集成电路封装形式简介

更新时间:2023-03-08 05:38:57 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

集成电路封装形式简介(图文)

封装大致经过了如下发展进程:

结构方面:DIP封装(70年代)->SMT工艺(80年

代 LCCC/PLCC/SOP/QFP)->BGA封装(90年代)->面向未来的工艺(CSP/MCM)

材料方面:金属、陶瓷->陶瓷、塑料->塑料;

引脚形状:长引线直插->短引线或无引线贴装->球状凸点; 装配方式:通孔插装->表面组装->直接安装

裸片安装分类

裸芯片在装载时,它的有电极的一面可以朝上也可以朝下,因此,芯片就有正装片和倒装片之分,布线面朝上为正装片,反之为倒装片(FC)。

另外,裸芯片在装载时,它们的电气连接方式亦有所不同,有的采用有引线键合方式,有的则采用无引线键合方式

材料分类

按芯片的封装材料分有金属封装、陶瓷封装、金属-陶瓷封装、塑料封装。

金属封装:金属材料可以冲、压,因此有封装精度高,尺寸严格,便于大量生产,价格低廉等优点。

陶瓷封装:陶瓷材料的电气性能优良,适用于高密度封装。 金属-陶瓷封装:兼有金属封装和陶瓷封装的优点。

塑料封装:塑料的可塑性强,成本低廉,工艺简单,适合大批量生产。 形式分类

一.TO 晶体管外形封装

TO(Transistor Out-line)的中文意思是“晶体管外形”。这是早期的封装规格,例如TO-92,TO-92L,TO-220,TO-252等等都是插入式封装设计。近年来表面贴装市场需求量增大,TO封装也进展到表面贴装式封装。

TO252和TO263就是表面贴装封装。其中TO-252又称之为D-PAK,TO-263又称之为D2PAK。

D-PAK封装的MOSFET有3个电极,栅极(G)、漏极(D)、源极(S)。其中漏极(D)的引脚被剪断不用,而是使用背面的散热板作漏极(D),直接焊接在PCB上,一方面用于输出大电流,一方面通过PCB散热。所以PCB的D-PAK焊盘有三处,漏极(D)焊盘较大。

二. DIP 双列直插式封装

DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,引脚节距为2.54 mm,其引脚数一般不超过100个。封装材料有塑料和陶瓷两种。采用DIP封装的CPU芯片有两排引脚,使用时,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装结构形式有:多层陶瓷双

列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。

(DIP)

DIP封装具有以下特点:

1.适合在PCB (印刷电路板)上穿孔焊接,操作方便。 2.比TO型封装易于对PCB布线。

3.芯片面积与封装面积之间的比值较大,故体积也较大。以采用40根I/O引脚塑料双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=(3×3)/(15.24×50)=1:86,离1相差很远。(PS:衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。如果封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。)

用途:DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。Intel公司早期CPU,如8086、80286就采用这种封装形式,缓存(Cache )和早期的内存芯片也是这种封装形式。

S-DIP:收缩双列直插式封装。该类型的引脚在芯片两侧排列,引脚节距为1.778 mm,芯片集成度高于DIP。

SK-DIP:窄型双列直插式封装。除了芯片的宽度是DIP的1/2以外,其它特征与DIP相同。

SIP:单列直插式封装。该类型的引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

ZIP: 。该类型的引脚也在芯片单侧排列,只是引脚比SIP粗短些,节距等特征也与DIP基本相同。

(SIP)

PS.以下三~六使用的是SMT封装工艺(表面组装技术)。 SMT就是表面组装技术(Surface Mounted Technology的缩写),是目前电子组装行业里最流行的一种技术和工艺。它将传统的电子元器件压缩成为体积只有几十分之一的器件,从而实现了电子产品组装的高密度、高可靠、小型化、低成本,以及生产的自动化。这种小型化的元器件称为:SMY器件(或称SMC、片式器件)。将元件装配到印刷(或其它基板)上的工艺方法称为SMT工艺。相关的组装设备则称为SMT设备。

