第六章 静电场中的导体与电介质

更新时间:2024-06-21 21:05:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第六章 静电场中的导体与电介质

6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )

(A) 升高 (B) 降低 (C) 不会发生变化 (D) 无法确定

分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 -2 将一带负电的物体M靠近一不带电的导体N,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A) N上的负电荷入地 (B)N上的正电荷入地 (C) N上的所有电荷入地 (D)N上所有的感应电荷入地

分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。因而正确答案为(A)。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A)E?0,V?q 4πε0d(B)E?qq,V?

4πε0d24πε0d(C)E?0,V?0 (D)E?qq,V? 24πε0d4πε0R

分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导

体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A)。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( )

(A) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E) 介质中的电位移矢量与自由电荷和极化电荷的分布有关

分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面

内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E)。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( )

(A) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍

(B) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍

(C) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍

(D) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍

分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有

1??1?χE?dS?E?dS??qi ?S?S0ε0i即E =E0/εr,因而正确答案为(A)。

6 -6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷qb 、qc ,导体球外距导体球较远的r 处还有一个点电荷qd (如图所示)。试求点电荷qb 、qc 、qd 各受多大的电场力。

分析与解 根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷qd 的作用力。

Fd??qb?qc?qd4πε0r2

点电荷qd 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电

荷qb 、qc处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷qb 、qc受到的作用力为零.

6 -7 一真空二极管,其主要构件是一个半径R1 =5.0×10m 的圆柱形阴极和一个套在阴极外,半径R2 =4.5×10m 的同轴圆筒形阳极.阳极电势比阴极电势高300V,阴极与阳极的长度均为L =2.5×10

-2-3

-4

m.假设电子从阴极射出时的速度为零.求:(1) 该电子

到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.

分析 (1) 由于半径R1<<L,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2) 计算阳极表面附近的电场强度,由F =qE 求出电子在阴极表面所受的电场力. 解 (1) 电子到达阳极时,势能的减少量为

ΔEep??eV??4.8?10?17J

由于电子的初始速度为零,故

Eek?ΔEek??ΔEep??4.8?10?17J

因此电子到达阳极的速率为

v?(2) 两极间的电场强度为

2Eek2eV??1.03?107m?s-1 mmE??两极间的电势差

λer 2πε0rV??E?dr??R1R2λλR??eln2 2πε0r2πε0R1负号表示阳极电势高于阴极电势.阴极表面电场强度

E??λVer?er

R2πε0R1R1ln2R1电子在阴极表面受力

F??eE?4.37?10?14erN

这个力尽管很小,但作用在质量为9.11 ×10加速度的5 ×105 倍.

-31

kg 的电子上,电子获得的加速度可达重力

6 -8 一导体球半径为R1 ,外罩一半径为R2 的同心薄导体球壳,外球壳所带总电荷为Q,而内球的电势为V0 .求此系统的电势和电场的分布. 分析 若V0?Q,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度

4πε0R2处处为零,内球不带电.

若V0?Q,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带

4πε0R2?电.一般情况下,假设内导体球带电q,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由Vp??pE?dl或电势叠加求出电势的

分布.最后将电场强度和电势用已知量V0、Q、R1、R2表示.

解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定

2理E?dS?E?r??4πr?E?r????q/ε0,根据不同半径的高斯面内的电荷分布,解得各区

域内的电场分布为 r <R1时, E1?r??0 R1<r<R2 时,E2?r??q 24πε0rQ?q

4πε0r2r>R2 时, E2?r??

由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R1时,

V1??E?dl??E1?dl??E2?dl??E3?dl?rrR1R2?R1R2?qQ ?4πε0R14πε0R2R1<r<R2 时,

V2??E?dl??E2?dl??E3?dl?rrR2?R2?qQ ?4πε0r4πε0R2r>R2 时,

V3??E3?dl?r?q?Q 4πε0r也可以从球面电势的叠加求电势的分布.在导体球内(r <R1)

V1?在导体球和球壳之间(R1<r<R2 )

qQ ?4πε0R14πε0R2V2?在球壳外(r>R2)

qQ ?4πε0r4πε0R2V3?由题意

q?Q 4πε0rV1?V0?得

qQ ?4πε0R24πε0R1V1?V0?代入电场、电势的分布得 r <R1时,

qQ?

