcontainsonefewerpowerofΦij.Thismeansthatthenon-perturbativepiececancometodominate,eventhoughweknowthatitwouldbenegligibleintheNf=4,Nc=3case.Asaresult,wewereforcedtointroduceaconstant,Λnon-pert.,multiplyingthenon-perturbativepieceand ndthelargeststablevalue,beforewecouldbecertainthatthenon-perturbativee ectswereundercontrol.Morespeci cally
(N 3N) 1/NWnon pert→Wnon pert=Λnon-pert.NhNfΛmfdet(Φ)(12)
inwhatfollows.
6Numericalresults
Intable1therowΛnon-pert.isthecoe cientofthenon-perturbativepiece,introducedtocompensateforthemissingpowersofΦijthatwouldbepresentinthedeterminantforarealisticnumberof avours.Note,theF-termforΦ0isnotincludedsinceitisonlyshiftedbycorrectionsoforderµ3,soFΦ0=µ2+O(µ3).
Forphysicallyreasonablevaluesofµthise ectisnegligible.Also,Λ=10 2,(i.e.thestring/GUTscale)throughouttables1and3.Thereasonis,thisvalueofΛissu cientlysmallandensuresthatthequadratically
5
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
Nf
1
µ
1.5210 14
φ0
Φ1 Fφ0/µ2 6.3310 12
1.0710 212.0010 61.5210 14 6.3310 12 1.0710 212.0010 41.5210 14 6.3310 12 1.0710 212.0010 21.5210 14 7.9510 12 1.0710 214.0010 21.5210 14 1.5710 11 1.0710 214.4010 21.5210 14 2.1010 11 1.0710 214.6010 21.5210 14 2.5610 11 1.0710 2
Table1:SolutionsforV=0,withthenon-perturbativepieceincluded.Thedependenceonthenon-perturbativecontributionisshowntobeverysmall,butasΛnon-pert.exceeds210 2itrapidlycomestodominate.Nf
1
µ
10 1
1.0610 14
4.3610 12
5.4610 3110 21.0810 14 4.4310 12 5.2710 3110 31.0910 14 4.5010 12 5.0910 3110 41.1110 14 4.5710 12 4.9310 3110 51.1310 14 4.6410 12 4.7710 3110 61.1510 14 4.7110 12 4.6310 31210 71.1610 14 4.7510 12 4.5310 3 φ0 Φ1 Fφ0/µ2
Table2:SolutionsforV=0wherethenon-perturbativeandone-loopquadraticpieceshavebeenneglected.ThesedatashowthelogarithmicdependenceofΦ0onthecut-o .
Nf
1
µ
m3/2
Φ0
FΦ1/µ29.9710 8 2.1010 14 1.5610 719.9710 7 1.9710 12 1.4210 619.9810 6 1.8610 10 1.3110 519.9810 5 1.7710 8 1.2010 4
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
divergentloopcorrectiontothepotentialisnegligible,leavinguswiththelogarithmicpiecewhosesensitivitytotheactualvalueofthecut-o isveryweak.SincethesuperpotentialcanbewrittenW=WISS+W0,and WISS =0inthegloballimit,we ndthatm3/2=eKW0+O(µ3) W0.Henceweonlyincludem3/2inthetable.
Ournumericalstudiesshowedthatthenon-perturbativepieceisundercontrol,thatthereisonlyaverymild,logarithmiccut-o dependence,whensupergravitycorrectionsareaccountedforandthatthemainfeaturesofthemodel
are
independent
of
µ
,
assuming
µ MP.Theseresultscanbeseenin,respectively,tables1,2and3.√Fromthedataintable2wecanseethatforµ=
φ0 ~FΦ0
Φ0 M FΦ0F
Fφ0
4π
andthesoftscalarmasssquaredsareapproximately:4πW04πµ2(13)
m2=m2λ.
Inadditionwecanestimatethesoftmasscontributionsfromanomalymediation:
Ma=FAnom.βga/ga~
5We6As(14)αfaremessenger eldschargedunderthevisiblesectorgaugegroups.haveinmindanoperatorW Xfdiscussedpreviouslythegravitationale ectscomeinwithanadditionalpowerofµcomparedwiththeglobalSUSYterms,hencethenewF-termsare~µ3.
