基于MATLAB的图像处理及跟踪算法

更新时间:2024-05-09 10:35:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

摘 要

摘 要

视频图像处理技术广泛用于工业、安全、医疗、管理等领域。运动目标的检测和跟踪是图像处理技术在视频序列图像处理方面的一个重要应用,在航天、交通、机器人视觉、视频监控、公共场所客流数据监测等场合发挥着重要作用。

本文介绍了一种基于MATLAB的简易的从视频播放的帧图像中找出目标图像,并进行视频跟踪的实现方法。通过对图像进行阈值处理(图像分割),再对分割后的图像求取形心,以对目标图像进行定位,并最后找到各幅帧图像的目标位置的方法,从而实现对100帧视频图像的实时跟踪。

关键词:目标检测;阈值处理;视频序列目标跟踪;形心估计

I

ABSTRACT

ABSTRACT

Video image processing technology is widely used in industrial, security, health care, management and other fields. Motion target detection and tracking is image processing technology in video sequence is an important application in image processing, in the aerospace, transportation, robot vision, video surveillance, public traffic data monitoring plays an important role. This paper introduces a simple MATLAB to find the target image from the video image frame based, and realization method of video tracking.Through the threshold of image processing (image segmentation), then the after image segmentation to obtain the centroid, to locate the target image, and finally found the method of each frame image of the target position, so as to realize the real-time tracking of the 100 frame of video images.

Key words: target detection; threshold; video object tracking; centroid estimation

II

目录

目录

第1章 引言 ................................................................................................................. 1

1.1 选题背景 ................................................................................................................... 1 1.2 课题研究目的及意义 ............................................................................................... 2 1.3 课题研究思路 ........................................................................................................... 3 第2章

数字图像处理简介 ......................................................................................... 4

2.1 图像数字化过程 ....................................................................................................... 4 2.2 数字图像处理的基本内容 ....................................................................................... 6 2.2.1 基本概念 ................................................................................................................ 6 2.2.2 数字图像处理的主要内容 .................................................................................... 6 2.3 数字图像处理的特点和应用 ................................................................................... 8 2.3.1 数字图像处理的特点 ............................................................................................ 8 2.3.2 数字图像处理的应用 ............................................................................................ 8 2.4 数字图像类型 ........................................................................................................... 9 2.5 主要图像文件格式 .................................................................................................. 11 第3章

MATLAB仿真软件的简介 ......................................................................... 13

3.1 MATLAB的历史背景 ............................................................................................. 13 3.2 MATLAB简介 ......................................................................................................... 14 3.3 MATLAB的特点 ..................................................................................................... 15 3.4 MATLAB在数字图像中的应用 ............................................................................. 16 第4章

图形用户界面 ............................................................................................... 18

4.1 图形用户界面简介 ................................................................................................. 18 4.2 MATLAB 常用图像操作 ........................................................................................ 18 4.3 GUI的创建 .............................................................................................................. 20 4.4 GUI的应用 .............................................................................................................. 22 4.4.1 脚本与函数 .......................................................................................................... 22 4.4.2 递归函数调用 ...................................................................................................... 23 4.4.3 调试GUI M文件 ................................................................................................ 23 第5章

基于MATLAB的图像跟踪算法 ................................................................ 24

III

5.1 100帧视频图像的读取 ........................................................................................... 24 5.2 图像的阈值处理(图像分割) ........................................................................... 24 5.2.1 阈值的确定 .......................................................................................................... 25 5.2.2 图像的阈值分割 .................................................................................................. 26 5.3 形心(距心)的求取 ............................................................................................. 28 5.4 设置跟踪波门 ....................................................................................................... 29 第6章

总结与展望 ................................................................................................... 34

6.1 总结 ......................................................................................................................... 34 6.2 展望 ......................................................................................................................... 34 参考文献 ........................................................................................................................ 36 致谢 ................................................................................................ 错误!未定义书签。 附 录 .............................................................................................................................. 37 附录一:图像类型转换模块的实现 ............................................................................ 37 附录二:图像模块中灰度的变换 ................................................................................ 37 外文资料原文 ................................................................................................................ 41 译文 ................................................................................................................................ 44