4πε0R24πε0R1E1?0;V1?V0

R1<r<R2 时,

E2?r>R2 时,

R1V0R1QR1V0(r?R1)Q; ?V??222r4πε0R2rr4πε0R2rE3?R1V0(R2?R1)QR1V0(R2?R1)Q; ?V??322r4πε0R2rr4πε0R2r6 -9 在一半径为R1 =6.0 cm 的金属球A 外面套有一个同心的金属球壳B.已知球壳B 的内、外半径分别为R2=8.0 cm,R3 =10.0 cm.设球A 带有总电荷QA =3.0 ×10B 带有总电荷QB =2.0×10

-8

-8

C,球壳

C.(1) 求球壳B 内、外表面上所带的电荷以及球A 和球

壳B 的电势;(2) 将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势.

分析 (1) 根据静电感应和静电平衡时导体表面电荷分布的规律,电荷QA均匀分布在球A 表面,球壳B 内表面带电荷-QA ,外表面带电荷QB +QA ,电荷在导体表面均匀分布[图(a)],由带电球面电势的叠加可求得球A 和球壳B 的电势.(2) 导体接地,表明导体与大地等电势(大地电势通常取为零).球壳B 接地后,外表面的电荷与从大地流入的负电荷中和,球壳内表面带电-QA [图(b)].断开球壳B 的接地后,再将球A 接地,此时球A 的电势为零.电势的变化必将引起电荷的重新分布,以保持导体的静电平衡.不失一般性可设此时球A 带电qA ,根据静电平衡时导体上电荷的分布规律,可知球壳B 内表面感应-qA,外表面带电qA -QA [图(c)].此时球A 的电势可表示为

VA?qA?qAq?QA??A?0

4πε0R14πε0R24πε0R3由VA =0 可解出球A 所带的电荷qA ,再由带电球面电势的叠加,可求出球A 和球壳B 的电势.

解 (1) 由分析可知,球A 的外表面带电3.0 ×10

-8

C,球壳B 内表面带电-3.0 ×10

-8

C,

外表面带电5.0 ×10

-8

C.由电势的叠加,球A 和球壳B 的电势分别为

VA?qA?QAQ?QA??A?5.6?103V

4πε0R14πε0R24πε0R3VB?QA?QB?4.5?103V

4πε0R3(2) 将球壳B 接地后断开,再把球A 接地,设球A 带电qA ,球A 和球壳B的电势为

VA?qA?qA?QA?qA???0

4πε0R14πε0R24πε0R3VB??QA?qA

4πε0R3解得

qA?即球A 外表面带电2.12 ×10电-0.9 ×10

-8

-8

R1R2QA?2.12?10?8C

R1R2?R2R3?R1R3C,由分析可推得球壳B 内表面带电-2.12 ×10

-8

C,外表面带

C.另外球A 和球壳B 的电势分别为

VA?0

VB??7.29?102V

导体的接地使各导体的电势分布发生变化,打破了原有的静电平衡,导体表 面的电荷将重新分布,以建立新的静电平衡.

6 -10 两块带电量分别为Q1 、Q2 的导体平板平行相对放置(如图所示),假设导体平板面积为S,两块导体平板间距为d,并且S >>d.试证明(1) 相向的两面电荷面密度大小相等符号相反;(2) 相背的两面电荷面密度大小相等符号相同.

分析 导体平板间距d << S,忽略边缘效应,导体板近似可以当作无限大带电平板处理。取如图(b)所示的圆柱面为高斯面,高斯面的侧面与电场强度E 平行,电场强度通量为零;高斯面的两个端面在导体内部,因导体内电场强度为零,因而电场强度通量也为零,由高斯定理

?E?dS??q/εS0?0

?q?0

上式表明处于静电平衡的平行导体板,相对两个面带等量异号电荷.再利用叠加原理,导体板上四个带电面在导体内任意一点激发的合电场强度必须为零,因而平行导体板外侧两个面带等量同号电荷.

证明 (1) 设两块导体平板表面的电荷面密度分别为ζ1、ζ2、ζ3、ζ4 ,取如图(b)所示的圆柱面为高斯面,高斯面由侧面S1和两个端面S2、S3构成,由分析可知

?E?dS??q/εS0?0

?q?ζΔS?ζΔS?0,23ζ2?ζ3?0

相向的两面电荷面密度大小相等符号相反.

