Fitting Parameterized Three-dimensional Models to Images
更新时间:2023-07-25 22:41:01 阅读量: 实用文档 文档下载
- fitting推荐度:
- 相关推荐
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
FittingParameterizedThree-DimensionalModelstoImages
DavidG.Lowe
ComputerScienceDepartment
UniversityofBritishColumbia
Vancouver,B.C.,CanadaV6T1Z4
Email:lowe@cs.ubc.ca
Abstract
Model-basedrecognitionandmotiontrackingdependsupontheabilitytosolveforprojectionandmodelparametersthatwillbest ta3-Dmodeltomatching2-Dimagefeatures.Thispaperextendscurrentmethodsofparametersolvingtohandleobjectswitharbitrarycurvedsurfacesandwithanynumberofinternalpa-rametersrepresentingarticulations,variabledimensions,orsurfacedeformations.Numericalstabilizationmethodsaredevelopedthattakeaccountofinherentinac-curaciesintheimagemeasurementsandallowusefulsolutionstobedeterminedevenwhentherearefewermatchesthanunknownparameters.TheLevenberg-Marquardtmethodisusedtoalwaysensureconvergenceofthesolution.Thesetechniquesallowmodel-basedvisiontobeusedforamuchwiderclassofprob-lemsthanwaspossiblewithpreviousmethods.Theirapplicationisdemonstratedfortrackingthemotionofcurved,parameterizedobjects.
ThispaperhasbeenpublishedinIEEETransactionsonPatternAnalysisandMachineIntelligence,13,5(May1991),pp.441–450.
1
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
1Introduction
Model-basedvisionallowspriorknowledgeoftheshapeandappearanceofspeci cobjectstobeusedduringtheprocessofvisualinterpretation.Reliableidenti cationscanbemadebyidentifyingconsistentpartialmatchesbetweenthemodelsandfeaturesextractedfromtheimage,therebyallowingthesystemtomakeinferencesaboutthescenethatgobeyondwhatisexplicitlyavailablefromtheimage.Byprovidingthislinkbetweenperceptionandpriorknowledgeofthecomponentsofthescene,model-basedrecognitionisanessentialcomponentofmostpotentialapplicationsofvision.
Oneimportantcomponentofmodel-basedvisionistheabilitytosolveforthevaluesofallviewpointandmodelparametersthatwillbest tamodeltosomematchingimagefeatures.Thisisimportantbecauseitallowssometentativeinitialmatchestoconstrainthelocationsofotherfeaturesofthemodel,andtherebygeneratenewmatchesthatcanbeusedtoverifyorrejecttheinitialinterpretation.Thereliabilityofthisprocessandthe nalinterpretationcanbegreatlyimprovedbytakingaccountofallavailablequantitativeinformationtoconstraintheunknownparametersduringthematchingprocess.Inaddition,parameterdeterminationisnecessaryforidentifyingobjectsub-categories,forinterpretingimagesofarticulatedor exibleobjects,andforroboticinteractionwiththeobjects.
Inmostcases,itispossibletosolveforallunknownparametersfora3-Dmodelfrommatchestoasingle2-Dimage.However,insomecircumstances—suchaswhenboththesizeanddistanceofthemodelisunknown—theaccuracyofparameterdeterminationcanbesub-stantiallyimprovedbysimultaneously ttingthemodeltoimagestakenfrommorethanoneviewpoint.Themethodspresentedherecanbeusedineithersituation.
Thelocationsofprojectedmodelfeaturesinanimageareanon-linearfunctionoftheview-pointandmodelparameters.Therefore,thesolutionisbasedonNewton’smethodoflineariza-tionanditerationtoperformaleast-squaresminimization.Thisisaugmentedbyastabilizationmethodthatincorporatesapriormodeloftherangeofuncertaintyineachparameterandesti-matesofthestandarddeviationofeachimagemeasurement.Thisallowsusefulapproximateso-lutionstobeobtainedforproblemsthatwouldotherwisebeunderdeterminedorill-conditioned.Inaddition,theLevenberg-Marquardtmethodisusedtoalwaysforceconvergenceofthesolu-tiontoalocalminimum.Thesetechniqueshaveallbeenimplementedandtestedaspartofasystemformodel-basedmotiontracking,andtheyhavebeenfoundtobereliableandef cient.2Previousapproaches
AttemptstosolveforviewpointandmodelparametersdatebacktotheworkofRoberts[30].Althoughhissolutionmethodswerespecializedtocertainclassesofobjects,suchasrectangularblocks,Robertsclearlyunderstoodthevalueofquantitativeparameterdeterminationformakingvisionrobustagainstmissingandnoisydata.Unfortunately,therewerefewattemptstobuilduponthisworkformanyyearsfollowingitsinitialpublication.
In1980,theauthor[19]presentedageneraltechniqueforsolvingforviewpointandmodel
2
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
parametersusingNewton’smethodfornonlinearleast-squaresminimization.Sincethattimethemethodhasbeenusedsuccessfullyinanumberofapplications,anditalsoprovidesthestartingpointfortheworkpresentedinthispaper.Theapplicationofthemethodtorobustmodel-basedrecognitionhasbeendescribedbyLowe[20,21,22],McIvor[26],andWorrall,Baker&Sullivan[34].Bray[2]hasappliedthemethodtomodel-basedmotiontrackingofrigidobjects.Ishiietal.[14]describetheapplicationofthisworktotheproblemoftrackingtheorientationandlocationofarobothandfromasingleviewofLEDtargetsmountedonthewrist.Theirpaperprovidesadetailedanalysisthatshowsgoodaccuracyandstability.Goldberg&Lowe[8]describetheapplicationandtestingofanumberofmoreadvancednumericalmethodsforthisproblem.
Inrecentyears,therehasbeenaconsiderableincreaseinthenumberofpublicationsonparametersolvingformodel-basedvision,withmostoftheworkaimedatsolvingforviewpointparametersofrigidobjects.Liuetal.[18]andKumar[15]haveexaminedalternativeiterativeapproachestosolvingfortheviewpointparametersbyseparatingthesolutionforrotationsfromthosefortranslations.However,Kumarshowsthatthisapproachleadstomuchworseparameterestimatesinthepresenceofnoisydata.Therefore,headoptsasimilarsimultaneousminimizationasisusedintheworkabove.AquitedifferentapproachbasedontheuseofeliminationmethodstoprovidetheinitialproblemformulationhasbeenproposedbyPonceandKriegman[29].ThisalsousesNewton’smethodforthe nalparameterdeterminationbasedonleast-squaresminimization.
