北师大版七年级上册数学 有理数同步单元检测(Word版 含答案)

更新时间:2023-04-05 18:34:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、初一数学有理数解答题压轴题精选(难)

1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从

点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.

(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?

(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?

(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.

【答案】(1);

(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:

①点P、Q相遇之前,

由题意得3t+2+5t=20,解得t=2.25;

②点P、Q相遇之后,

由题意得3t-2+5t=20,解得t=2.75.

答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2

(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:

①点P、Q相遇之前,

则5x-3x=20-2,

解得:x=9;

②点P、Q相遇之后,

则5x-3x=20+2

解得:x=11.

答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2

(4)解:线段MN的长度不发生变化,都等于10;理由如下:

①当点P在点A、B 两点之间运动时:

MN=MP+NP= AP+ BP= (AP+BP)= AB=

×20=10,

②当点P运动到点B的左侧时:

MN=MP-NP= AP- BP= (AP-BP) AB=10,

则线段MN的长度不发生变化,其值为10

【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,

∴点B表示的数是8-20=-12,

∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,

∴点P表示的数是8-5t.

故答案为-12,8-5t;

【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.

2.阅读下面的材料:

如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.

请用上面的知识解答下面的问题:

如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B

1个单位长度表示1cm.

点,然后向右移动7cm到达C点,用

(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;

(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,

试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.

【答案】(

1)解:如图所示:

(3)﹣1+x

(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:

根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,

∴CA﹣AB=(5+3t)﹣(2+3t)=3,

∴CA﹣AB的值不会随着t的变化而变化

【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);

设D表示的数为a,

∵AD=4,

∴|﹣1﹣a|=4,

解得:a=﹣5或3,

∴点D表示的数为﹣5或3;

故答案为5,﹣5或3;

( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;

故答案为﹣1+x;

【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.

3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.

(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)

(2)若该数轴上另有一点M对应着数m.

①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;

②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.

老师点评:你的演算发现还不完整!

请通过演算解释:为什么“小安的演算发现”是不完整的?

【答案】(1)2

(2)解:①当m=2,b>2时,点M在点A,B之间,

∵AM=2BM,

∴m﹣a=2(b﹣m),

∴2﹣a=2(b﹣2),

∴a+2b=6,

∴a+2b+20=6+20=26;

②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.

当点M在点A,B之间时,a=﹣2,

∵AM=3BM,

∴m+2=3(b﹣m),

∴m+2=3b﹣3m,

∴3b﹣4m=2,

∴代数式3b﹣4m是一个定值.当点M在点B右侧时,

∵AM=3BM,

∴m+2=3(m﹣b),

∴m+2=3m﹣3b,

∴2m﹣3b=2,

∴代数式2m﹣3b也是一个定值.

【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,

故答案为:2.

【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.

4.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.

(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.

(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.

【答案】(1)-1;1;4

(2)解:BC-AB

=(4-1)-(1+1)

=3-2

=1.

故此时BC-AB的值是1

(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.

∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,

∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,

∴BC-AB的值不随着时间t的变化而改变时,其值为7

【解析】【解答】解:(1)∵b是最小的正整数,

∴b=1,

∵|c-4|+(a+b)2=0,

∴c-4=0,a+b=0,∴a=-1,c=4

【分析】(1)根据b 是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB ,从而求解.

5.观察下面的式子:

, , ,

(1)你发现规律了吗?下一个式子应该是________;

(2)利用你发现的规律,计算:

【答案】(1)

(2)解:

=

=

=

= .

【解析】【解答】(1)根据规律,下一个式子是:

【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;

(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.

6.观察下面的等式:

回答下列问题:

(1)填空:________ ;

(2)已知,则的值是________;

(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .

【答案】(1)-4

(2)0或-4

(3)4;

【解析】【解答】解:根据观察可以知道,所有的式子符合

的形式,

所以(1)中此时2-a=6,解得a=-4,故答案为-4;

所以(2)中a=2,故2-2=0,所以x的值为0;根据绝对值的意义将原式化简可得,求得x=0或x=-4,所以x的值为0或-4;(3)根据

,可知,整理得,所以,所以y的最大值为4,此时的式子是

.