IV

第1章 引言

第1章 引言

1.1 选题背景

数字图像处理起源于20世纪20年代。当时,人们通过Bartlane海底电缆图片传输系统,从伦敦到纽约传输了一幅经过数字压缩后的照片,从而把传输时间从一周多缩短到不足三个小时。为了传输图片,该系统在传输端进行了图像编码,然后在接受端用特殊打印设备重构了该图片。尽管这一应用包含了数字图像处理的知识,但是并没有使用计算机。而数字图像处理需要很大的存储空间和计算能力,其发展受到计算机中数据储存、显示和传输等相关技术发展的制约[1]。

在20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图形信息。

在20世纪60年代初期数字图像处理作为一门学科大约形成了。第一台可执行图像处理任务的大型进算计出现。早期的图像处理的目的是改善图像的质量,它以人为对象,已改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰色变换、去除噪声的方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理技术都发挥了巨大的作用。

20世纪60年代末70年代初,数字图像处理技术应用于医学图像、地球遥感监测和天文学等诸多领域。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。CT基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊

1

断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。1972年美国陆地资源卫星(Landsat)将多谱图像用于资源探测。同年,计算机层析仪(CT)问世,它将图像重建技术用于医学[2]。

20世纪70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何使用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉其后十多年的主导思想。图像理解虽然在理论方法研究上已取得了不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索新的领域。

1.2 课题研究目的及意义

最早的图像处理时上世纪六七十年代,随着电子技术和计算机技术的不断提高和普及,数字图像处理进入高速发展时期。数字图像处理就是利用数字计算机或者其他数字硬件,对图像信息转换而得的电信号进行某些数学运算,以提高图像的实用性。例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等等。数字图像处理技术处理精度比较高,而且还可以通过改进处理软件来优化处理效果。总的来说,数字图像处理包括点运算、几何处理、图像增强、图像还原、图像形态学处理、图像编码、图像重建、模式识别等。

由于计算机技术处理能力不断增强,数字图像处理学科在飞速发展的同时,也越来越广泛地向其他许多学科快速交叉渗透,使得图像作为信息获取以及信息的利用等方面也变得越来越重要。目前数字图像处理应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。MathWorks公司推出的MATLAB是学习数理知识的好帮手。应用MATLAB友好的界面和丰富、实用、高效的指令及模块,可以使人较快地认识、理解图像处理的相关概念,逐步掌握图像信号处理的基本方法,进而能够解决相关的工程和科研中的问题。

图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然

2

第1章 引言

涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大,数字图像处理对人类的作用将是不可限量[3]。

1.3 课题研究思路

本文首先通过对MATLAB软件的了解及应用,基于MATLAB的数字图像处理环境和如何利用MATLAB及其图像处理工具箱进行数字图像处理。主要论述了利用MATLAB实现对图像读取、阀值处理、距心的求取等图像处理。

3

第2章 数字图像处理简介

2.1 图像数字化过程

图像的数字化过程就是在计算机内生成一个二维矩阵的过程。数字化的目的是将一幅图像以数字的形式进行表示,并且要做到既不失真又便于计算机进行处理。图像的数字化要求是要达到以最小的数据量不失真地描述图像信息。数字图像(digital imagine)和传统的图像即模拟图像(picture)是有差别的。

图像的数字化包括采样和量化两个过程。 1.采样

采样(sampling)就是把在时间上和空间上连续的图像分割成离散点(采样点,即像素)的集合的一种操作。

采样是对图像空间坐标的离散化,它决定了图像的空间分辨率。采样越细,越能精确地表现图像。

图像基本上是在二维平面上连续分布的信息形式要把它输入到计算机中,首先要把二维信号变成一维信号,因此要进行扫描(scanning)。最常用的扫描方法是在二维平面上按一定间隔顺序地从上方顺序地沿水平方向的直线(扫描线)扫描,从而取出浓淡值(灰度值)的线扫描(Laster扫描)。对于由此得到的一维信号,通过求出每一特定间隔的值,可以得到离散的信号。对于运动图像除进行水平,垂直两个方向的扫描以外,还有进行时间轴上的扫描。