Haralicketal.[11]haveexperimentedwithrobustmethodssuchasiterativereweightinginordertoallowforoutlierscausedbyincorrectmatches.However,theirresultsshowthatevenoneoutlieramong20correctmatchesleadstoalargeincreaseinexpectederrorfollowingreweighting.Thealternativethatisusedinthispaperistoprovideahigher-levelsearchprocessthatconsidersothersetsofmatcheswhenthe rstsetfailstoresultinanaccurate tofthemodel.
2.1Theproblemofmultiplesolutions
Muchworkhasbeenpublishedoncharacterizingtheminimumamountofdataneededtosolveforthesixviewpointparameters(assumingarigidobject)andonsolvingforeachofthemulti-plesolutionsthatcanoccurwhenonlythisminimumdataisavailable.FischlerandBolles[6]showthatuptofoursolutionswillbepresentfortheproblemofmatching3modelpointsto3imagepoints,andtheygiveaprocedureforidentifyingeachofthesesolutions.Asolutionforthecorresponding4-pointproblem,whichcanalsohavemultiplesolutionsundersomecir-cumstances,isgivenbyHoraudetal.[12].HuttenlocherandUllman[13]showthatthe3-pointproblemhasasimplesolutionfororthographicprojection,whichisasuf cientlycloseapprox-imationtoperspectiveprojectionforsomeapplications.Theyusetheterm“alignment”torefertothesolutionforviewpointparametersduringthemodel ttingprocess.Inthemostvaluabletechniqueformanypracticalapplications,Dhomeetal.[4]giveamethodfordeterminingallsolutionstotheproblemofmatching3modellinesto3imagelines.Theyshowthatthisispar-ticularlyusefulforgeneratingstartingpositionsfortheiterativetechniquesusedinthispaper
3
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
whentherearemultiplesolutions.
Thisworkondeterminingallpossibleexactsolutionswillnodoubtbeimportantforsomespeci cvisionapplications,butitisprobablynotthebestapproachforpracticalparameterdeterminationingeneralmodel-basedvision.Oneproblemwiththesemethodsisthattheydonotaddresstheissueofill-conditioning.Evenifaproblemhasonlyoneanalyticsolution,itwilloftenbesuf cientlyill-conditionedinpracticetohaveasubstantialnumberandrangeofsolutions.Secondly,allthesemethodsdealwithspeci cpropertiesofthesixviewpointparameters,andthereislittlelikelihoodthattheycanbeextendedtodealwithanarbitrarynumberofinternalmodelparameters.Finally,thesemethodsfailtoaddresstheproblemofwhattodowhenthesolutionisunderconstrained.Thestabilizationmethodsdescribedinthispaperallowanapproximatesolutiontobeobtainedevenwhenaproblemisunderconstrained,aswilloftenbethecasewhenmodelscontainmanyparameters.
Possiblythemostconvincingreasonforbelievingthatitisnotnecessarytodetermineallpossiblesolutionsisthefactthathumanvisionapparentlyalsofailstodoso.Thewell-knownNeckercubeillusionillustratesthathumanvisioneasilyfallsintoalocalminimuminthedeter-minationofviewpointparameters,andseemsunabletoconsidermultiplesolutionsatonetime.Rock[31],pp.22ffsummarizesthewayinwhichhumanperceptionseemstoalwaysadoptoneparticularperceptionatanytimeeveninthefaceofcompletelyindeterminatecontinuousvariables.Theperceptioncansuddenlychangetoanewstablepositioninthefaceofnewin-formation,whichmaycomeinternallyfromothercomponentsofthevisualsystem(attention)aswellasfromtheexternalstimulus.Thisbehaviorisconsistentwithastabilizedminimiza-tionapproachfordeterminingtheparametervalues,inwhichtheprocesscanbeinitiatedfromnewstartingpointsasnewinformationbecomesavailable.Theextremelygoodperformanceofhumanvisioninmostrecognitionproblems,inspiteofitspotentialforgettingstuckinfalselocalminima,indicatesthatlocalminimamaynotbeamajorproblemwhendeterminingmodelparameters.
Itisworthnotingthattheparametersolvingproblemissimpli edwhenaccurate3-Dim-agedataisavailable(asfromascanninglaserrange nder),sincethisavoidssomeofthenon-linearitiesresultingfromprojection.ExamplesofsolutionstothisproblemaregivenbyFaugeras&Hebert[5]andGrimson&Lozano-P´erez[10].However,inthispaperwerestrictourattentionto tting3-Dmodelsto2-Dimagefeatures.
3Objectandscenemodeling
Mostresearchinmodel-basedvisionhasbeenbasedonmodelsofsimplepolyhedral3-Dob-jects.Whiletheyaresimpletoworkwith,theyareclearlyinadequateforrepresentingmanyreal-worldobjects.Someresearchhasbeenbasedonmodelsbuiltfromcertainclassesofvol-umetricprimitives,mostnotablygeneralizedcylinders[1,3]andsuperquadrics[27].Whiletheseareattractivebecauseoftheirabilitytocapturecommonsymmetriesandrepresentcertainshapeswithfewparameters,theyareill-suitedformodelingmanynaturalobjectsthatdonotexhibitthesetofregularitiesincorporatedintotheprimitives.
4
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Camera-centered
stretching subpart
Figure1:Modelpoints(incircles)arerepresentedasleavesinatreeofrotationortranslationtransformations.Thepositionandpartialderivativesofeachpointincamera-centeredcoordi-natesisdeterminedbythetransformationsalongthepathbacktotheroot.
The eldthathasmostthoroughlyexaminedtheproblemofrepresentingthevisualappear-anceofarbitraryobjectsiscomputergraphics.Thelessonsfromdevelopmentsinthat eldarequiteclear:complexanalyticrepresentationshavegivenwaytosimplelocalapproximationsasthemostcost-effectivesolution.Themostcommonformsoflocalapproximationnowusedformodelrepresentationpriortorenderingarepolygonalsurfacepatches,withtheappropriateinterpolationinthevariousparametersofinterestfordisplay.Sinceanarbitraryfunctioncanbeapproximatedtoanydesireddegreeofaccuracybyusingenoughsimplelocalapproximations,theonlyimportantissueatthislevelofrepresentationisoneofef ciency.Experienceincom-putergraphicshastendedtoshowthattheincreasednumberofapproximatingpatchesrequiredforsimplelinearapproximationsismorethancompensatedforbythespeedwithwhichtheycanbemanipulated.Ofcourse,morecomplexsplinesandvolumetricprimitivesmaystillbeusedformodelinputorotherhigher-levelreasoning.