【分析】(1)根据即可求解;(2)由(1)的规律即可求解;(3)由(1)可得进行整理,根据绝对值意义求解即可.

7.把具有某种规律的一列数:1,-2,3,-4,5,-6,...,排列成下面的阵形:

........

探索下列事件:

(1)第10行的第1个数是什么数?

(2)数字2019前面是负号还是正号?在第几行?第几列?

【答案】(1)解:∵第1行第1个数1=(-1)2×(02+1);

第2行第1个数-2=(-1)3×(12+1);

第3行第1个数5=(-1)4×(22+1);

第4行第1个数-10=(-1)5×(32+1);

∴第10行第1个数为(-1)11×(92+1)=-82,

(2)解:由以上数列可知,绝对值为奇数的为正,绝对值为偶数的符号为负,

∴2019前面是正号;

∵第45行第1个数为(-1)46×(442+1)=1937,

第46行第1个数为(-1)47×(452+1)=-2026,

且2019-1937+1=83,

∴2019在第45行,第83列

【解析】【分析】(1)由每行的第一个数可知,第n行第一个数为(-1)n+1×[(n-1)2+1],据此可得;(2)根据题意知绝对值为奇数的为正,绝对值为偶数的符号为负;求出第45行第1个数为1937,第46行第1个数为-2026知2021在第45行,再由每行中每个数的绝对值依次加1可得列数.

8.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.

(1)数轴上点C表示的数是________;

(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.

①当t为何值时,点O恰好是PQ的中点;

②当t为何值时,点P、Q 、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)

【答案】(1)-2

(2)解:①设t秒后点O恰好是PQ的中点.

根据题意t秒后,点

由题意,得-12+2t=-(8-t)

解得,t=4;

即4秒时,点O恰好是PQ的中点.

②当点C为PQ的三等分点时PC=2QC或QC=2PC,

∵PC=10-2t,QC=10-t ,

所以10-2t=2(10-t)或10-t=2(10-2t)

解得t= ;

当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC

∵PC=-10+2t,PQ=20-3t

∴-10+2t=2(20-3t)或20-3t=2(-10+2t)

解得t= 或t= ;

当点Q为CP的三等分点时PQ=2CQ或QC=2PQ

∵当P、Q相遇时,两点都停止运动

∴此情况不成立.

综上,t= 秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点【解析】【解答】(1)解:∵点A表示的数为-12,点B表示的数为8,点C为线段AB

的中点.

∴点C表示的数为:

故答案为:-2

【分析】(1)利用中点公式计算即可;(2)①用t表示OP,OQ,根据OP=OQ列方程求解;②分别以P、Q、C为三等分点,分类讨论.

9.如图,在数轴上A点表示的数是-8,B点表示的数是2。动线段CD=4(点D在点C的右

侧),从点C

与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t

秒。

(1)①已知点C表示的数是-6,试求点D表示的数;

②用含有t的代数式表示点D表示的数。

(2)当AC=2BD时,求t的值。

(3)试问当线段CD在什么位置时,AD+BC或AD-BC的值始终保持不变?请求出它的值并说明此时线段CD的位置。

【答案】(1)解:①∵点C表示的数是-6,CD=4且点C在点A的右边

∴点D表示的数为-6+4=-2;

②∵从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t秒。∴点C表示的数为-8+2t,

∵CD=4

∴点D表示的数为:-8+2t+4=-4+2t;

(2)解:∵运动t秒后,点C表示的数为-8+2t,点D对应的数为-4+2t,

∵AC=2BD,点B表示的数为2,点A表示的数为-8

∴-8+2t-(-8)=2|-4+2t-2|

∴t=-6+2t或t=6-2t

解之:t=6或2;

(3)解:①当线段CD在线段AB上时(图1)或当点B在线段CD内时(图2)