通过采样,如设横向的像素数为M,纵向的像素数为N,则画面的大小可以表示为“M*N”个像素。

一般来说,图像中细节越多,采样的间隔应当越小。 2.量化

如果把这些连续变化的值(灰度值)量化为8bit,则灰度值被分成0-2552的256个级别,分别对应于各个灰度值的浓淡程度,叫做灰度等级或灰度标度。经过采样,图像被分解成在时间上和空间上离散分布的像素,但是像素的值(灰度值)还是连续值。像素的值,是指白色-灰色-黑色的浓淡值,有时候也指光的

4

第2章 数字图像处理简介

强度(亮度)值或灰度值。把这些连续的浓淡值或灰度值变为离散的值(整数值)的操作就是量化。

在0-255的值对应于白-黑的时候,有以0为白,255为黑的方法,也有以0255为白的方法,为黑,这取决于图像的输入方法以及用什么样的观点对图像进行处理等,这是在编程时应特别注意的问题。但在只有黑白二值的二值图像的情形,一般设0为白,1为黑[4]。

量化的方法有:

(1) 分层量化(Hierarchical quantization) (2) 均匀量化(Uniform quantization) (3) 非均匀量化(Non-uniform quantization)

分层量化是把每一个离散样本的连续灰度值分成有限多的层次。均匀量化是把源图像灰度层次从最暗至最亮均匀分为有限层次,如果采用不均匀分层就是非均匀量化。

对连续的灰度值赋予量化级的,即灰度值方法有:等间隔量化(Equal interval quantization)和非等间隔量化(Non equal interval quantization)。等间隔量化是简单地把采样值的灰度范围等间隔地分割并进行量化。非均匀量化是依据一幅图像具体的灰度值分布的概率密度函数,按总的量化误差的最小的原则来进行量化。实用中一般采用等间隔量化[5]。

3. 采样、量化和图像细节的关系

上面的数字化过程,需要确定数值N和灰度级的级数K。在数字图像处理中,一般都取成2的整数幂,即:

N?2n (2-1)

K?2m (2-2)

一幅数字图像在计算机中所占的二进制存储位数b为:

b?log(2m)N*N?N*N*m(bit) (2-3)

512的一幅数字图像,需要大约210万例如,灰度级为256级(m=8)的512×

个存储位。随着N和m的增加,计算机所需要的存储量也随之迅速增加。

5

由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N值)以及量化的级数K(或m值)。N和K的值越大,图像越清晰[6]。

2.2 数字图像处理的基本内容

2.2.1 基本概念

数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。相对于以往的数字图像处理方法,数字图像处理是一次新的“工业革命”,它彻底改变了以往人们处理图像时所采用的手段,成为图像处理中一个崭新的方向。

数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长[7]。 2.2.2 数字图像处理的主要内容

从系统整体研究的角度来看,数字图像处理的研究内容主要包括以下几个方面:图像的获取、表示与表现,图像增强、图像复原、图像分割、图像分析、图像重建及图像编码压缩等。其中,数字图像处理包括:算术/逻辑操作和几何运算、图像增强、图像分割、图像形态学处理、模式识别、图像复原、图像压缩等内容。

(1)算术/逻辑操作

图像中的算术/逻辑操作主要以像素对像素为基础在两幅或多幅图像间进行(其中不包含逻辑非操作,它在单一影像中进行)。

对图像的逻辑操作同样也是基于像素的。“与或非”这三种逻辑算子完全是函数化的。当我们对灰度级图像进行逻辑操作时,像素值作为一个二进制的字符串来处理。

在四种算术操作中,减法与加法在图像处理中最有用。我们简单的把两幅图像想除看成是用一副的取反图像与另一幅图像相乘。在四种代数运算操作中加法运算可用于降低图像中加性随机噪声的污染;减法运算则可以检测图像中