Aswithcomputergraphics,visionisbasedupontheartofapproximation.Ofcourse,itisimportanttoapproximatetheappropriatemeasurements,asotherwiseanapproximationinonequantitymayintroduceunwantederrorsinitsderivativesorotherfunctionsthatdependuponit.Inmodel-basedvision,weareconcernedwithcorrectlyapproximatingthosefunctionsthatwillbematchedwithimagemeasurements.Inthecaseofedge-basedmatching,thiswill
5
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
includetheprojectedlocations,tangents,curvatures,anddiscontinuitiesofedges.Ifshadingorsurfacepropertieswerebeingmatched,thensurfacecurvaturesmustalsobeapproximated.Wehavedevelopedamodelingsystemthatallowsthesequantitiestobemodeledasafunctionofviewpointandinternalmodelparameterstoanydesireddegreeofaccuracyandusedforef cientparametersolving.
Althoughmodel-basedvisioncanlearnmuchfromcomputergraphics,themodelingre-quirementsalsohaveimportantdifferences.Inmodel-basedmatchingto2-Dimages,themod-elsarematchedtoderivedimagefeaturesratherthanbeingusedtogeneratedensesurfacedescriptions.Forexample,itisimportanttobeabletodirectlycalculatethepositionsofoc-cludingcontours,whichisnotpossibleinmanymodelingsystemsdevelopedforcomputergraphics.Sincethemodelsareprojectedandmanipulatedintheinner-loopofthematchingprocess,itisimportantthatallpossiblesourcesofef ciencyparticulartothevisiondomainbeexploited.Inaddition,certainquantitiesthatdonotoccuringraphicsapplications,suchasderivativeswithrespecttomodelparameters,mustbeef cientlyrepresentedandcomputed.Forallthesereasons,itisnecessarytodevelopamodelingsystemaimedatvisionratherthanadoptingexistingsystemsdevelopedforgraphics.
Asimplemodelinglanguagehasbeendevelopedthatcanbeusedtodescribearbitrarymod-elsandtheirinternalparametersforuseinmodel-basedvision.Thelanguageisusedtode neandname3-Dpoints,edgesandsurfacepatches,aswellasmodelparametersde ningrotationsandtranslations.Eachmodelpointisaleafinatreeofcoordinatetransformationsthatrep-resentanycombinationofpreviousrotationsandtranslationsspeci edbydifferentparameters(seeFigure1).Thesamemechanismisusedtohandlebothviewpointparametersandinternalmodelparameters,sotherootofthistreerepresentsthecameracoordinateframe.
Whenaninternalmodelisbuiltfromadescriptioninthislanguage,adensepointernetworkisconstructedthatlinkseachedgeelementtoitsadjoiningsurfacepatchesandendpoints.Acachingmechanismisusedsothatthevisibilityofeachsurfacepolygonandtheprojectionofeachpointiscalculatedonlyonce,unlikeinmostgraphicsmodelingsystems.Becauseeachpointonasurfaceorlinemaymoveindependentlybybeingattachedtodifferentframes,itispossibletospecifyarbitrary exiblemotionsofmodels.Forexample,thelineconnectingthepointsFandGinFigure1canstretchunderthein uenceofparameterandrotateinconjunctionwithanothermodelsubpartunderthein uenceofparameter(eachtranslationframespeci esatranslationdirectionandeachrotationspeci esarotationaxis).
Edgesarelabeledaccordingtowhethertheylieonasmoothsurfaceorformadiscontinuity.Bycachingarecordofthesurfacenormalforthepatchoneachsideofeachedge,thevisibil-ityandlocationsoftheoccludingboundariesandsurfacediscontinuitiescanbegeneratedveryef ter,wewilldescribehowthemodelrepre-sentationenablestheef cientcomputationofpartialderivativesofimagefeatureswithrespecttoeachparameter.
6
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure2:Anexampleofamodelwithcurvedsurfacesandaninternalparameterspecifyingrotationofthehandle.Theunderlyingapproximatingpatchesareshownontheleft,andthegeneratedcontoursformatchingareshownontheright.
4Solvingforviewpointandmodelparameters
Projectionfrom3-Dto2-Disanon-linearoperation.Fortunately,however,itisasmoothandwell-behavedtransformation.Rotationindepthpriortoprojectiontransformstheprojectedpointsasafunctionofthecosineoftherotationangle.Translationtowardsorawayfromthecameraintroducesperspectivedistortionasafunctionoftheinverseofthedistance.Translationparalleltotheimageplaneisalmostentirelylinear.Translationsandrotationsassociatedwithinternalmodelparametershaveeffectsthatareidenticaltotheviewpointparameters,butappliedtoonlyasubsetofthemodelpoints.Allofthesetransformationsaresmoothandwellbehaved.Therefore,thisproblemisapromisingcandidatefortheapplicationofNewton’smethod,whichisbasedonassumingthatthefunctionislocallylinear.Whilethisdoesrequirestartingwithanappropriateinitialchoicefortheunknownparametersandfacestheriskofconvergingtoafalselocalminimum,wewillseebelowthatstabilizationmethodscanbeusedtomakethismethodhighlyeffectiveinpractice.
7
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
4.1Newton’smethodandleast-squaresminimization
Ratherthansolvingdirectlyforthevectorofnon-linearparameters,,Newton’smethodcom-putesavectorofcorrections,,tobesubtractedfromthecurrentestimateforoneachitera-
istheparametervectorforiteration,then,tion.If
Givenavectoroferrormeasurements,,betweencomponentsofthemodelandtheimage,wewouldliketosolveforanthatwouldeliminatethiserror.Basedontheassumptionoflocallinearity,theaffectofeachparametercorrection,,onanerrormeasurementwillbemultipliedbythepartialderivativeoftheerrorwithrespecttothatparameter.Therefore,wewouldliketosolveforinthefollowingmatrixequation:
whereJistheJacobianmatrix:
Eachrowofthismatrixequationstatesthatonemeasurederror,,shouldbeequaltothesumofallthechangesinthaterrorresultingfromtheparametercorrections.Ifalltheseconstraintscanbesimultaneouslysatis edandtheproblemislocallylinear,thentheerrorwillbereducedtozeroaftersubtractingthecorrections.