(2) 由电场的叠加原理,取水平向右为参考正方向,导体内P 点的电场强度为

ζ1ζζζ?2?3?4?0,ζ1?ζ4?0 2ε02ε02ε02ε0相背的两面电荷面密度大小相等符号相同.

6 -11 将带电量为Q 的导体板A 从远处移至不带电的导体板B 附近,如 图(a)所示,两导体板几何形状完全相同,面积均为S,移近后两导体板距离为d(d?(1) 忽略边缘效应求两导体板间的电势差; (2) 若将B 接地,结果又将如何?

. S)

分析 由习题6 -10 可知,导体板达到静电平衡时,相对两个面带等量异号电荷;相背两个面带等量同号电荷.再由电荷守恒可以求出导体各表面的电荷分布,进一步求出电场分布和导体间的电势差.

导体板B 接地后电势为零,B 的外侧表面不带电,根据导体板相背两个面带等量同号电荷可知,A 的外侧表面也不再带电,由电荷守恒可以求出导体各表面的电荷分布,进一步求出电场分布和导体间的电势差.

解 (1) 如图(b)所示,依照题意和导体板达到静电平衡时的电荷分布规律可得

?ζ1?ζ2?S?Q

?ζ3?ζ4?S?Q

ζ1?ζ4?0

ζ2?ζ3?0

解得

ζ1?ζ2??ζ3?ζ4?Q 2S

两导体板间电场强度为E?Q;方向为A 指向B. 2ε0SQd 2ε0S两导体板间的电势差为 UAB?(2) 如图(c)所示,导体板B 接地后电势为零.

ζ1?ζ4?0

ζ2??ζ3?两导体板间电场强度为E??Q SQ;方向为A 指向B. ε0SQd ε0S两导体板间的电势差为 U?AB?6 -12 如图所示球形金属腔带电量为Q >0,内半径为ɑ,外半径为b,腔内距球心O 为r 处有一点电荷q,求球心的电势.

分析 导体球达到静电平衡时,内表面感应电荷-q,外表面感应电荷q;内表面感应电荷不均匀分布,外表面感应电荷均匀分布.球心O 点的电势由点电荷q、导体表面的感应电荷共同决定.在带电面上任意取一电荷元,电荷元在球心产生的电势

dV?dq

4πε0R由于R 为常量,因而无论球面电荷如何分布,半径为R的带电球面在球心产生的电势为

V???由电势的叠加可以求得球心的电势.

dqq?

s4πεR4πε0R0解 导体球内表面感应电荷-q,外表面感应电荷q;依照分析,球心的电势 为

V?qqq?Q ??4πε0r4πε0a4πε0b6 -13 在真空中,将半径为R 的金属球接地,与球心O 相距为r(r >R)处放置一点电荷q,不计接地导线上电荷的影响.求金属球表面上的感应电荷总量.

分析 金属球为等势体,金属球上任一点的电势V 等于点电荷q 和金属球表面感应电荷q′在球心激发的电势之和.在球面上任意取一电荷元dq′,电荷元可以视为点电荷,金属球表面的感应电荷在点O 激发的电势为

V???点O 总电势为

dq?

s4πεR0V0?q?V? 4πε0r而接地金属球的电势V0 =0,由此可解出感应电荷q′. 解 金属球接地,其球心的电势

V?感应电荷总量

qdq?q1????dq??0 ?ss4πε0r4πε0R4πε0r4πε0RRq??dq???q

r6 -14 地球和电离层可当作球形电容器,它们之间相距约为100 km,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解 由于地球半径R1 =6.37×10 m;电离层半径R2 =1.00×10 m +R1 =6.47 ×10 m,根据球形电容器的电容公式,可得

5

6

6

C?4πε0R1R2?4.58?10?2R2?R1F

6 -15 两线输电线,其导线半径为3.26 mm,两线中心相距0.50 m,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容. 解 由教材第六章6 -4 节例3 可知两输电线的电势差

U?因此,输电线单位长度的电容

λd?R lnπε0RC?λd?Rd?πε0/ln?πε0/ln URR代入数据 C?5.52?10?12F

6 -16 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底

板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图)。当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号。假设金属片面积为50.0 mm ,两金属片之间的距离是0.600 mm。如果电路能检测出的电容变化量是0.250 pF,试问按键需要按下多大的距离才能给出必要的信号?