6

第2章 数字图像处理简介

物体的运动变化;乘法运算可用于标记图像中的感兴趣区域;除法运算则经常用于多光谱遥感图像的分析处理,以扩大不同物体之间的差异。

(2)几何变换

几何运算用于改变图像中像素与像素之间的空间位置关系,从而改变图像的空间结构,达到处理图像的目的。简单而言,图像几何变换就是建立一种源图像像素与变换后的图像像素之间的映射关系。主要包括图像的平移、缩放、旋转、镜像和转置变换等。

(3)图像增强

图像增强是图像处理最关键的研究问题之一,图像增强按作用域可分为两类,即空域处理和频域处理。空域处理是直接对图像进行处理,而频域处理则是在图像的某个变化域内,对图像的变换系数进行运算,然后通过逆变换获得图像增强效果。图像增强可以突出图像中的某些“有用”信息,扩大图像中不同物体特征之间的差别,改善图像的视觉效果。图像增强的算法包括直方图增强,空域滤波增强,频域滤波增强和彩色增强等。

(4)图像分割

图像分割将图像细分为构成它的子区域或对象。图像分割算法一般基于亮度值的两个基本特性之一:不连续性和相似性。第一类方法基于亮度的不连续变化分割图像,比如图像的边缘。第二类方法依据事先制定的准则将图像分割为相似的区域。图像分割包括间断检测,边缘检测,门限处理等。

(5)图像形态学处理

图像形态学由一组形态学代数算子组成,最基本的形态学代数算子包括腐蚀、膨胀、开运算、闭运算等,通过组合应用这些算子,可以实现对图像形状、结构的分析和处理。数学形态学可以完成图像分割、特征提取、边界检测、图像滤波、图像增强和恢复等工作。

(6)模式识别

模式识别总是从大量信息和数据出发,在一定的经验和认识基础上,利用计算机和数学的推理的方法对信息进行自动识别。模式识别系统一般包括4个部分,即数据获取、预处理、特征提取和决策分类。

(7)图像复原(恢复)

7

由于设备造成的扫描线漏失、错位等各种原因不可避免造成图像质量的下降(退化)。图像的复原就是根据事先建立起来的系统退化模型,将降质了的图像重建成接近于或完全无退化的原始理想图像的过程。

(8)图像压缩

数字图像的数据量是很巨大的,然而数字图像实际上又具有很大的压缩潜力。图像压缩所解决的问题是尽量减少表示数字图像时所需的数据量。减少数据量的基本原理是出去其中的冗余数据。这种变换在图像存储或传输之前进行。在以后的某个时候,再对压缩图像进行解压缩,以重构原图像或原图像的近似图像[8]。

2.3 数字图像处理的特点和应用

2.3.1 数字图像处理的特点

(1) 数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。

(2) 数字图像处理占用的频带较宽。与语言信息相比,占用的频带要打几个数量级。

(3) 数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。

(4) 由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反应不出来的。因此,要分析和理解三维景物必须做合适的假定或附加新的测量。

(5) 数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。

2.3.2 数字图像处理的应用

计算机图像处理和计算机、多媒体、智能机器人、专家系统等技术的发展紧密相关。近年来计算机识别、理解图像的技术发展很快,也就是图像处理的目的除了直接供人观看(如医学图像是为医生观看作诊断)外,还进一步发展