Iftherearemoreerrormeasurementsthanparameters,thissystemofequationsmaybeoverdetermined(infact,thiswillalwaysbethecasegiventhestabilizationmethodspresentedbelow).Therefore,wewill ndanthatminimizesthe2-normoftheresidualratherthansolvesforitexactly:
min
Since
solutionasthenormalequations,,itcanbeshownthatthisminimizationhasthesame
whereisthetransposeofJ.Thisminimizationismakingtheassumptionthattheoriginalnon-linearfunctionislocallylinearovertherangeoftypicalerrors,whichistruetoahighdegreeofapproximationfortheprojectionfunctionwithtypicalerrorsinimagemeasurements.
andTherefore,oneachiterationofNewton’smethod,wecansimplymultiplyout
inthenormalequations(1)andsolveforusinganystandardmethodforsolvingasystemoflinearequations.Manynumericaltextscriticizethisuseofthenormalequationsaspotentiallyunstable,andinsteadrecommendtheuseofHouseholderorthogonaltransformationsorsingularvaluedecomposition.However,aclosestudyofthetrade-offsindicatesthatinfactthenormalequationsprovidethebestsolutionmethodforthisproblem.ThesolutionusingthenormalequationsrequiresonlyhalfasmanyoperationsastheHouseholderalgorithm(andanevensmallerfractionwithrespecttoSVD),butrequiresaprecisionoftwicetheword-lengthof
8
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
theHouseholderalgorithminordertosolveproblemsthatareequallyill-conditioned[9,16].Giventhestabilizationmethodsdescribedbelow,thenormalequationsareneversuf cientlyill-conditionedtorequiremorethansingle-precision oatingpointarithmetic,andthereforearemoreef cientinpracticethananyofthecompetingmethods.Evenifhigherprecisionwererequired,thetrade-offsforsingleversusdoubleprecisioncomputationonmodernhardwarewouldlikelyfavorthenormalequations.
4.2Ef cientcomputationofpartialderivatives
OneofthemostexpensiveaspectsofimplementingthissolutionmethodiscalculatingtheJacobianmatrixofpartialderivatives.Therefore,wehavedevelopedmethodsforusingpre-computationandshareddatastructurestoreducethesecosts.Inaddition,aspecialtechniqueisusedtohandlederivativeswithrespecttofull3-Drotationsinordertoeliminatesingularitiesandincreasetherateofconvergence.
Asdescribedearlierinthesectiononmodelrepresentation,allmodelpointsareleavesinatreeof“frame”datastructures.Eachframerepresentsarotationortranslationwithrespecttoitsparent.Therefore,bytracingbacktotherootofthetreefromeachmodelpoint,itispossibletoidentifythesetofvariabletransformationsthatin uencethatpoint.Eachframedatastructurealsocontainsprecomputedresultsforthecurrentviewthatcanbeusedbyallpointswhichdependonthatframeinordertocomputetheirpartialderivativeswithrespecttothatframe’sparameters.Asthereareusuallymanypointsin uencedbyeachframe,anyprecomputationofresultsfortheframeisfarmoreef cientthancomputingthemforeachpoint.
Itispossiblethatthesameparameterwillappearinmorethanoneframealongapaththroughthetree(e.g.,thelast2jointsofahuman ngerdonotmoveindependently,butdependonasingleparameteroftendoncontraction).Thiscaseiseasilyhandledbysimplysummingallofthepartialderivativesforaparticularparameter.
Eachtypeofframetransformationrequiresdifferentprecomputedresults,sothesearede-scribedindividuallyasfollows.
Translation.Eachvariabletranslationframecontainsa3-Dvectorgivingthedirectionalderiva-tiveincamera-centeredcoordinateswithrespecttothatframe’svariable.Asallpointsdepend-ingonthatframewillhavethissamedirectionalderivative,nofurthercomputationisrequired.Rotationaboutoneaxis.Eachvariablerotationframecontainsthe3-Dangularvelocityvectorandtheoriginofrotationforthecurrentviewpoint.Thedirectionalderivativeofeachpointthatdependsontheframeiscomputedbytakingthecrossproductoftheangularvelocityvectorwiththevectorfromtheoriginofrotationtothepoint.
Rotationaboutthreeaxes.Ifwecomposethreerotationsaboutindividualaxesinordertocom-puteanarbitrary3-Drotation,singularitiescaneasilyresultwherethesequentialcompositionofthethreerotationsfailtospecifyindependentdirectionsofrotation.Therefore,werepresentfullthree-degree-of-freedomrotationswitha3by3rotationmatrix,andcomputecorrectionsabouteachofthecoordinateaxestobecomposedwiththisrotation.Thisalsohasthebene t
9
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
thatthederivativescanbecomputedinanextremelyef cientform.Forexample,thedirec-tionalderivativeofapointwithrespecttoanincrementalrotationaboutthe-axisisthevector
,whereandrefertothecoordinatesofthevectorfromtheoriginofrotationtothepoint.
Oncethedirectionalderivativesofeachmodelpointhavebeencomputed,itissimplya
.Perspectiveprojectionofamodelpointmatterofprojectingtheseintoimagecoordinates
incamera-centeredcoordinatestoproduceanimagepointisgivenasfollows:
and
whereisaconstantproportionaltothefocallengthofthecameralens.Weincludeanotherconstant,,specifyingthewidth-to-heightaspectratioofeachpixelintheoriginalimage,asmostcurrentvideostandardshavenon-squareaspectratios.Takingthepartialderivativeofeachoftheabovefunctionswithrespecttoaparameter,weget
and
Herethepartialderivativesof,andwithrespectto
directionalderivativescalculatedearlier.aresimplythecomponentsofthe
4.3Measuringperpendicularerrorsforcurves
Themethodsabovewouldbesuf cientifwehadmatchesbetweenpointsonthemodelandpointsintheimage.However,inmostcasesthematcheswillactuallybebetweenprojectedcontoursofthemodelandpartialedgesintheimage.Sincetheprecisepositionoftheend-pointsofimageedgesareunknown(andmaybedisplacedduetoocclusion),itisnecessarytominimizeonlytheperpendiculardistancefrompointsonanimageedgetotheprojectedmodelcurve.
Itmightbethoughtthatself-occludingedgesofcurvedsurfaceswouldrequirespecialtreat-ment,astheactualmodeledgethatformssuchanoccludingcontourwillshiftwithchangesinviewpoint.However,thesurfacenormalatsuchanoccludingpointisexactlyperpendiculartotheviewingdirection,andthereforetheinstantaneousmotionofthecontourprojectedintotheimageiszeroasnearbypointsonthesurfacereplaceit.Forlargerrotations,theerrorintro-ducedbynon-linearityiseasilyhandledthroughthesameiterationsthatcompensateforothernon-linearities.