7
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
i γ(m2)ijj=FAnom.2FAnom.2
16π2(16)
SinceFAnom.canatmostbeFΦ0(withoutpostulatinganothersourceofSUSYbreaking)itfollowsthat
thesecontributionsareofthesameorderofmagnitudeasthosegivenbygaugemediation.
Thisallowsustoestimatethesizeofthegravitinomass,basedontherequirementthatthegauginomassesbeinthevicinityofaTeVandthatthecosmologicalconstantbetunedtozero.Theserequirementsimplythatα2
α 8
10.Takingα=1
1/2
3andhencethegravitationalcontributiontothesoftscalarmasses
isautomaticallytwoordersofmagnitudelargerthantheothercontributions.
Asmentionedearlier,thegravitationalcontributiontothegauginomassesisnotnecessarilyorderm3/2.Forexampleinstringtheoriesonecan ndthatthegaugekineticfunctions,whoseexpectationvaluesspecifythegaugecouplingconstants,haveatreeleveldependenceonclosedstringmoduli[16]7.Sincepseudo-moduliareevidentlynotstringmoduli,thetree-levelgaugekineticfunctiondoesnothavetodependonthem.Hence,ifthestringmoduli(orany eldsthatappearinthegaugekineticfunction)donotcontributestronglytoSUSYbreaking8thenthegauginomasseswillreceiveanegligibletree-levelcontributionfromgravity.
Insummary,themodelsdiscussedheremaynaturallygenerate,viathegaugemediationchannel,aspectruminwhichthegauginomassesareloopsuppressedwithrespecttothesoftscalarmasses.Sincethegauginomassesreceiveunknownquantumcorrectionswecannotpredicttheprecisespectrum,whichdependsondetailsofthecompletemodel,thoughwedoexpecttoseeasplitinthespectrumofsoftmasses.Thisspectrumhasmuchincommonwiththeonepresentedintheearlyworkonanomalymediation.See,forexample,[20].
Inadditiontothis,onecanconsidermodifyingthemodel.Forexample,intheliteraturethereareexamples
[13,21,22,23]inwhichoperatorsareaddedtothesuperpotentialallowingthepseudo-modulusvevtogrowouttoaroundµ.Whilethisisclearlyaninterestinge ect,thedualtheoryresponsibleforgeneratingthisoperatorisasyetunknown.
8Conclusions
Insummary,ISSismorestablewithsupergravitycorrectionsthanwithout,assumingthatW0=0.ThepicturechangessomewhatwhenW0
control,oncetheone-loope ects=0,buthaveitbeenwasshownincluded.insection4thatthesupergravitye ectsaresmallandunder
Itwasthendemonstrated,insection5that,whilethenon-perturbativepieceisnon-zero,itisnecessarilysub-dominantforsmallvaluesofΦ.Hencethistermcanbeneglectedwhensupergravitye ectsaresubdominanttotheone-loope ects.Numericalanalysiscon rmedthis.
WealsoarguedthatonedoesnotneedtobeoverlyconcernedbycontributionoftheΛ2STr(M2)highlightedbytheworkof[3,5]sinceourcut-o is,oratleastcanbe,muchlowerthanthePlanckscale.Although,wemustrequirethatwhateverphysicstakesoverintheUV,ifithasalargecontributiontoSUSY-breaking,itmightnot(dependingonthesignofit’scontributiontothee ectivepotential)bepossibletosetthecosmologicalconstanttozero.Suchahighenergymodelwasconsideredin[5],butwedidnotattemptthiskindofconstructioninthispaper.Also,itisworthnotingthatitisconsistenttomakeuseofthesupergravitycorrectede ectivepotential,eventhoughourcut-o canbetakentobemanyordersofmagnitudebelow.Thisisbecausethenon-renormalisableoperatorspresentinSugraarenotgeneratedbytheintegrationoutofgravitational elds,andareinsteadrequiredtobepresentbysupersymmetryitself.
TheexplicitR-breakingintroducedbythepresenceofaconstantterminthesuperpotentialgeneratesnon-zerogauginomasses,throughgravitationallysuppressedinteractions(asonewouldexpect,sinceglobalSUSYisblindtothepresenceoftheconstant).