2

分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:

解 按下按键时电容的变化量为

?11?ΔC?ε0S???

?dd0?按键按下的最小距离为

2ΔCd0minΔdmin?d0?d??0.152mm

d0ΔC?ε0S6 -17 盖革-米勒管可用来测量电离辐射.该管的基本结构如图所示,一半径为R1 的长直导线作为一个电极,半径为R2 的同轴圆柱筒为另一个电极.它们之间充以相对电容率εr ≈1 的气体.当电离粒子通过气体时,能使其电离.若两极间有电势差时,极间有电流,从而可测出电离粒子的数量.如以E1 表示半径为R1 的长直导线附近的电场强度.(1) 求两极间电势差的关系式;(2) 若E1 =2.0 ×10 V· m ,R1 =0.30 mm,R2 =20.0 mm,两极间的电势差为多少?

6

-1

分析 两极间的电场可以近似认为是无限长同轴带电圆柱体间的电场,由于电荷在圆柱面上均匀分布,电场分布为轴对称.由高斯定理不难求得两极间的电场强度,并利用电场强度与电势差的积分关系U??R2R1E?dl 求出两极间的电势差.

1λL,则两极间的电场强度 ε0解 (1) 由上述分析,利用高斯定理可得E?2πrL?E?导线表面(r =R1 )的电场强度

λ 2πε0rE1?两极间的电势差

λ

2πε0R1U??E?dr??R1R2R2R1λRdr?R1E1ln2 2πε0rR1(2) 当E1?2.0?106V?m?1 ,R1 =0.30 mm,R2 =20.0 mm 时,

U?2.52?103V

6 -18 一片二氧化钛晶片,其面积为1.0 cm ,厚度为0.10 mm.把平行平板电容器的两极板紧贴在晶片两侧.(1) 求电容器的电容;(2) 当在电容器的两极间加上12 V电压时,极板上的电荷为多少? 此时自由电荷和极化电荷的面密度各为多少? (3) 求电容器内的电场强度.

解 (1) 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容

2

C?εrε0S?1.53?10?9F d(2) 电容器加上U =12 V 的电压时,极板上的电荷

Q?CU?1.84?10?8C

极板上自由电荷面密度为

ζ0?晶片表面极化电荷密度

Q?1.84?10?8C?m-2 S?1????1??ζ0?1.83?10?4C?m-2 ζ0?εr?(3) 晶片内的电场强度为

E?U?1.2?105V?m-1 d-8

6 -19 如图所示,半径R =0.10 m 的导体球带有电荷Q =1.0 ×10C,导体外有两层

均匀介质,一层介质的εr=5.0,厚度d =0.10 m,另一层介质为空气,充满其余空间.求:(1) 离球心为r =5cm、15 cm、25 cm 处的D 和E;(2) 离球心为r =5 cm、15 cm、25 cm 处的V;(3) 极化电荷面密度ζ′.

分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理

?D?dS??q理求得.

0可得D(r).再由E?D/ε0εr可得E(r).

介质内电势的分布,可由电势和电场强度的积分关系V???rE?dl求得,或者由电势叠加原

极化电荷分布在均匀介质的表面,其极化电荷面密度ζ??pa. 解 (1) 取半径为r 的同心球面为高斯面,由高斯定理得 r <R D1?4πr?0

2D1?0;E1?0

R <r <R +d D2?4πr?Q

D2?2QQE?; 2224πr4πε0εrrr >R +d D3?4πr2?Q

D3?QQ; E?324πr24πε0εrr将不同的r 值代入上述关系式,可得r =5 cm、15 cm 和25 cm 时的电位移和电场强度的大小,其方向均沿径向朝外. r1 =5 cm,该点在导体球内,则

Dr1?0;Er1?0

r2 =15 cm,该点在介质层内,ε

=5.0,则

Dr2?QQ?8?22?1; ?3.5?10C?mE??8.0?10V?mr2224πr24πε0εrr2r3 =25 cm,该点在空气层内,空气中ε≈ε0 ,则

Dr3?QQ?8?2;?1.3?10C?mE??1.4?102V?m?1 r3224πr34πε0r2(2) 取无穷远处电势为零,由电势与电场强度的积分关系得 r3 =25 cm,

V3??E3?dr?r1?Q?360V 4πε0rr2 =15 cm,

V2???R?dr2E2?dr???R?dE3?drQQQ??