Inordertomeasuretheperpendiculardistancefromanimagepointtoaprojected2-Dmodelline,itisusefultoexpresstheprojectedmodellineinthefollowingform:
10
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
whereistheorientationofthelinewithrespecttothe-axisandisthesignedperpendicular
intotheleftsideofdistanceofthelinefromtheorigin.Ifwesubstituteanimagepoint
thisequationandcalculateanew,thenthesignedperpendiculardistanceofthispointfrom
.Thepartialderivativeofthisperpendicularerrormeasureisjustalinearthelineis
combinationofthepartialderivativesofand:
Inpractice,wecalculateandfrom2points,
bethelengthofthelinebetweenthesepoints:and,ontheline.Let
then
and
Theperpendicularerrorismeasuredbetweenselectedpointsontheimagecurveandtheperpendicularprojectionofthispointontotheclosestsegmentoftheprojectedmodelcurve.Thisdeterminationoftheclosestmatchingpointisupdatedoneachiterationofconvergence.
4.4Determiningastartingpositionforconvergence
Worrall,Baker&Sullivan[34]havestudiedtherangeofconvergencefortheauthor’searlierversionofthisalgorithmusingMonteCarlotechniques.Theyfoundthatthealgorithmwouldconvergetothecorrectsolutioninvirtuallyeverycaseforrotationerrorsoflessthan90degrees(translationerrorshavealmostnoeffect).Thenumberofiterationsriseswithincreasingerrorsuptoanaverageofabout6iterationsat90degrees.Withthestabilizationmethodsdescribedinthenextsection,convergenceissigni cantlyimprovedovereventheselevels.
Therefore,theaccuracyrequirementsfordeterminingtheinitialstartingpositionarequiteminimal.Forthemotiontrackingproblemwhichservesasourinitialfocus,wesimplyusetheparameterestimatesfromthepreviousframeaddedtoavelocityestimateforeachparameterobtainedfromtheprevious2frames.Forageneralrecognitionproblem,propertiesoftheimagematchesthatarebeing ttedcanbeusedtodetermineinitialparameterestimates.Forrotationindepth,eachmatchcanvoteforameandirectionfromwhichitisvisible(veryfewmodelfeaturesarevisiblefromallviewpoints)andthesedirectionvectorscanbeaveraged.Forrotationintheimageplane,wecanprojectthemodelfromtheestimatedrotationindepthandtaketheaverageimagerotationbetweenprojectedmodeledgesandthematchingimageedges.Estimatesfortranslationcanbemadebymatchingthecentersofgravityandstandarddeviationsfromthecentersofgravityfortheprojectedmodelfeaturesandimagefeatures.See
[21]foranexampleofcalculatinginitialestimatesforarecognitionproblem.
Ifthereareonlyaboutasmanymatchesasareneededtosolveforthedegreesoffreedom,thenitispossiblethatthereismorethanonelocalminimum.Thisproblemcanbeovercome
11
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
bystartingwithsomeextramatches(thesolutionadoptedintheauthor’sapplications),byattemptingtoconvergefromseveralstartingpositions,orbyusingananalyticmethodappliedtosubsetsofthematches(asinDhomeetal.[4])tocomputeacandidatesetofstartingpositions.Yetanotherapproachistoconstructaninverselookuptablethatmapsfeaturemeasurementsintoapproximateviewpointparameterestimates.SuchanapproachhasbeenusedbyThompsonandMundy[32]forverticesandbyGoad[7]forawiderangeofarbitrarymodelfeatures.5Stabilizingthesolution
Aslongastherearesigni cantlymoreconstraintsonthesolutionthanunknowns,Newton’smethodasdescribedabovewillusuallyconvergeinastablemannerfromawiderangeofstart-ingpositions.However,inbothrecognitionandmotiontrackingproblems,itisoftendesirabletobeginwithonlyafewofthemostreliablematchesavailableandtousethesetonarrowtherangeofviewpointsforlatermatches.Evenwhentherearemorematchesthanfreeparameters,itisoftenthecasethatsomeofthematchesareparallelorhaveotherrelationshipswhichleadtoanill-conditionedsolution.Theseproblemsarefurtherexacerbatedbyhavingmodelswithmanyinternalparameters.
5.1Specifyingapriormodel
Alloftheseproblemscanbesolvedbyintroducingpriorconstraintsonthedesiredsolutionthatspecifythedefaulttobeusedintheabsenceoffurtherdata.Inmanysituations,thedefaultso-lutionwillsimplybetosolveforzerocorrectionstothecurrentparameterestimates.However,forcertainmotiontrackingproblems,itispossibletopredictspeci c nalparameterestimatesbyextrapolatingfromvelocityandaccelerationmeasurements,whichinturnimplynon-zeropreferencesforparametervaluesinlateriterationsofnon-linearconvergence.
Anyofthesepriorconstraintsonthesolutioncanbeincorporatedbysimplyaddingrowstothelinearsystemstatingthevaluethatwewishtoassigneachparameter:
Theidentitymatrixaddsonerowforspecifyingthevalueofeachparameter,andspeci esthedesireddefaultvalueforparameter.
Theobviousproblemhereisthatthereisnospeci cationofthetrade-offsbetweenmeetingtheconstraintsfromthedataversusthoseofthepriormodel.Theappropriatesolutionistoweighteachrowofthematrixequationsothateachelementoftheright-handsidehasthesamestandarddeviation.Therefore,asweminimizetheerrorvector,eachconstraintwillcontributeinproportiontothenumberofstandarddeviationsfromitsexpectedvalue.
Wewillnormalizeeachrowofthesystemtounitstandarddeviation.Iftheimagemea-surementsareinpixels,thenleavingthesewithastandarddeviationof1isalreadyagood rstestimatefortheerrorinmeasuringthepositionofimagefeatures.Inourmatchingalgorithm,
12
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
wealsotakeaccountofpotentialambiguitiesinthematchtoincreasethestandarddeviation(i.e.,reducetheweighting)formatchesthatexhibitmorethanonenearbyalternative,sothatuncertaintiesinthecorrectmatchfornearbyalternativestranslateintotheappropriateuncer-taintiesinposition.