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
Weshowed,insection7,thatintheabsenceofadditionalsupersymmetriccontributionstomessengermasses,thegaugemediationisonlypossibleifthemagneticquarkscoupletothemessenger elds.AllotherISS eldshaveoverlysmallscalarvevsandgiverisetoanunstablemessengersector.Thedirectconsequenceofwhichisthatthegravitinomassisquitelarge.ThisisthecasebecauseitisnotsetbythequarksF-terms,butthemuchlargermesonF-terms,throughtherequirementthatthecosmologicalconstantshouldvanishintheminimumofthee ectivepotential.ThisresultsinadirectconnectionbetweenR-symmetrybreakingandgauginomasses,withEq.(13)showingthattheyareproportionaltooneanother,withthecoe cientbeingdeterminedbythedetailsofthegaugegroup.
Acknowledgements
ThisworkwaspartiallysupportedbytheEC6thFrameworkProgrammeMRTN-CT-2006-035863,bythegrantMNiSWN20217631/3844andbyTOKProjectMTKD-CT-2005-029466.
9
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
Appendix
AOriginsofmassterms
Forsimplicityweneglectphasesinthefollowinganalysis.Henceallsymmetriese ectivelygofromU(N)→O(N)andthecountingofdegreesoffreedomre ectsthis.
Inthiscase,thetree-levelpotential,whenembeddedintosupergravity,hasameta-stableminimum.Thepositionoftheminimumisgivenbytheglobalresult,butwithsmallcorrectionstotheexpectationvalueof 0|2=µ2 1/2±1themagneticquarks|φ0|2=|φ
N2 N)aremasslessGoldstonebosonsandtheremainderhavemassesoforderµ,2NfN N2mesonswithmassoforderµ,(Nf N)2 1mesonswithmassoforderµ2andonemasslesspseudo-modulimeson.
Theoriginsofthesemassesareasfollows.Thequarksgettheirmassesfromtheirexpectationvalues,withφ0 0andviceversa,theo -diagonalelementsofΦ0obtainmassessolelyfromthesecondderivativegivingmasstoφ
ofeK(whichcontributesequallytoall elds),namely2V,whilethediagonalelementsgetmorecomplicatedcontributions.TheremainingelementsofΦgetthesamemassesasinglobalSUSY,butwithsmallcorrectionsfromtheSugracontributions.Theendresultofthisisthatthemassive eldsretainessentiallysamemassesasinglobalSUSYandallbutoneofthepseudo-moduli(whichremainszero)obtainmassesoftheorderofthecosmologicalconstant:2Ncµ4.ThisdemonstratesthatsupergravityservestoincreasethestabilityoftheISSminimum,asitreinforcesthestabilisinge ectscomingfromtheonelooppotential.2(2NfN
References
[1]K.Intriligator,N.SeibergandD.Shih,JHEP0604(2006)021[arXiv:hep-th/0602239].
[2]N.Arkani-HamedandS.Dimopoulos,JHEP0506(2005)073[arXiv:hep-th/0405159].
[3]S.P.deAlwis,Phys.Lett.B647,194(2007)[arXiv:hep-th/0607148].
[4]S.P.deAlwis,Phys.Rev.D76,086001(2007)[arXiv:hep-th/0703247].
[5]S.Ferrara,C.KounnasandF.Zwirner,Nucl.Phys.B429(1994)589[Erratum-ibid.B433(1995)255]
[arXiv:hep-th/9405188].
[6]S.Kachru,R.Kallosh,A.LindeandS.P.Trivedi,Phys.Rev.D68(2003)046005[arXiv:hep-th/0301240].
[7]H.Abe,T.Higaki,T.KobayashiandY.Omura,Phys.Rev.D75(2007)025019[arXiv:hep-th/0611024].
[8]L.O’Raifeartaigh,Nucl.Phys.B96(1975)331.
[9]A.E.NelsonandN.Seiberg,Nucl.Phys.B416(1994)46[arXiv:hep-ph/9309299].
[10]D.J.H.Chung,L.L.Everett,G.L.Kane,S.F.King,J.D.LykkenandL.T.Wang,Phys.Rept.407,1(2005)[arXiv:hep-ph/0312378].