4πε0εrr24πε0εr?R?d?4πε0?R?d??480Vr1 =5 cm,

V1???R?dRE2?dr???R?dE3?drQQQ ??4πε0εrR4πε0εr?R?d?4πε0?R?d??540V(3) 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε =ε0 ,极化电荷可忽略.故在介质外表面;

Pn??εr?1?ε0En??εr?1?Q

24πεr?R?d?ζ?Pn?在介质内表面:

?εr?1?Q24πεr?R?d??1.6?10?8C?m?2

Pn??εr?1?ε0En??εr?1?Q

4πεrR2ζ???Pn??εr?1?Q??6.4?10?8C?m?2

4πεrR2介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 6 -20 人体的某些细胞壁两侧带有等量的异号电荷。设某细胞壁厚为5.2 ×109 m,两表

面所带面电荷密度为±5.2 ×10 C/m ,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度E?-32

ζ?9.8?106V/m;方向指向细胞外. ε0εr(2) 细胞壁两表面间的电势差U?Ed?5.1?10?2V.

6 -21 一平板电容器,充电后极板上电荷面密度为σ0 =4.5×105 C· m.现将两极板与电源

--2

断开,然后再把相对电容率为εr =2.0 的电介质插入两极板之间.此时电介质中的D、E 和P 各为多少?

分析 平板电容器极板上自由电荷均匀分布,电场强度和电位移矢量都是常矢量.充电后断开电源,在介质插入前后,导体板上自由电荷保持不变.取图所示的圆柱面为高斯面,由介质中的高斯定理可求得电位移矢量D,再根据

E?D,F?D?ε0E ε0εr可求得电场强度E 和电极化强度矢量P. 解 由分析可知,介质中的电位移矢量的大小

D?Q?ζ0?4.5?10?5C?m?2 ΔS介质中的电场强度和极化强度的大小分别为

E?D?2.5?106V?m?1 ε0εrP?D?ε0E?2.3?10?5C?m?1

D、P、E方向相同,均由正极板指向负极板(图中垂直向下).

6 -22 在一半径为R1 的长直导线外,套有氯丁橡胶绝缘护套,护套外半径为R2 ,相对电容率为εr .设沿轴线单位长度上,导线的电荷密度为λ.试求介质层内的D、E 和P.

分析 将长直带电导线视作无限长,自由电荷均匀分布在导线表面.在绝缘介质层的内、外表面分别出现极化电荷,这些电荷在内外表面呈均匀分布,所以电场是轴对称分布.取同轴柱面为高斯面,由介质中的高斯定理可得电位移矢量D 的分布.在介质中D??0?rE,

P?D??0E,可进一步求得电场强度E 和电极化强度矢量P 的分布.

解 由介质中的高斯定理,有

?D?dS?D?2πrL?λL

D?在均匀各向同性介质中

λer 2πrE?Dλ?er ε0εr2πε0εr?1?λP?D-ε0E???1-ε??2πrer

?r?6 -23 如图所示,球形电极浮在相对电容率为εr =3.0 的油槽中.球的一半浸没在油中,另一半在空气中.已知电极所带净电荷Q0 =2.0 ×10 C.问球的上、下部分各有多少电荷?

-6

分析 由于导体球一半浸在油中,电荷在导体球上已不再是均匀分布,电场分布不再呈球对称,因此,不能简单地由高斯定理求电场和电荷的分布.我们可以将导体球理解为两个分别悬浮在油和空气中的半球形孤立电容器,静电平衡时导体球上的电荷分布使导体成为等势体,故可将导体球等效为两个半球电容并联,其相对无限远处的电势均为V,且

V?另外导体球上的电荷总量保持不变,应有

Q1Q2 (1) ?C1C2Q1?Q2?Q0 (2)

因而可解得Q1 、Q2 .

