化工工艺设计必备知识

更新时间:2023-06-12 04:08:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《化工工艺设计》

1. 概述

1.1 要建设一个化工厂,必须具有一批化工工艺专业技术人员,这批化工工艺专业技术人员必须具备下列基本条件。

¾ 掌握化工基本理论

如化工热力学、流体力学、传热、传质、化学反应动力学(化学反应工程)。 ¾ 掌握化工工艺设计方法和技能

工艺设计的任务、设计范围、工艺设计人员职责。 化工基本理论的应用(化工设计方法)。 工艺设计基本程序(工艺设计技能)。 工艺设计的成品文件(内容及深度)。 工艺设计的质量保证程序。

¾ 熟悉环保、安全、消防等方面的法规,如:

HG20667-1986 化工建设项目环境保护设计规定 SH3024-95 石油化工企业环境保护设计规范 HG20571-95 化工企业安全卫生设计规定 SH3047-93 石油化工企业职业安全卫生设计规范 GBJ16-87(2001版) 建筑设计防火规范 GB50160-92(1999版) 石油化工企业设计防火规范 GB50058-92 爆炸和危险性环境电力装置设计规范 ¾ 一定的工作经验 1.2 化工建设项目阶段

1.2.1 建设项目阶段的划分以工程公司为主体,通常分为三个阶段

¾ 项目前期

项目建议书 → 批准后即为立项

可行性研究报告 → 批准后即可展开工程设计 ¾ 工程设计

按国内审批要求分为: 初步设计 → 批准后建设单位即可开工。

施工图设计

按国际常规做法分为: 工艺设计

基础设计 详细设计

¾ 施工、安装、试车、性能考核及国家验收(验收后工厂投入正常运行) 1.2.2 建设项目阶段的划分以建设单位为主体,通常分为四个阶段

¾ 项目前期 ¾ 工程设计 ¾ 工程建设 ¾ 工厂投入生产

2. 工艺设计的内容和深度

2.1 工艺设计的文件包括三大内容:

¾ 文字说明(工艺说明) ¾ 图纸

¾ 表格

2.1.1 文字说明(工艺说明)

¾ 工艺设计的范围。

¾ 设计基础:生产规模、产品方案、原料,催化剂,化学品,公用工程燃料规格、产品

及副产品规格。

¾ 工艺流程说明:生产方法、化学原理、工艺流程叙述。 ¾ 原料、催化剂、化学品及燃料消耗定额及消耗量。

¾ 公用工程(包括水、电、汽、脱盐水、冷冻、工艺空气、仪表空气、氮气)消耗定额

及消耗量。

¾ 三废排放:包括排放点、排放量、排放组成及建议处理方法 ¾ 装置定员

¾ 安全备忘录(另行成册)

¾ 技术风险备忘录(通常为对内使用,另行成册)

¾ 操作指南(通常为对内使用,另行成册。供工艺系统、配管等专业使用) 2.1.2 图纸

¾ PFD:是PID的设计依据,供基础设计使用(通常分版次逐版深化)。

包括全部工艺设备、主要物料管道(表示出流向、物料号)、主要控制回路、联锁方案、加热和冷却介质以及工艺空气进出位置。

¾ 建议设备布置图:是总图布置、装置布置的依据,供基础设计使用(通常为平面布置

图)。根据工艺流程的特点和要求进行布置。 ¾ PCD:通常是设计院内部设计过程文件、最终体现在终版PFD中(通常由自控专业完成)。 2.1.3 表格

¾ 物料平衡表:包括物流组成、温度、压力、状态、流量、密度、焓值、粘度等理化常

数(热负荷表示在此表中或PFD图上)。

¾ 工艺设备数据表:根据设备形式不同、作用不同以及介质不同可分为容器、塔器、换

热器、工业炉、机泵、搅拌器的等。工艺设备数据表需表示出设备位号、介质名称、操作压力、设计压力、操作温度、设计温度、材质、传动机构、外形尺寸、特征尺寸及特殊要求。(各设计院均有各种规定的表格)。 ¾ 工艺设备表 ¾ 取样点汇总表

¾ 装置界区条件表:通常由工艺系统专业来完善并最终发表(包括原材料、公用工程、

产品、副产品、进出界区条件等)。

2.2 补充说明:化工工艺专业尚需参加前期工作,主要前期工作有:

¾ 项目建议书;可行性报告编制工作。

¾ 项目报价书;投标书、技术文件编制工作。

¾ 引进项目:包括询价书、投标书的评标、合同技术附件谈判。 ¾ 大中型联合装置总体规划设计。

3. 工艺设计方法(化工基本理论的应用) 3.1 工艺路线的选择

¾ 原料来源

¾ 经济效益和社会效益(生产成本) ¾ 环境保护

¾ 其它,如操作条件、安全、消防、投资、工艺先进性,可行性,合理性。

3.2 工艺流程方案优化

“洋葱头”模型(由史密斯、林霍夫提供的模型)