8

第2章 数字图像处理简介

了与计算机视觉有关的应用,如邮件自动分检,车辆自动驾驶等。下面仅罗列了一些典型应用实例,而实际应用更广。

(1)在生物医学中的应用

主要包括显微图像处理;DNA显示分析;红、白血球分析计数;虫卵及组织切片的分析;癌细胞的识别;染色体分析等等。

(2)遥感航天中的应用

军事侦察、定位、导航、指挥等应用;多光谱卫星图像分析;地形、地图、国土普查;地质、矿藏勘探;天文、太空星体的探测及分析等。

(3)工业应用

CAD 和CAM技术用于模具、零件制造、服装、印染业;零件、产品无损检测,焊缝及内部缺陷检查;交通管制、机场监控;火车车皮识别等。

(4)军事公安领域中的应用

巡航导弹地形识别;指纹自动识别;警戒系统及自动火炮控制;反伪装侦察;手迹、人像、印章的鉴定识别;过期档案文字的复原;集装箱的不开箱检查等。

(5)遥感上的应用

在遥感的发展中,可以看到大量与图像处理密切相关的技术。如在20世纪70年代美国发射的第一颗陆地卫星就是通过对获取的遥感图片进行处理后达到上述目的的。随后美国发射了海洋卫星、气象卫星和军用卫星,从而获取了大量遥感资料。此图像处理广泛应用于土地测绘、资源调查、气象监测、环境污染监测、森林防护等。

(6)其他应用

图像的远距离通信;多媒体计算机系统及应用;电视电话;服装试穿显示;理发发型预测显示;电视会议;办公自动化、现场视频管理等[9]。

2.4 数字图像类型

MATLAB中,一幅图像可能包含一个数据矩阵,也可能包含一个颜色映射表矩阵。MATLAB中有四种基本的图像类型:

9

(1)二值图像(二进制图像)

二值图像也叫黑白图像,就是图像像素只存在0、1两个值。一个二值图像1表示白。 是纯黑白的。每一个像素值将取0或者1中的一个值,通常0表示黑,

二值图像可以保存为双精度或uint8类型的双精度数组,显然使用uint8类型更节省空间。在图像处理工具箱中,任何一个返回二进制图像的函数都是以uint8类型逻辑数组来返回的。

(2)灰度图像

在MATLAB中,灰度图像是保存在一个矩阵中的,矩阵中的每一个元素代表一个像素点。矩阵可以是双精度类型,其值域为[0,1];也可以为uint8类型,其数据范围为[0,255]。矩阵的每个元素代表不同的亮度或灰度级。

彩色图像转化为灰度图像公式:

Y?0.299R?0.578G?0.144B (2-4) (3)索引图像

索引图像包括图像矩阵与颜色图数组,其中,颜色图是按图像中颜色值进行排序后的数组。对于每个像素,图像矩阵包含一个值,这个值就是颜色图中的索引。颜色图为m*3双精度值矩阵,各行分别指定红绿蓝(RGB)单色值。Colormap=[R,G, B],R,G,B为值域为[0,1]的实数值。

图像矩阵与颜色图的关系依赖于图像矩阵是双精度型还是uint8(无符号8位整型)类型。如果图像矩阵为双精度类型,第一点的值对应于颜色图的第一行,第二点对应于颜色图的第二行,依次类推。如果图像矩阵是uint8,有一个偏移量,第0点值对应于颜色图的第一行,第一点对应于第二行,依次类推;uint8长用于图形文件格式,它支持256色。

(4)RGB图像

与索引图像一样,RGB图像分别用红,绿,蓝三个亮度值为一组,代表每个像素的颜色。与索引图像不同的是,这些亮度值直接存在图像数组中,而不是存放在颜色图中。图像数组为M*N*3,M,N表示图像像素的行列数[10]。

10

第2章 数字图像处理简介

2.5 主要图像文件格式

(1) JPEG(Joint Photographic Experts Group)格式,是一种成为联合图像专家组的图像压缩格式。文件后缀名为“.jpeg”或“.jpg”,是最常用的图像文件格式。JPEG是一种有损压缩格式,能够将图像压缩在很小的存储空间内。