解 将导体球看作两个分别悬浮在油和空气中的半球形孤立电容器,上半球在空气中,电容为

C1?2πε0R

下半球在油中,电容为

C2?2πε0εrR

由分析中式(1)和式(2)可解得

Q1?C11Q0?Q0?0.5?10?6C

C1?C2εr?1C2εQ0?rQ0?1.5?10?6C

C1?C2εr?1Q2?由于导体球周围部分区域充满介质,球上电荷均匀分布的状态将改变.可以证明,此时介质中的电场强度与真空中的电场强度也不再满足E?E0的关系.事实上,只有当电介质均匀εrE0 . εr充满整个电场,并且自由电荷分布不变时,才满足E?6 -24 有两块相距为0.50 的薄金属板A、B 构成的空气平板电容器被屏蔽在一金属盒K 内,金属盒上、下两壁与A、B 分别相距0.25 mm,金属板面积为30 mm ×40 mm。求(1) 被屏蔽后电容器的电容变为原来的几倍;(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?

分析 薄金属板A、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A、B 间的电

容。

解 (1) 由等效电路图可知

C?C23?C1?C2?C3?C1

C2?C3由于电容器可以视作平板电容器,且d1?2d2?2d3,故C2?C3?2C1 ,因此A、B 间的总电容

C?2C1(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于C2 (或者C3 )极板短接,其电容为零,则总电容

C?3C1

6 -25 在A 点和B 点之间有5 个电容器,其连接如图所示.(1) 求A、B 两点之间的等效电容;(2) 若A、B 之间的电势差为12 V,求UAC 、UCD 和UDB .

解 (1) 由电容器的串、并联,有

CAC?C1?C2?12μF CCD?C3?C4?8μF

1111??? CABCACCCDC5求得等效电容CAB =4 μF.

(2) 由于QAC?QCD?QDB?QAB,得

UAC?CABUAB?4V CACUCD?CABUAB?6V CCDCABUAB?2V CDBUDB?6 -26 有一个空气平板电容器,极板面积为S,间距为d.现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d)、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C,极板上的电荷Q 和极板间的电场强度E.

分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U.插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有

U?Q?d?δ??Qδ ε0Sε0εrS相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有

U?Q?d?δ? ε0S综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1) 空气平板电容器的电容

C0?ε0S d充电后,极板上的电荷和极板间的电场强度为

Q0?ε0SU dE0?U/d

(2) 插入电介质后,电容器的电容C1 为

?Q??d?δ??Qδ??ε0εrS C1?Q/?ε0εrS?δ?εr?d?δ??ε0S故有

C1?C1U?介质内电场强度

ε0εrSU

δ?εr?d?δ???E1空气中电场强度

Q1U ?ε0εrSδ?εr?d?δ?E1?Q1εrU ?ε0Sδ?εr?d?δ?(3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为

ε0S d?δεSQ2?0U

d?δC2???0 导体中电场强度 E2空气中电场强度

E2?U d?δ无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E0/εr. 6 -27 为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr 的电介质),通常在生产流水线上设置如图所示的传感装置,其中A,B为平板电容器的导体极板,d0 为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?

分析 导体极板A、B 和待测物体构成一有介质的平板电容器,关于电容C与材料的厚度的关系,可参见题6 -26 的分析. 解 由分析可知,该装置的电容为

C?则介质的厚度为

ε0εrS

d?εr?d?δ?d?εrd0C?ε0εrSεεεS ?rd0?0r?εr?1?C?εr?1?Cεr?1如果待测材料是金属导体,其等效电容为

C?导体材料的厚度

ε0S

d0?dd?d0??ε0S C实时地测量A、B 间的电容量C,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.

6 -28 利用电容传感器测量油料液面高度.其原理如图所示,导体圆管A与储油罐B 相连,圆管的内径为D,管中心同轴插入一根外径为d 的导体棒C,d、D 均远小于管长L 并且相互绝缘.试证明:当导体圆管与导体棒之间接以电压为U 的电源时,圆管上的电荷与液面高度成正比(油料的相对电容率为εr ).