从图中可以看出设计的核心是反应系统的设计和开发。“洋葱头”模型强调过程开发和设计

的有序和分层性质。

¾ 反应流程优化见表-7.4.2(P-544)

反应流程优化需要考虑的问题较多,问题复杂。如反应动力学、反应收率、催化剂特性、反应历程、反应途径。

反应器的最优操作条件有如何保证反应温度、反应压力、混合要求、换热要求、各物料配比、给定条件下的生产成本等等。 ¾ 精馏流程的优化

精馏流程如需要分离R个组份,就需要有R-1个精馏塔。 精馏优化需要考虑:那种组份为主产品,那种组份为付产品。

产品的规格要求。

精馏流程的优化法1):试探法,主要规则如下:

优先使用普通精馏。

尽量避免减压操作和使用冷量。 产品数应最少。

腐蚀性、危险性的组份应优先分出。 难分离的组分最后分出。 最大量组份应优先分出。

塔顶、塔釜产物最好等摩尔分离。

精馏流程的优化法2):调优法 精馏流程的优化法3):数学规划法 ¾ 蒸发流程的优化

1)单效、双效、三效蒸发。 2)热泵蒸发、膜式蒸发。 3)多级闪蒸。

4)强制循环蒸发、自然循环蒸发、。

结合蒸发器的类型(标准、悬框、列文、强制循环蒸发器)进行选择。 3.3 工艺设备的选择

¾ 反应器:

1)连续 1)均相 1)活塞流 (管式) 2)半连续 2)非均相 2)全混釜 (搅拌釜) 3)间歇

以上反应器的选择要根据物料性质、稳定性、反应复杂性、产品规模、反应时间、温度、压力等因素综合考虑。

不同类型的反应器在工业生产中的应用情况见P-547。 气液相反应器及固相反应器的使用情况见P-548。 固体催化反应器的使用情况见表7.4.3-3(P-548)。 ¾ 气液传质设备:

1) 板式塔:泡罩、浮阀、筛板等。板式塔塔板流体流向分布类型可分为U形流,单

溢流,双溢流等

2) 填料塔:a拉西环、鲍尔环、矩鞍环等填料。

b散堆、规整填料。 c实体填料、丝网填料。

以上传质设备的选择要根据分离难易程度、压降大小、真空(热敏性物料)、物料性质、投资情况、腐蚀情况、物料清洁情况、安全要求、弹性大小、发泡等情况选择。(见P-549)

¾ 传热设备:

按功能分:冷却器、冷凝器、加热器、换热器、再沸器、蒸汽发生器、过热器、废热锅炉等。

按结构型式分:采用二物流换热的换热器从结构上分有以下5种型式: A.管壳式(固定管板式、浮头式、填料函式、U型管式) B.板式(板翅式、螺旋板式、伞板式、波纹板式) C.管式(空冷器、套管式、喷淋管式、箱管式) D.液膜式(升降膜式、刮板薄膜式、离心薄膜式) E.其它型式(板壳式、热管式) 以上型式换热器的选择依据是:

A.固定管板式换热器

固定管板式换热器即两端管板和壳体连接成一体,由于壳程不易检修和清洗,因此选用固定管板式换热器时,壳方流体应是较清洁且不易结垢的物料;两流体温差较大(大于60℃)时应考虑热补偿,两流体温差不易大于120℃。

B.浮头式换热器

该换热器壳程易清洗,但内垫片易渗漏,适用于需要补偿热膨胀的换热器,两流体温差大于120℃。

C.U型管式换热器

该换热器制造、安装方便,造价较低,管程耐高压,但结构不紧凑。适用于高温和高压的场合,且管内流体必须洁净。

D.板式换热器

板翅式:紧凑、效率高、可多股物料同时换热。使用温度不大于150℃。 螺旋板式:可用于带颗粒物料,物位利用好。不易检修。 伞板式:制造简单、紧凑、易清洗,使用温度不大于150℃,使用压力不大于0.12MPa。 波纹板式:紧凑、效率高、易清洗,使用温度不大于150℃,使用压力不大于0.15MPa。 E.空冷器的选择依据

a.空气入口温度(即设计温度)低于38℃。

b.热流体的出口温度高于50~65℃,并允许有一定的波动范围(3~5℃)。 c.对数平均温差大于40℃。

d.流体接近温度(即热流体的出口温度与冷流体入口温度之差)至少大于15℃。

2

e.管内给热系数小于2325.6W/(m.K)。

f.冷却水的污垢系数大于0.0002(m.K)/W。 g.水源较远,取水费用大。

h.热流体的凝固点较低(小于0℃)。 ¾ 化工用泵:

根据物料性质、物料的腐蚀性、易燃易爆、有毒、高温、高压、低温、粘度大小、挥发性、固体颗粒等因素综合考虑,此外还要考虑泵的安全性、可靠性和密封等要求。见表7.4.5-3(P-553)

¾ 容器(储罐):

根据物料性质、物料的腐蚀性、易燃易爆、有毒、高温、高压、低温、粘度大小、挥发性、固体颗粒等因素综合考虑。

压力容器分类见表7.4.5-5(P-557)。

4. 工艺设计工作程序

2

5. 设备设计压力和设计温度的确定 5.1 压力:

¾ 正常操作(工作)压力 ¾ 最高工作压力

设计压力的选取见表7.6.1 “设备设计压力一览表”(P-561)。 5.2 温度:

¾ 正常操作温度 ¾ 最高操作温度

设计温度的选取见表7.6.2“设备设计温度选取表”(P-562)。

6. 过程控制方案的确定

6.1过程控制方案确定的原则

¾ 保证装置运行的平稳、生产安全、控制简单适用。

¾ 用单回路简单控制系统可以解决的,决不要用复杂的控制系统。 6.2过程控制的分类

¾ 压力 ¾ 温度 ¾ 流量 ¾ 物位

¾ 化学成分和物性数据 6.3选用控制仪表的要求

¾ 准确可靠 ¾ 灵敏度高 ¾ 反应迅速 ¾ 滞后小

¾ 使用维护方便 ¾ 价格便宜

6.4典型化工单元的控制方案 6.4.1反应

¾ 反应控制的要求

达到规定的转化率、产品浓度。 处理量平稳。

当出现不正常工况时,能报警、联锁或自动选择性调节系统。 ¾ 反应控制方案

以反应转化率为控制变量 见图7.7.3-1(P-564)。

以反应工艺状态变量为控制对象 见图7.7.3-2(P-565)。

6.4.2精馏

精馏是常见的液液分离方法,精馏控制主要目的是达到规定的分离要求。主要变量有进料量、组成、温度、操作压力、冷却和加热介质、压力及温度的变换。精馏控制可分为: ¾ 按精馏段指标的控制方案 见图7.7.3-3(P-566)。 ¾ 按提馏段指标的控制方案 见图7.7.3-4(P-567)。 ¾ 塔顶压力控制方案 见图7.7.3-5(P-568)。

真空度控制方案 见图7.7.3-6(P-569)。 ¾ 其它控制方案 见图7.7.3-7(P-569)。 6.4.3传热设备

¾ 控制载体的流量 见图7.7.3-8(P-570)。

¾ 控制传热面积 见图7.7.3-9(P-570)。

¾ 控制载体的气化温度 见图7.7.3-10(P-571)。 ¾ 工艺介质旁路控制 见图7.7.3-11(P-571)。 6.4.4流体输送设备

¾ 离心泵控制方案 见图7.7.3-12(P-572)。 ¾ 改变转速的控制方案 见图7.7.3-13(P-572)。

¾ 往复泵(位移式旋转泵)的控制方案 见图7.7.3-14(P-572)。

7. 能耗计算

目前人类面临的共同任务是保护资源、减少环境污染、维护生态平衡、实现可持续发展。化工生产中传热过程是经常的发生的事,因此合理使用能源,节约能源消耗是每个化工工艺设计人员应尽的职责。

过程能量分析的常用方法有:夹点分析法和三环节能量分析法 7.1夹点分析法

将需要优化的换热网络用冷、热流复合线表示在温焓图(T-H图)上,热流复合线位于冷流上方,冷、热流体的复合线中间垂直距离最短处称为夹点,其温差△Tmin称为夹点温差。

夹点分析法应遵循三个原则: ¾ 尽量避免有热流体通过夹点

¾ 夹点上方避免引入公用设施冷却物流 ¾ 夹点下方避免引入公用设施加热物流 7.2三环节能量分析法

重点研究热能在化工装置的利用,从下述三个环节出发: ¾ 能量转换 ¾ 能量利用 ¾ 能量回收

夹点分析法和三环节能量分析法实际应用可参考有关文献资料。

8. 与工艺设计相关的基本知识

与工艺设计相关的基本知识包括消防、劳动安全卫生、环境保护三个方面,必须遵守国家相关的标准、法规。

8.1消防 见P-577~591 8.2安全 见P-591~594 8.3环保 见P-594~601

¾ 废气

¾ 废水(废液) ¾ 废固 ¾ 噪音 ¾ 放射性

¾ 排放总量控制

本文来源:https://www.bwwdw.com/article/4nb1.html

Top