(2) TIFF(Tagged Image File Format)格式。它是目前图像文件格式中最复杂的一种。处理1,4,8,24位非压缩图像,1,4,8,24位packbit压缩图像,一位CCITT压缩图像等。且它支持单色到32位真彩色模式的所有图像。文件内容包括:文件头,参数指针表与参数域,参数数据表和图像数据四部分。

(3) BMP(Windows Bitmap)格式。它是一种与硬件设备无关的图像文件格4,8,24位非压缩图像,8位RLE式,使用非常广。有1,(Run-length Encoded )图像。文件内容包括:文件头(一个BITMAP FILEHEADER数据结构),位图 信息数据块(位图信息头BITMAP INFOHEADER和一个颜色表)和图像数据。

(4) GIF(Graphics Interchange Format)格式。原义是“图像互换格式”,是CompuServe公司在 1987年开发的图像文件格式。GIF文件的数据,是一种基于LZW算法的连续色调的无损压缩格式。其压缩率一般在50%左右,它不属于任何应用程序。目前几乎所有相关软件都支持它,公共领域有大量的软件在使用GIF图像文件。GIF图像文件的数据是经过压缩的,而且是采用了可变长度等压缩算法。GIF格式的另一个特点是其在一个GIF文件中可以存多幅彩色图像,如果把存于一个文件中的多幅图像数据逐幅读出并显示到屏幕上,就可构成一种最简单的动画。

(5) PCX(Windows Paintbrush)格式。它是最早使用的图像文件格式之一。PCX格式支持256种颜色,不如TIFF等格式功能强,但结构比较简单,存取速度快,压缩比适中,适用于一般软件的使用。可处理1,4,8,16,24位等图 像数据。文件内容包括:文件头(128字节),图像数据、扩展颜色映射表数据。

(6) HDF(Hierarchical Data Format)格式。有8位、24位光栅数据集。 (7) PNG(Portable Network Graphics):包括1位、2位、4位、8位和16位灰度图像,8位和16位索引图像,24位和48位真彩色图像。

(8) RAS(Sun Raster image): 有1位bitmap、8位索引、24位真彩色和带有透明度的32位真彩色。

11

第5章 基于MATLAB的图像跟踪算法

目标从图像中提取出来,具体源代码如下:

T1=50;T2=200;%观察并找出阈值 for i=1:200

I=read_seqim(i); M=double(I); for m=1:272 for n=1:512

if (M(m,n)>=T1)&&(M(m,n)<=T2) M(m,n)=1;%设置背景灰度 else

M(m,n)=0;%设置目标灰度 end end

end%%图像的分割和阈值处理 end

所得到的阈值处理(图像分割)后的图像(如图5-3所示)如下:

图5-3 阀值处理后的图像

27

5.3 形心(距心)的求取

成像跟踪系统经过图像的预处理、图像的分割识别等一系列信息处理,最终实现对目标位置的实时精确测量,即对目标或目标的局部实施稳定跟踪。目标跟踪的方法具体有以下几种:

矩心(质心、形心)跟踪;边缘跟踪;峰值跟踪;相关跟踪;滤波跟踪。 这里我们使用矩心(质心、形心)跟踪。矩心也叫质心或重心,是物体对某轴的静力矩作用中心。如果把目标图像看成是一块质量密度不均匀的薄板,以图像上各像素点的灰度作为各点的质量密度。这样就可以借用矩心的定义式来计算目标图像的矩心。由于计算重心的过程是个统计平均过程, 它算出的跟踪点不是个别的最亮点位置, 而是图像中各个像元灰度加权平均的位置, 所以, 以重心为跟踪点, 跟踪的随机误差小, 精度高, 稳定性好。具体的计算方法如下:

??xf(x,y)X?x?0y?0N?1M?1x?0y?0N?1M?1??yf(x,y) Y?x?0y?0N?1M?1x?0y?0N?1M?1 (5-2)

