小学数论整除综合(含答案)由浅入深,题型全

更新时间:2023-09-30 10:45:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1.已知10□8971能被13整除,求□中的数。 解:10□8-971=1008-971+□0=37+□0。

上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8。

2.判断18937能否被29整除;

3.判断296416与37289能否被59整除。 解:(1)上述变换可以表示为:

由此可知,296416能被59整除,37289不能被59整除 4.九位数8765□4321能被21整除,求中间□中的数。 5.在下列各数中,哪些能被27整除?哪些能被37整除? 1861026, 1884924, 2175683, 2560437, 11159126,131313555,266117778。

6.在下列各数中,哪些能被19整除?哪些能被79整除? 55119, 55537, 62899, 71258, 186637,872231,5381717。

7.在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?

234,789,7756,8865,3728,8064。 解:能被4整除的数有7756,3728,8064; 能被8整除的数有3728,8064; 能被9整除的数有234,8865,8064。

8.在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除? 解:如果56□2能被9整除,那么 5+6+□+2=13+□

应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

9.五位数能被72整除,问:A与B各代表什么数字?

分析与解:已知能被72整除。因为72=8×9,8和9是互质数,所以

能被8整除,由此

既能被8整除,又能被9整除。根据能被8整除的数的特征,要求可确定B=6。再根据能被9整除的数的特征,

的各位数字之和为

A+3+2+9+B=A+3-f-2+9+6=A+20,

因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27能被9整除,所以A=7。 解答的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。

10.要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?

分析与解:因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。六位数

能被4整除,就要

能被4整除,因此C可取1,3,5,7,9。

要使所得的商最小,就要使这个六位数尽可能小。因此首先是A尽量小,其次

的各位数字之和为12+B+C。

是B尽量小,最后是C尽量小。先试取A=0。六位数

它应能被9整除,因此B+C=6或B+C=15。因为B,C应尽量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使

尽可能小,应取B=1,C=5。

当A=0,B=1,C=5时,六位数能被36整除,而且所得商最小,为150156÷36=4171 判断306371能否被7整除?能否被13整除?

解:因为371-306=65,65是13的倍数,不是7的倍数,所以306371能被13整除,不能被7整除。

分析与解:根据能被7整除的数的特征,555555与999999都能被7

因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55□99能被7整除。根据能被7整除的数的特征,□99-55=□44也应能被7整除。由□44能被7整除,易知□内应是6。

下面再告诉大家两个判断整除性的小窍门。

判断一个数能否被27或37整除的方法:

对于任何一个自然数,从个位开始,每三位为一节将其分成若干节,然后将每一节上的数连加,如果所得的和能被27(或37)整除,那么这个数一定能被27(或37)整除;否则,这个数就不能被27(或37)整除。

。一般地,每进行一次变换,被判断的数的位数就将减少一位。当被判断的数变换到小于除数时,即可停止变换,得出不能整除的结论。

本文来源:https://www.bwwdw.com/article/4qfd.html

Top