AD+BC的值保持不变,且AD+BC=AB+CD=14

②当线段CD在点B的右侧时(图3)

ADBC的值保持不变,且ADBC=AC+CDBC=AB+CD=14

【解析】【分析】(1)①由点C表示的数及CD的长及点C在点A的右边,就可求出点D 表示的数;②根据线段的运动方向及运动速度,可得到点C表示的数为-8+2t,再由CD的长,就可用含t的代数式表示出点D表示的数。

(2)求出运动t秒后点C和点D表示的数,再根据AC=2BD,建立关于t的方程,解方程求出t的值。

(3)分情况讨论:当线段CD在线段AB 上时(图1)或当点B在线段

CD内时(图2) ;当线段

CD在点B的右侧时(图3),分别利用绝对值的性质及两点间的距离公式就可求出AB+CD的值。

10.阅读材料:求的值.

解:设

将等式两边同时乘以2,得

将下式减去上式,得

请你仿照此法计算:

(1)

(2)

【答案】(1)解:根据材料,设M= ①,

∴将等式两边同时乘以3,则3M= ②,

由② ①,得:,

∴;

∴ .

(2)解:根据材料,设N= ③,

∴将等式两边同时乘以5,④,

由④ ③,得:,

∴;

∴ .

【解析】【分析】(1)设M= ,将等式两边同时乘以3,然后按照材料中的方法进行计算,即可得到答案;(2)设N=

,将等式两边同时乘以5,然后按照材料中的方法进行计算,即可得到答案.

11.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:

(1)求|5-(-2)|=________.

(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.

(3)由以上探索猜想对于任何有理数

x,|x-3|+|x-6|是否有最小值?如果有写出最小

值,如果没有说明理由.

【答案】(1)7

(2)-5,-4,-3,-2,-1, 0, 1, 2

(3)解:|x﹣3|+|x﹣6|有最小值,最小值是3.理由如下:

当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x ﹣9>3;

当3≤x≤6时,|x﹣3|+|x﹣6|=x﹣3+6﹣x=3;

当x<3时,|x﹣3|+|x﹣6|=3﹣x+6﹣x=9﹣2x>3.

故|x﹣3|+|x﹣6|有最小值,最小值是3

【解析】【解答】(1)|5﹣(﹣2)|=|5+2|=7.

故答案为:7;(2)当x>2时,|x+5|+|x﹣2|=x+5+x﹣2=7,解得:x=2与x>2矛盾,故此种情况不存在;

当﹣5≤x≤2时,|x+5|+|x﹣2|=x+5+2﹣x=7,故﹣5≤x≤2时,使得|x+5|+|x﹣2|=7,故使得|x+5|+|x﹣2|=7的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;

当x<﹣5时,|x+5|+|x﹣2|=﹣x﹣5+2﹣x=﹣2x+3=7,得x=﹣5与x<﹣5矛盾,故此种情况不存在.

故答案为:﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;

【分析】(1)根据题目中的式子和绝对值可以解答本题;(2)利用分类讨论的数学思想可以解答本题;(3)根据题意,利用分类讨论的数学思想可以解答本题.

12.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.

(1)求时,求点P和点Q表示的有理数;

(2)求点P与点Q第一次重合时的t值;

(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?【答案】(1)解:当时,

点P表示的数为:,

点Q表示的数为:

(2)解:

答:点P与点Q第一次重合时的t值为4

(3)解:点P和点Q 第一相遇前,

解得,;

当点P和点Q相遇后,点P到达点B前,

解得,;

当点P从点B向点A 运动时,

解得,;

由上可得,当t的值为3,5,9时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.

【解析】【分析】(1)根据题意可以得到当时,点P和点Q表示的有理数;(2)根据题意可以列出相遇关于t的方程,从而可以求得t的值;(3)根据题意可以列出相应的方程,从而可以解答本题.

本文来源:https://www.bwwdw.com/article/4wdl.html

Top