高中数学教学论文:浅谈二次函数在高中阶段的应用-word范

更新时间:2024-03-13 04:42:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【优质】高中数学教学论文:浅谈二次函数在高中阶段的应用-word范文

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!

== 本文为word格式,下载后可方便编辑和修改! ==

高中数学教学论文:浅谈二次函数在高中阶段的应

高中数学教学论文:浅谈二次函数在高中阶段的应用 一、进一步深入理解函数概念

初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:AB,使得集合B中的元素y=ax2+bx+c(a0)与集合A的元素X对应,记为?(x)= ax2+ bx+c(a0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:

类型I:已知?(x)= 2x2+x+2,求?(x+1)

这里不能把?(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。

类型Ⅱ:设?(x+1)=x2-4x+1,求?(x)

这个问题理解为,已知对应法则?下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。 一般有两种方法:

(1)把所给表达式表示成x+1的多项式。

?(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得?(x)=x2-6x+6 (2) 变量代换:它的适应性强,对一般函数都可适用。

令t=x+1,则x=t-1 (t)=(t-1)2-4(t-1)+1=t2-6t+6从而?(x)= x2-6x+6 二、二次函数的单调性,最值与图象。

【优质】高中数学教学论文:浅谈二次函数在高中阶段的应用-word范文

在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-,-b2a ]及[-b2a ,+) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以

适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。 类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。 (1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1

这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。

类型Ⅳ设?(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。 求:g(t)并画出 y=g(t)的图象

解:?(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2 当1[t,t+1]即01,g(t)=-2 当t1时,g(t)=?(t)=t2-2t-1 当t0时,g(t)=?(t+1)=t2-2 t2-2, (t0) g(t)= -2,(01) t2-2t-1, (t1)

首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。 如:y=3x2-5x+6(-3-1),求该函数的值域。

三、二次函数的知识,可以准确反映学生的数学思维:

类型Ⅴ:设二次函数?(x)=ax2+bx+c(a0)方程?(x)-x=0的两个根x1,x2满足0 (Ⅰ)当X(0,x1)时,证明X

本文来源:https://www.bwwdw.com/article/4mn8.html

Top