Themoreimportantnormalizationistoweightthepriormodelaccordingtothestandardde-viationsinthepriorestimatesforeachparameter.Thisisrelativelystraightforwardinthecaseofmotiontracking,wherelimitsontheaccelerationofeachparameterfromframetoframecanbeexpressedasastandarddeviation.However,inthecaseofmodel-basedrecognitionfromanyviewpoint,itmayseemthattherangeofexpectedvaluesisin nite.Infact,eachparameterislimitedduringconvergencebecauseweareassumedtobestartingfromsomeinitialapprox-imationtotheviewpoint.Therefore,therotationparameterswillhaveastandarddeviationof
,andthetranslationswillbelimitedtomaintainingthepositionoftheobjectwithinatmost
theimageframe.Internalmodelparameterswillhavestandarddeviationscorrespondingtoalargefractionoftheirvalidrangeofmovement.Thesedeviationsmaybelargeincomparisontothosearisingfromtheimagemeasurements,buttheystillplayasubstantialroleinstabilizingthesolutionforill-conditionedproblems.Infactthestandarddeviationscanbemadeseveraltimessmallerwithoutanadverseeffectonthedegreetowhichthe nalsolution tsthedatameasurements,becausethenon-lineariterativesolutioncanresetthestartingpointofthepriormodeltotheresultsofeachpreviousiteration.
5.2Ef cientcomputationofstabilization
Thepriorestimatesoftheparametervalueswillbeweightedbyadiagonalmatrix
eachweightisinverselyproportionaltothestandarddeviation,,forparameter:inwhich
Thismatrixisusedtoscaleeachrowofthepriormodelinthelowerpartofequation(2).Weassumethattheconstraintsbasedonimagemeasurementsintheupperpartoftheequationarealreadyscaledtohaveunitstandarddeviation.
Wewillminimizethissystembysolvingthecorrespondingnormalequations:
Whichmultipliesoutto
13
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Sinceisadiagonalmatrix,isalsodiagonalbutwitheachelementonthediagonalsquared.Thismeansthatthecomputationalcostofthestabilizationistrivial,aswecan rst
andthensimplyaddsmallconstantstothediagonalthataretheinverseofthesquareform
ofthestandarddeviationofeachparameter.Ifisnon-zero,thenweaddthesameconstantsmultipliedbytotherighthandside.Iftherearefewerrowsintheoriginalsystemthanparameters,wecansimplyaddenoughzerorowstoformasquaresystemandaddtheconstantstothediagonalstostabilizeit.
5.3Forcingconvergence
Evenafterincorporatingthisstabilizationbasedonapriormodel,itispossiblethatthesystemwillfailtoconvergetoaminimumduetothefactthatthisisalinearapproximationofanon-linearsystem.Wecanforceconvergencebyaddingascalarparameterthatcanbeusedtoincreasetheweightofstabilizationwheneverdivergenceoccurs.Thenewformofthissystemis
Thissystemminimizes
ManypeopleinthevisioncommunitywillrecognizethisasanexampleofregularizationusingaTikhonov[33]stabilizingfunctional,ashasbeenappliedtomanyareasoflow-levelvision(Poggioetal.[28]).Inthiscase,theparametercontrolsthetrade-offbetweenapprox-
,andminimizingthedistanceofthesolutionfromitsoriginalimatingthenewdata,
.startingposition,priortonon-lineariteration,
Theuseofthisparametertoforceiterativeconvergenceforanon-linearsystemwas rststudiedbyLevenberg[17]andlaterreducedtoaspeci cnumericalprocedurebyMarquardt
[24].Theyrealizedthatastheparameterisincreased,thesolutionwouldincreasinglycor-respondtopuregradientdescentwithsmallerandsmallerstepsizes,alongwithitspropertiesofguaranteed(butslow)convergence.Fordecreasing,theprobleminsteadmovesovertoNewton’smethod,withitsfastquadraticconvergencenearthesolutionbutthepossibilityofdivergencewhenstartingtoofaraway.Therefore,Marquardtsuggestedthesimplesolutionofmonitoringtheresidualofeachsolutionandincreasingbyfactorsof10untiltheresidualde-creased;otherwise,isdecreasedbyafactorof10oneachiteration.Thisdoesnotguaranteeanyparticularrateofconvergenceandcan,ofcourse,convergetoalocalratherthanglobalminimum.However,ithasprovedhighlyeffectiveinpracticeandisoneofthemostwidelyusedmethodsfornon-linearleast-squares.
Marquardtdidnotassumeanypriorknowledgeoftheweightingmatrix,butinstead
.estimatedeachofitselementsfromtheeuclideannormofthecorrespondingcolumnof
allowsthealgorithmtoperformmuchbetterwhenacolumnInourcase,theavailablityof
ofisnearzero.Italsogivesthestabilizationamuchmorepredictablebehavior.Increasingthevalueofwillessentiallyfreezetheparametershavingtheloweststandarddeviationsand
14
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure3:Twoiterationsofconvergenceareshownfordetermining3-Dviewpointandtheheightofthepyramidfrompartialmatchesto2-Dimagesegments.Perpendicularerrorsbeingminimizedaredisplayedasgraybarsbetweenmodelandimageedges.
thereforesolve rstforthosewithhigherstandarddeviations.Forourproblem,thisimpliesthatconvergencefordif cultproblemswillproceedbysolving rstfortranslationsandthenproceedingonsubsequentiterationstosolveforrotationsand nallyshort-rangeinternalmodelparameters.
6Resultsofimplementation
Allofthemethodsforobjectmodelingandparametersolvingdescribedabovehavebeenim-plementedinabout4000linesofCcode.Averysimpleexampleofmodel ttingisshowninFigure3.Themodelisapyramidwithaninternalparameterallowingforvariableheight.Themodelwasprojectedfromoneparticularsetofparametervalues,andrandomintervalsofsome
15
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure4:Animagefromamotionsequenceofapersonusingahanddrill.
oftheprojectedsegmentswerechosenformatching.ThemodelparameterswerechangedtoproducethestartingparameterestimatesshowninFigure3(b).Inthis gure,theperpendicularerrorsbeingminimizedaredisplayedasgraybarsbetweentheprojectedmodelsegmentsandthematchingimagesegments.Figures3(c)and3(d)showtheoutputfollowingthe rsttwoiter-ationsofthestabilizedalgorithmpresentedabove.Thisfastrateofconvergencewithinacoupleofiterationsistypicaloverawiderangeofinitialparametervalues(uptoatleast60degreeer-rorsinrotationparameters).SeeWorrall,Baker&Sullivan[34]forasystematicexplorationofconvergenceoverawiderangeoferrors,evenpriortotheadditionofthestabilizationandLevenberg-Marquardtmethods.Infact,divergenceisrelativelyrare,soitisuncommonfortheLevenberg-Marquardtmethodtotakeeffect;however,itscomputationalcostisalsolow,soitisprobablyofpracticalvalue.