??f(x,y)??f(x,y)其中f(x,y)为(x,y)处的灰度值,N和M分别为图像的列数和行数,以下为求取形心的源程序:

for i=1:200

X=0;Y=0;X1=0;Y1=0;PINJUN=0;PINJUN1=0; for m=1:272 for n=1:512

x=m*M(m,n); y=n*M(m,n); pinjun=M(m,n); X=X+x;Y=Y+y;PINJUN=PINJUN+pinjun; end X1=X1+X; Y1=Y1+Y;

PINJUN1=PINJUN1+PINJUN;

28

第5章 基于MATLAB的图像跟踪算法

end

Xmean=X1/PINJUN1;

Ymean=Y1/PINJUN1; %求取形心的计算 Xmean=(Xmean*100-mod(Xmean*100,100))/100;

Ymean=(Ymean*100-mod(Ymean*100,100))/100;%形心数值取整 end

5.4 设置跟踪波门

为了实现对视频目标的跟踪,设置波门是一个十分必要的工作。对边缘跟踪及矩心跟踪来说,都要设置一个波门。波门的尺寸略大于目标图象,波门紧紧套住目标图象。波门是随目标图象视频信号而产生的。在波门以内的信号当作感兴趣的信号予以检出而摒除波门以外的其它信号;也可以针对视场中出现的苦干个目标面同时设置几个波门,分别检出各个波门中的信号。从整个视场中检出波门内的信号的方法属于选通技术的范畴。利用选通技术可以对目标进行有选择的跟踪,同时也可以非常有效地排除背景干扰。

这里的波门设置方法为以形心位置为中心,在图像中包含目标的区域添加一个合适矩形框(即跟踪波门,这里我们取64×32 pixels),以实现对100 帧图像的实时跟踪,以下为波门设置源代码:

for m=(Xmean-16):(Xmean+16) n=Ymean-32; I(m,n)=1; end

for m=(Xmean-16):(Xmean+16) n=Ymean+32; I(m,n)=1; end

for n=(Ymean-32):(Ymean+32)

29

m=Xmean-16; I(m,n)=1; end

for n=(Ymean-32):(Ymean+32) m=Xmean+16; I(m,n)=1; end%画出跟踪波门 波门设置后的图像实现(如图5-4所示):

图5-4 波门设置后的图像

通过上图我们不难看出,我们已经找到了正确的波门,并且实现了目标的定位和跟踪,通过以上简单的方法实现了简易图像跟踪系统的设计,并且较稳定地对目标图像进行了跟踪。

30

第5章 基于MATLAB的图像跟踪算法

以下附上实现简易图像跟踪系统的完整matlab程序: I0=read_seqim(50);%任意读取一帧图像 figure(1),imshow(I0);%原图像显示 I0=double(I0);

figure(2),hist(I0,300);%原图像直方图显示 T1=50;T2=200;%观察并找出阈值 for i=1:200

I=read_seqim(i); M=double(I); for m=1:272 for n=1:512

if (M(m,n)>=T1)&&(M(m,n)<=T2) M(m,n)=1;%设置背景灰度 else

M(m,n)=0;%设置目标灰度 end end

end%%图像的分割和阈值处理

X=0;Y=0;X1=0;Y1=0;PINJUN=0;PINJUN1=0; for m=1:272 for n=1:512

x=m*M(m,n); y=n*M(m,n); pinjun=M(m,n); X=X+x;Y=Y+y;PINJUN=PINJUN+pinjun; end X1=X1+X;

31

Y1=Y1+Y;

PINJUN1=PINJUN1+PINJUN; end

Xmean=X1/PINJUN1; Ymean=Y1/PINJUN1;