[11]E.Cremmer,S.Ferrara,L.GirardelloandA.VanProeyen,Nucl.Phys.B212(1983)413.
[12]N.Haba,JHEP0803,059(2008)[arXiv:0802.1758[hep-ph]].
[13]S.Abel,C.Durnford,J.JaeckelandV.V.Khoze,Phys.Lett.B661(2008)201[arXiv:0707.2958[hep-ph]].
[14]G.F.GiudiceandR.Rattazzi,Phys.Rept.322(1999)419[arXiv:hep-ph/9801271].
[15]D.I.Kazakov,
arXiv:hep-ph/0012288.
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with
[16]V.KaplunovskyandJ.Louis,Nucl.Phys.B444(1995)191[arXiv:hep-th/9502077].[17]R.KalloshandA.Linde,JHEP0702(2007)002[arXiv:hep-th/0611183].
[18]E.Dudas,C.PapineauandS.Pokorski,JHEP0702(2007)028[arXiv:hep-th/0610297].
[19]V.S.KaplunovskyandJ.Louis,Phys.Lett.B306(1993)269[arXiv:hep-th/9303040].
[20]G.F.Giudice,M.A.Luty,H.MurayamaandR.Rattazzi,JHEP9812,027(1998)[arXiv:hep-ph/9810442].
[21]N.HabaandN.Maru,Phys.Rev.D76,115019(2007)[arXiv:0709.2945[hep-ph]].
[22]F.q.XuandJ.M.Yang,arXiv:0712.4111[hep-ph].
[23]R.Kitano,H.OoguriandY.Ookouchi,Phys.Rev.D75,045022(2007)[arXiv:hep-ph/0612139].
11
正在阅读:
Supersymmetry breaking in ISS coupled to gravity07-19
中国联通CDMA 网络租赁费收益计划05-09
亚当斯密与李嘉图的价值理论的联系03-29
部编版一年级下册《第19课+棉花姑娘》2018年同步练习卷03-21
西软Foxhis宾馆管理系统接口原理04-03
绵阳公交车大全03-09
党员发展知识测试题库12-22
机械设计基础习题集10-23
某某乡镇小城镇建设汇报材料10-13
- 1Chiral symmetry breaking from five dimensional spaces
- 2Noncommutative Conformally Coupled Scalar Field Cosmology and its Commutative Counterpart
- 3Exchange interaction and stability diagram of coupled quantum dots in magnetic fields
- 4An Investigation of Tightly Coupled Time Synchronous Speech Language Interfaces Using a Uni
- 5An Investigation of Tightly Coupled Time Synchronous Speech Language Interfaces Using a Uni
- 6Discrete quantum gravity the Lorentz invariant weight for the Barrett-Crane model
- 7Violent Fluid-Structure Interaction simulations using a coupled SPH-FEM method
- 8盾构到达米埔竖井出洞方案20150725Plan of TBM breaking through
- 9Violent Fluid-Structure Interaction simulations using a coupled SPH-FEM method
- 10ISS微震监测系统在煤矿安全监测中的应用
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Supersymmetry
- breaking
- coupled
- gravity
- ISS
- 医院医疗流程管理的实践初探
- QTZ80F 塔吊拆除安全施工方案
- 儿童钢琴兴趣培养的好教材——改编钢琴版的圣桑《动物狂欢节》
- 办公室卫生清洁制度_特力洁成都保洁
- 工程热力学第三版答案【英文】第17章
- 国际金融学第5章
- 上机作业6端口扫描与防范
- 江都一模化学试卷、答案
- 数理统计期末考试试题
- 2016年广西专业技术人员公需科目考试创新与创业能力建设答案
- 初中英语时态超好讲解_2
- 小学高年级古诗文情景阅读填空题及答案
- 质量管理体系培训试卷答案
- 《我们要做雷锋式的好少年》教案
- 语文教研组校本研修工作计划第二学期
- 景新健康体检系统系统软件介绍
- 车用汽油实际胶质测定仪和喷射蒸发法胶质测定仪价格
- 新目标英语八年级 Unit 8 How was your school trip
- 助表面活性剂醇对柴油微乳液的影响
- 高一数学必修1习题(1)及答案