6.1Applicationtomotiontracking
Oneinitialapplicationofthesemethodshasbeentotheproblemofmodel-basedmotiontrack-ing.ADatacubeimageprocessorwasusedtoimplementMarr-Hildreth[25]edgedetectioninrealtimeon512by485pixelimages.Theimagecontainingtheseedgepointsistransferredto
16
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure5:EdgesextractedfromtheimageofFigure4usingtheCannyedgedetector.Super-imposedontheseedgesarethemodelfromitspreviousestimatedviewpoint,nearbymatchingedges,andperpendicularerrorstobeminimized.
aSun3/260,wheretheedgesarelinkedintolistsonthebasisoflocalconnectivity.Afairlysimplematchingtechniqueisusedtoidentifytheimageedgesthatareclosesttothecurrentprojectedcontoursofa3-Dmodel.Thefewbestinitialmatchesareusedtoperformoneit-erationoftheviewpointsolution,thenfurthermatchesaregeneratedfromthenewviewpointestimate.Upto5iterationsofthisprocedureareperformed,withagraduallynarrowingrangeofimagelocationswhicharesearchedforpotentialmatches(thishelpstoeliminateanyfalseoutliermatches).Forsimplemodelswithstraightedges,allofthesestepscanbeperformedinlessthan1second,resultinginasystemthatcanperformrobustbutratherslowreal-timemo-tiontracking.Wehaverunthissystemforthousandsofframesatatimebyholdinganobjectinfrontofthevideocameraandslowlymovingit.Correctnessofthemotiontrackingcanbeeasilyjudgedinrealtimebywatchingawire-framemodelsuperimposedontheimagefromthecurrentsetofparameterestimates.Wearecurrentlyexploringtheuseofparallelarchitec-turesthatcouldgreatlyspeedtheoperationofthissystemsothatitperformsatvideoratesforcomplexobjectmodels.
17
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure6:Thenewmodelpositionandhandlerotationafteroneiterationofmodel tting.Newmatchestoimageedgesareshownwithheavylines.
Figures4–7showtheoperationofthesystemforoneframeofmotiontracking.However,duetothecomplexityofthemodel,thisversionrequiresabout6secondsofprocessingperframeonaSun3/260anddoesnotoperateinrealtime.Figure4showsanimageofahanddrillfromwhichedgesareextractedwithasimpli edversionoftheCannyedgedetector.InFigure5,themodelisshownsuperimposedontheseedgesfromthepreviousbestestimateofitscurrentviewpoint.Asimplematchingalgorithmisusedthat ndsimageedgesthatareclosetotheprojectedmodelcurvesoverthemaximumpossiblelengthoftheedge.Thesematchesarerankedaccordingtotheirlengthandaverageseparation,andthebestonesarechosenforminimization.TheselectedmatchesareshownwithheavylinesinFigure5alongwithperpendicularbarsmarkingtheerrorsbetweenmodelandimagecurvesthatareminimized.Afteroneiterationofmodel tting,thenewmodelpositionisshowninFigure6alongwithanewsetofimagematchesgeneratedfromthisposition.Notethattherotationofthehandleisafreeparameteralongwiththeviewpointparameters.Afterthisseconditerationofconvergence,the nalresultsofmodel ttingareshownsuperimposedontheoriginalimageinFigure7.Notethatduetoocclusionanderrorsinlow-leveledgedetection,this nalresultisbasedon
18
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure7:Aftertheseconditerationofconvergence,themodelisshownsuperimposedontheoriginalimage.
onlyasmallsubsetofthepredictedimageedges.However,duetotheoverconstrainednatureoftheproblem,inwhichfarmoremeasurementsareavailablethanunknownparameters,the nalresultcanbereliableandaccurate.
7Conclusionsandfuturedirections
Thispaperhaspresentedgeneralmethodsfor ttingmodelswitharbitrarycurvedsurfacesandanynumberofinternalparameterstomatchedimagefeatures.Considerableattentionhasbeengiventoissuesofrobustnessandef ciency,andthesetechniquesshouldserveasapracticalbasisformodel ttinginmostapplicationsofmodel-basedvision.
Thereareanumberofdirectionsinwhichthesemethodscouldbefurtherimproved.Oneisindealingwithobjectsthathaveverylargenumbersofvariableparameters.Sincethecomplex-
inthenumberofvariables,itwouldlikelybemoreityofsolvingalinearsystemrisesas
ef cienttopartitionproblemswithverylargenumbersofparametersintosmallersubsets.Thesimultaneoussolutionmethodwouldbeusedforallparameterswithlargerangesofuncertainty,buttheremainingoneswouldbesolvedforonthebasisoflocalindependentoptimization.Thiswouldbecomeparticularlyimportantifgenericclassesofobjectsaremodeled,aswasdonein
19
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
theAcronymsystem[3],inwhichalmosteverydimensionoftheobjectisvariable.
Whilethispaperextendsthemodelingandparametersolvingcomponentsofavisionsys-temsothattheycanworkwithcurvedobjects,thereisstillmuchresearchtobedoneregardinglow-levelcurvesegmentationandgrouping.Theauthorhasdevelopedsomemulti-scalecurvesmoothingmethods[23]thatwouldbesuitablefortheinitialcurvedescription,butmuchre-mainstobedoneatthelevelofgroupingandindexinginordertoproduceafullygeneralsystemforrecognitionofcurvedobjects.Bymakinguseofpropertiessuchascurvature,smoothnessandhigher-levelgroupings,itshouldbepossibletomakemajorgainsinthereliabilityofmatch-ing.
References
[1]Binford,ThomasO.,“Visualperceptionbycomputer,”IEEESystemsScienceandCybernetics
Conference,Miami(1971).
[2]Bray,AlistairJ.,“Trackingobjectsusingimagedisparities,”ImageandVisionComputing,8,1
(1990),4–9.
[3]Brooks,RodneyA.,“Symbolicreasoningamong3-Dmodelsand2-Dimages,”Arti cialIntelli-
gence,17(1981),285-348.
[4]Dhome,M.,M.Richetin,prest´e,andG.Rives,“Determinationoftheattitudeof3-Dobjects
fromasingleperspectiveview,”IEEEPAMI,11,12(1989),1265–78.