Xmean=(Xmean*100-mod(Xmean*100,100))/100; Ymean=(Ymean*100-mod(Ymean*100,100))/100; %求取形心的计算

for m=(Xmean-16):(Xmean+16) n=Ymean-32; I(m,n)=1; end

for m=(Xmean-16):(Xmean+16) n=Ymean+32; I(m,n)=1; end

for n=(Ymean-32):(Ymean+32) m=Xmean-16; I(m,n)=1; end

for n=(Ymean-32):(Ymean+32) m=Xmean+16; I(m,n)=1; end%画出跟踪波门

figure(3),imshow(I);%连续读出每一帧图像,连续显示已达到视频播

32

第5章 基于MATLAB的图像跟踪算法

放的效果

end

33

第6章 总结与展望

6.1 总结

本文主要介绍了数字图像处理的基本理论,图像的格式,MATLAB 仿真软件和基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理。在第四章详细介绍了图形用户界面,介绍了常用图像操作、GUI的创建及其应用;第五章详细介绍了基于MATLAB的图像跟踪算法,通过学习对图像的读取、图像二值化处理、形心的求取;并都利用MATLAB来实现。

二值图像处理是最简单的技术,能够获得图像的信息;图像增强技术是数字图像处理中最基础和必需的技术;图像复原是最实用的图像处理技术,应用最广泛。

6.2 展望

随着计算机处理能力的不断增强,数字图像处理学科在飞速发展的同时,也越来越广泛地向许多其他学科快速交叉渗透,使得图像作为信息获取以及信息的利用等方面也变得越来越重要。目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。

数字图像处理技术的迅速发展给人类带来了巨大的经济社会效益,大到卫星遥感进行全球环境气候检测,小到指纹识别技术在安全领域的广泛应用。MATLAB用更直观的,符合人们思维习惯的代码,代替了C和FORTRAN语言的冗长代码。应用MATLAB友好的界面和丰富、实用、高效的指令及模块,可以使人较快地认识、理解图像处理的相关概念,逐步掌握图像信号处理的基本方法,进而能够解决相关的工程和科研中的问题。

数字图像处理用MATLAB实现更加方便简单,由于在航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等的领域有重大的成就,使得数字图像处理成为一门引人注目、前景远大的新型学科。研究

34

第6章 总结与展望

这方面的人也越来越多。

35

参考文献

[1] 张德丰,《MATLAB数字图像处理》(第二版)[M],北京:机械工业出版社,2012.1 [2] 朱习军,隋思涟,《MATLAB在信号与图像处理中的应用》[M],北京:电子工业出版社,2009.3

[3] 陈超,《MATLAB应用实例精讲——图像处理与GUI设计篇》[M],北京:电子 工业出版社,2011.2

[4] 张德丰,《详解MATLAB数字图像处理》[M],北京:电子工业出版社,2010.7 [5] 詹青龙,卢爱芹,《数字图像处理技术》[M],北京:清华大学出版社,2010.7 [6] 张德丰,《数字图像处理(MATLAB版)》[M],北京:人民邮电出版社,2009.10 [7] 徐东艳,孟晓刚,《MATLAB函数库查询词典》[M],北京:中国铁道出版社,2005.12 [8] 胡学龙,《数字图像处理》(第二版)[M],北京:电子工业出版社,2011.2 [9]游福成,《数字图像处理》[M],北京:机械工业出版社,2011

[10]陈炳权,刘宏立,《数字图像处理技术的现状及其发展方向》[J],吉首大学学报,2009.01期,2

[11]李红俊,《数字图像处理技术及其应用》[J],中国学术期刊,2002.09期,1

[12]Rafael C.Gonzalez,Richard E.Woods,《Digital image processing》[M],电子工业出版社,2010.1

[13]Rafael C. Gonzalez,Richard E. Woods,Steven L. Eddins,《Digital image processing》(Second Edition)[M],电子工业出版社,2013.4

[14]Mu Dongzhou,《Hybrid Genetic Algorithm Based Image Enhancement Technology》[J],Internet Technology and Applications (iTAP),2011.06期,1

[15]周广芬,李鹏,杨久义.用MATLAB图像处理工具箱进行图形数字化的研究 河北科技大学 2005

36

本文来源:https://www.bwwdw.com/article/4vag.html

Top