分析 由于d、D <<L,导体A、C 构成圆柱形电容器,可视为一个长X(X 为液面高度)的介质电容器C1 和一个长L -X 的空气电容器C2 的并联,它们的电容值均随X 而改变.因此其等效电容C =C1 +C2 也是X 的函数.由于Q =CU,在电压一定时,电荷Q 仅随C 而变化,求出Q 与液面高度X 的函数关系,即可得证

证 由分析知,导体A、C 构成一组柱形电容器,它们的电容分别为

2πε0εrX Dlnd2πε0εr?L?X? C1?DlndC1?其总电容

C?C1?C2?其中

2πε0εrX2πε0εr?L?X??α?βX

DDlnlnddα?2πε0L2πε0?εr?L?;β? DDlnlnddQ?CU?aU?βUX

即导体管上所带电荷Q 与液面高度X 成正比,油罐与电容器联通.两液面等高,测出电荷Q 即可确定油罐的液面高度.

6 -29 有一电容为0.50 μF 的平行平板电容器,两极板间被厚度为0.01 mm的聚四氟乙烯薄膜所隔开,(1) 求该电容器的额定电压;(2) 求电容器存贮的最大能量. 分析 通过查表可知聚四氟乙烯的击穿电场强度Eb =1.9 ×107 V/m,电容器中的电场强度E≤Eb ,由此可以求得电容器的最大电势差和电容器存贮的最大能量.

解 (1) 电容器两极板间的电势差

Umax?Ebd?190V

(2) 电容器存贮的最大能量

12We?CUmax9.03?10?3J

26 -30 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量.

分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度

E?λζ?

2πε0Rε06

查表可以得知空气的击穿电场强度Eb =3.0 ×10(V/m),只有当空气中的电场强度E≤Eb 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出ζ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度. 解 (1) 导线表面最大电荷面密度

ζmax?ε0Eb?2.66?10?5C?m?2

显然导线表面最大电荷面密度与导线半径无关.

(2) 由上述分析得λmax?2πε0R1Eb,此时导线与圆筒之间各点的电场强度为

Em?λR?1?R2?r?R1? 2πε0rr E?0 (其他)

11R12Eb22wm?ε0Em?ε02

22r沿轴线单位长度的最大电场能量

Wm????w?2πrdr?ε0πR12Eb2?ΩR2R11dr rWm?ε0πR12Eb2lnR2?5.76?10?4J?m?1 R16 -31 一空气平板电容器,空气层厚1.5 cm,两极间电压为40 kV,该电容器会被击穿吗? 现将一厚度为0.30 cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,

击穿电场强度为10 MV· m .则此时电容器会被击穿吗?

分析 在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题6 -26 可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40 kV 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿. 解 未插入玻璃时,电容器内的电场强度为

-1

E?U/d?2.7?106V?m?1

因空气的击穿电场强度Eb?3.0?106V?m?1 ,E?Eb,故电容器不会被击穿. 插入玻璃后,由习题6 -26 可知,空气间隙中的电场强度

E?εrV?3.2?106V?m?1

εr?d?δ??δ此时,因E?Eb ,空气层被击穿,击穿后40 kV 电压全部加在玻璃板两侧,此时玻璃板内的电场强度

E?V/δ?1.3?107V?m?1

'由于玻璃的击穿电场强度Eb?10MV?m?1,E?Eb? ,故玻璃也将相继被击穿,电容器完

全被击穿.

6 -32 某介质的相对电容率?r?2.8,击穿电场强度为18?10V?m ,如果用它来作平板电容器的电介质,要制作电容为0.047 μF,而耐压为4.0kV的电容器,它的极板面积至少要多大. 解 介质内电场强度

6?1E?Eb?18?106V?m?1

电容耐压Um =4.0 kV,因而电容器极板间最小距离

d?Um/Eb?2.22?10?4m

要制作电容为0.047 μF 的平板电容器,其极板面积

S?Cd?0.42m2 ε0ε1显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 6 -33 一平行板空气电容器,极板面积为S,极板间距为d,充电至带电Q后与电源断开,然后用外力缓缓地把两极板间距拉开到2d.求:(1) 电容器能量的改变;(2) 此过程中外力所作的功,并讨论此过程中的功能转换关系.

分析 在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,

极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1) 极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为

1Q22 we?ε0E?22ε0S2在外力作用下极板间距从d 被拉开到2d,电场占有空间的体积,也由V 增加到2V,此时电场能量增加

Q2d ΔWe?weΔV?2ε0S(2) 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F=-Fe ,则外力所作的功为

Q2d A??Fe?Δr?QEd?2ε0S外力克服静电引力所作的功等于静电场能量的增加.

本文来源:https://www.bwwdw.com/article/4zh3.html

Top