目前,先进的电子产品,特别是在计算机及通讯类电子产品,已普遍采用SMT技术。国际上SMD器件产量逐年上升,而传统器件产量逐年下降,因此随着进间的推移,SMT技术将越来越普及

三.QFP 方型扁平式封装

QFP(Plastic Quad Flat Pockage)技术实现的CPU芯片引脚之间距离很小,管脚很细,呈L字形一般大规模或超大规模集成电路采用

这种封装形式,其引脚数一般都在100以上。基材有陶瓷、金属和塑料三种。引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm等多种规格。

(QFP)

其特点是:

1.用SMT表面安装技术在PCB上安装布线。

2.封装外形尺寸小,寄生参数减小,适合高频应用。以0.5mm焊区中心距、208根I/O引脚QFP封装的CPU为例,如果外形尺寸为28mm×28mm,芯片尺寸为10mm×10mm,则芯片面积/封装面积=(10×10)/(28×28)=1:7.8,由此可见QFP封装比DIP封装的尺寸大大减小。

3.封装CPU操作方便、可靠性高。

QFP的缺点是:当引脚中心距小于0.65mm时,引脚容易弯曲。为了防止引脚变形,现已出现了几种改进的QFP品种。如封装的四个角带有树指缓冲垫的BQFP(见图);带树脂保护环覆盖引脚前端的GQFP;在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP。

(BQFP)

用途:QFP不仅用于微处理器(Intel公司的80386处理器就采用塑料四边引出扁平封装),门陈列等数字逻辑LSI电路,而且也用于VTR信号处理、音响信号处理等模拟LSI电路。

四.SOP 小尺寸封装

SOP器件又称为SOIC(Small Outline Integrated Circuit),是DIP的缩小形式,引线字母L状引线中心距为1.27mm,材料有塑料和陶瓷两种。SOP也叫SOL和DFP。SOP封装标准有SOP-8、SOP-16、SOP-20、SOP-28等等,SOP后面的数字表示引脚数,业界往往把“P”省略,叫SO(Small Out-Line )。

(sop)

还派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。

五.PLCC 塑封有引线芯片载体

PLCC(Plastic Leaded Chip Carrier),引线中心距为1.27mm,引线呈J形,向器件下方弯曲,有矩形、方形两种。用于高速、高频集成电路封装。

(PLCC)

PLCC器件特点:

1.组装面积小,引线强度高,不易变形。

2..多根引线保证了良好的共面性,使焊点的一致性得以改善。 3.因J形引线向下弯曲,检修有些不便。

用途:现在大部分主板的BIOS都是采用的这种封装形式。

六.LCCC 无引线陶瓷芯片载体

LCCC(Leadless Ceramic Chip Carrier)其电极中心距有1.0mm、1.27mm两种。通常电极数目为18~156个。在陶瓷基板的四个侧面都设有电极焊盘而无引脚的表面贴装型封装。用于高速、高频集成电路封装。

(LCCC)

特点:

1.寄生参数小,噪声、延时特性明显改善。 2.应力小,焊点易开裂。

用途:用于高速,高频集成电路封装。主要用于军用电路。

七.PGA 插针网格阵列封装

PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多

个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。插脚节距为2.54 mm或1.27mm,插脚数可多达数百脚。用于高速的且大规模和超大规模集成电路。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

(PGA)

ZIF(Zero Inser tion Force Socket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。

PGA封装具有以下特点:

1.插拔操作更方便,可靠性高。 2.可适应更高的频率。

实例:Intel系列C PU中,80486和Pentium、Pentium Pro均采用这种封装形式。

八.BGA 球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 脚时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA(Ball Grid Array P ackage)封装技术。焊球的节距通常为1.5mm、1.0mm、0.8mm,与PGA相比,不会出现针脚变形问题

(BGA)

用途:BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类: 1.PBGA(Plasric BGA)基板:

PBGA是最普遍的BGA封装类型,其载体为普通的印制板基材,如FR—4等。硅片通过金属丝压焊方式连到载体的上表面,然后塑料模压成型。有些PBGA封装结构中带有空腔,称热增强型BGA,简称EBGA。下表面为呈部分或完全分布的共晶组份(37Pb/63Sn)的焊球阵列,焊球间距通常为1.0mm、1.27mm、1.5mm。

PBGA有以下特点:

其载体与PCB材料相同,故组装过程二者的热膨胀系数TCE(Thermal Coefficient Of Expansion)几乎相同,即热匹配性良好。

组装成本低。 共面性较好。 易批量组装。 电性能良好。

Intel系列CPU中,Pentium II、I II、IV处理器均采用这种封装形式。

2.CBGA(Ceramic BGA)基板:

即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片(FlipChip,简称FC)的安装方式。

硅片采用金属丝压焊方式或采用硅片线路面朝下,以倒装片方式实现与载体的互联,然后用填充物包封,起到保护作用。陶瓷载体下表面是90Pb/10Sn的共晶焊球阵列,焊球间距常为1.0mm和1.27mm。

CBGA具有如下特点: 优良的电性能和热特性。 密封性较好。 封装可靠性高。 共面性好。 封装密度高。

因以陶瓷作载体,对湿气不敏感。 封装成本较高。

组装过程热匹配性能差,组装工艺要求较高。

Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。

3. FCBGA(FilpChipBGA)基板:硬质多层基板。

4.TBGA(Tape BGA)基板:基板为带状软质的1-2层PCB电路板。 载带球栅阵列TBGA是载带自动键合TAB(Tape Automated Bonding)技术的延伸。TBGA的载体为铜/聚酰亚胺/铜的双金属层带(载带)。载体上表面分布的铜导线起传输作用,下表面的铜层作地线。硅片与载体实现互连后,将硅片包封起到保护作用。载体上的过孔实现上下表面的导通,利用类似金属丝压焊技术在过孔焊盘上形成焊球阵列。焊球间距有1.0mm、1.27mm、1.5mm几种。

TBGA有以下特点: 封装轻、小。 电性能良。

组装过程中热匹配性好。 潮气对其性能有影响。

5.CDPBGA(Carity Do wn PBGA)基板:指封装中央有方型低陷的芯片区(又称空腔区)。

综上,BGA封装具有以下特点:

1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。

2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接(C4),从而可以改善电热性能。

3.厚度比QFP减少l/2以上,重量减轻3/4以上。

4.寄生参数减小,信号传输延迟小,适应频率大大提高。 5.组装可用共面焊接,可靠性大大提高。

6.BGA封装仍与QFP、PGA一样,占用基板面积过大。

九.CSP 芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP(Chip Size P ackage)。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒(Die)大不超过1.4倍。

CSP封装又可分为四类:

1.Lead Frame Type(传统导线架形式),代表厂商有富士通、日立、Rohm、高士达(Goldstar)等等。

2.Rigid Interposer Type( 硬质内插板型),代表厂商有摩托罗拉、索尼、东芝、松下等等。

3. Flexible Interposer Type(软质内插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。

4.Wafer Level Package(晶圆尺寸封装):有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:

1.满足了芯片I/O引脚不断增加的需要。 2.芯片面积与封装面积之间的比值很小。 3.极大地缩短延迟时间。

CSP封装适用于脚数少的IC ,如内存条和便携电子产品。未来则将大量应用在信息家电(IA)、数字电视(DTV)、电子书(E-Book)、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽(Bluetooth)等新兴产品中。

十.MCM 多芯片模型贴装

曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(AS1C)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。

MCM的特点有:

1.封装延迟时间缩小,易于实现组件高速化。

2.缩小整机/组件封装尺寸和重量。一般体积减小1/4,重量减轻1/3。

3.可靠性大大提高。

本文来源:https://www.bwwdw.com/article/4ht.html

Top