[5]Faugeras,O.D.,andM.Hebert,“Therepresentation,recognitionandlocatingof3-Dobjects,”The
InternationalJournalofRoboticsResearch,5,3(1986),27–52.
[6]Fischler,MartinA.andRobertC.Bolles,“Randomsampleconsensus:Aparadigmformodel
ttingwithapplicationstoimageanalysisandautomatedcartography,”CommunicationsoftheACM,24,6(1981),381-395.
[7]Goad,Chris,“Specialpurposeautomaticprogrammingfor3Dmodel-basedvision,”inFromPixels
toPredicates,ed.AlexPentland,(AblexPublishingCo.,1986),371-391.
[8]Goldberg,RobertR.,andDavidG.Lowe,“Veri cationof3-Dparametricmodelsin2-Dimage
data,”Proc.ofIEEEWorkshoponComputerVision,Miami(November1987),pp.255-257.
[9]Golub,GeneH.,andCharlesF.VanLoan,MatrixComputations,2ndEdition,TheJohnsHopkins
UniversityPress,Baltimore(1989).
[10]Grimson,Eric,andThom´asLozano-P´erez,“Model-basedrecognitionandlocalizationfromsparse
rangeortactiledata,”Int.JournalofRoboticsResearch,3(1984),3-35.
[11]Haralick,R.M.,H.Joo,C.Lee,X.Zhuang,V.G.Vaidya,andM.B.Kim,“Poseestimationfrom
correspondingpointdata,”IEEETrans.onSystems,ManandCybernetics,19,6(1989),1426–1446.
20
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
[12]Horaud,R.,B.Conio,O.Leboulleux,colle,“Ananalyticsolutionfortheperspective
4-pointproblem,”puterVisionandPatternRecognition,SanDiego(June1989),500–507.
[13]Huttenlocher,DanielP.,andShimonUllman,“Objectrecognitionusingalignment,”Proc.First
Int.Conf.onComputerVision,London,England(June1987),102–111.
[14]Ishii,M.,S.Sakane,M.KakikuraandY.Mikami,“A3-Dsensorsystemforteachingrobotpaths
andenvironments,”TheInternationalJournalofRoboticsResearch,6,2(1987),pp.45–59.
[15]Kumar,Rakesh,“Determinationofcameralocationandorientation,”Proc.DARPAImageUnder-
standingWorkshop,PaloAlto,Calif.(1989),870–879.
[16]Lawson,CharlesL.,andRichardJ.Hanson,SolvingLeastSquaresProblems,Prentice-Hall,En-
glewoodCliffs,NJ(1974).
[17]Levenberg,K.,“Amethodforthesolutionofcertainnon-linearproblemsinleastsquares,”Quart.
Appl.Math.,2(1944),164–168.
[18]Liu,Y.,T.S.HuangandO.D.Faugeras,“Determinationofcameralocationfrom2-Dto3-Dline
andpointcorrespondences,”IEEEPAMI,12,1(1990),28–37.
[19]Lowe,DavidG.,“Solvingfortheparametersofobjectmodelsfromimagedescriptions,”Proc.
ARPAImageUnderstandingWorkshop(CollegePark,MD,April1980),121–127.
[20]Lowe,DavidG.,PerceptualOrganizationandVisualRecognition(Boston,Mass:KluwerAca-
demicPublishers,1985).
[21]Lowe,DavidG.,“Three-dimensionalobjectrecognitionfromsingletwo-dimensionalimages,”
Arti cialIntelligence,31,3(March1987),355-395.
[22]Lowe,DavidG.,“Theviewpointconsistencyconstraint,”InternationalJournalofComputerVi-
sion,1,1(1987),57-72.
[23]Lowe,DavidG.,“Organizationofsmoothimagecurvesatmultiplescales,”InternationalJournal
ofComputerVision3,2(June1989),119–130.
[24]Marquardt,DonaldW.,“Analgorithmforleast-squaresestimationofnonlinearparameters,”Jour-
nal.Soc.Indust.AppliedMath.,11,2(1963),431–441.
[25]Marr,David,andEllenHildreth,“Theoryofedgedetection,”Proc.RoyalSocietyofLondon,B,
207(1980),187-217.
[26]McIvor,AlanM.,“AnanalysisofLowe’smodel-basedvisionsystem,”Proc.FourthAlveyVision
Conference,Univ.ofManchester(August1988),73–78.
[27]Pentland,AlexP.,“Perceptualorganizationandtherepresentationofnaturalform,”Arti cialIn-
telligence,28,3(1986),293-331.
21






正在阅读:
Fitting Parameterized Three-dimensional Models to Images07-25
仿写桂林山水的作文06-17
Module 8 Time off Unit 1 I can hardly believe we are in the city centre03-18
《铁道运输信号设备》期末考试卷09-15
浅谈小学语文教学中的朗读指导03-25
水文信息报汛方法03-22
高举党的旗帜,开创老干工作新局面10-18
2016苏教版二年级数学下册期末试卷03-15
工伤认定申请表(新)06-15
夏景作文300字07-09
- 1Three Passions
- 2Correspondence Transfer for the Registration of Multimodal Images
- 3Correspondence Transfer for the Registration of Multimodal Images
- 4B_Hose Fitting_Socket
- 5Translation - for - Senior - Three
- 6Risk assessment models and uncertainty estimation
- 7Three keys to a happy life
- 8lesson 8 Three Cups of Tea
- 9Orthogonal polynomial method and odd vertices in matrix models
- 10Chiral symmetry breaking from five dimensional spaces
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Parameterized
- dimensional
- Fitting
- Models
- Images
- Three
- 污水处理厂年终工作总结
- 专业英语课后习题答案unit1-9完整+10~13非完整版
- 安徽省机动车驾驶培训教练员教学服务规范
- 西餐零点服务程序(五)
- 《新形势下对央行事后监督职能发挥的思考 央行的职能》
- 消防安全员岗位职责
- 江苏苏州拙政园导游词
- 城区夜景照明建设工程设计原则和要求
- 鄂尔多斯市天骏公司塔拉壕卡车物流服务中心
- 小学四年级上册数学期末复习卷
- 《工作场所职业病危害警示标识》
- 信息技术课程思想树的结构及思维品质讨论
- 外科总论病例分析题4
- 血可宁治疗特发性血小板减少性紫癜临床观察
- 现代企业备品备件库存管理模式的探讨
- 几分之一教学案例
- 好用舒适卫生巾排行榜
- 有一种财富叫分享
- 钻石模型的汽车分析
- 宝马公司企业文化 BMW organizational culture