2008级数学分析3试卷A - 图文

更新时间:2024-06-07 19:53:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

························ ····__····_····__····_····__·····_····__····_····__···· ····号····学····_·····__····_····__····_····__····__·····装_ _ _ 订 姓名线 ···__····_····__····_·····__····_····__····_····__ ·······级···班···················································· 山东建筑大学试卷 共 4 页 第 1 页

二、单项选择题(本大题共5小题,每小题2分,共102009至2010第 1 学期 课程名称 数学分析3 试卷 A 得分 评卷人 分)在每小题列出的四个备选项中只有一个是最符合题专业: 08信计本1,2 (07 06信计补) 考试性质: 闭卷 考试时间 120 目要求的,请将其代码写在题后的括号内。错选、多选或未选均无分。 分钟 11、若函数z?f(x,y)在点(x0,y0)可微, 则曲面z?f(x,y)在点(x0,y0)的切平面的法线题号 一 二 三 四 五 六 总分 的方向数为 分数 A. (fx(x0,y0),fy(x0,y0),?1); B. ?(fx(x0,y0),fy(x0,y0),?1); 得分 评卷人 一、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 C. ?(fx(x0,y0),fy(x0,y0),?1); D. (fx(x0,y0),fy(x0,y0),?1) . 【 】 12、若函数f(x,y)在点(x0,y0)可微, 则曲面z?f(x,y)在点(x0,y0)的切平面的法线的1、?dsLx2?y2?z2 , 式中的L为螺旋线x?acost,y?asint,z?bt(0?t?2?). 正向与z轴正向的夹角为?,则cos?? 2、若平面点集所属的每一点都是E的内点,则称E为 . A. 1?z2x(x0,y0)?z2y(x0,y0); B. ?1?z2x(x0,y0)?z2y(x0,y0); 3、1?x2?y2? C. 1? . x,limy???0,0?x2?y21?z22; D. ?12【 】 x(x0,y0)?zy(x0,y0)1?zx(x0,y2. 0)?zy(x0,y0)4、累次积分?11213 、设曲面由方程F(x,y,z)?0给出, 它在点P0dx?xeydy? . 0(x0,y0,z0)的某邻域内满足隐函数定理5、抛物面z?ax2?by2在点M(x0,y0,z0)的法线方程为 . 的条件, 则由方程F(x,y,z)?0给出的曲面的切平面的法线的方向数为 6、抛物线y2?x与直线x?2y?3?0所围图形的面积S? . A.(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)); 7、设函数u?f(x,y,z)?x2?2y2?3z2?xy?4x?2y?4z,则B. ?(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)); grad f(0,0,0)? . C. (Fx(x0,y0,z0),Fy(x0,y0,z0),?1);D. ?(Fx(x0,y0,z0),Fy(x0,y0,z0),?1). 【 】 8、设z?f(xy2,x2y),则zxx= . 14 、设空间闭区域V由分片光滑的双侧闭曲面S围成, 若函数P,Q,R在V上连续,且有9、三重积分???xy2z3dxdydz? ,其中积分区域D是由曲面z?xy和平一阶连续偏导数, 则???????P?Q?R?D?x??y??z??dxdydz?V????Pdydz?Qdxdz?Rdxdy, S面y?x,z?0,以及x?1所围成. 其中 ?2x2?3y2A. S取外侧; B. S取内侧; 10、曲线??z2?9在点(1,?1,2)?z2?3x2?y2处的切线方程为 . C. S取外侧或内侧; D. S取上侧或下侧. 【 】 1

共 4 页 第 2 页 ?0 15、设f(x,y)为连续函数,则?4d??f(rcos?,rsin?)rdr等于 01A.?C.?220dx?dy?1?x2xf(x,y)dy. B.?220dx?1?x20四、计算题(本大题共3小题,每小题7分,共21分) 得分 评卷人 21、计算第一型曲线积分I??(x?y)ds,其中L为联结三点O(0,0), A(1,0), B(1,1) L的直线段. · ··········································································································f(x,y)dy. 2201?y2y f(x,y)dx. D.?220dy?1?y20f(x,y)dx. 【 】 解: 三、判断题(本大题共5小题,每小题2分,共10分)得分 评卷人 判断下列命题是否正确?正确的在命题后的括号中打 “?”,否则打“?”。 d16、如果函数f(x,y)在有界区域[a,b]?[c,d]上连续,则函数I(x)??f(x,y)dy在 c[a,b]上连续。 ( ) 17、如果函数f(x,y),fx(x,y)在无界区域[a,b]?[c,??)上连续,若含参变量的反常积分I(x)????c装订f(x,y)dy在[a,b]上收敛,则函数I(x)在[a,b]上可微, 且线·································································································· I'(x)???? cfx(x,y)dy.( ) 18、如果函数f(x,y)在无界区域[a,b]?[c,??)上连续,若含参变量的反常积分I(x)????22、计算二重积分cf(x,y)dy在[a,b]上一致收敛,则函数I(x)在[a,b]上可积, 且 ??b22??xyd?,其中D是由抛物线y?2px与直线x?Dp(p?0)所2?badx???cf(x,y)dy??dy?f(x,y)dx. ( ) ca围成的区域. 解: 19、第一型曲面积分的被积表达式一定是一个代数函数与一块曲面面积小微元(dS)的积,而第二型曲面积分的被积表达式一定是一个向量函数与一块?有向曲面小微元(dS)的数量积. ( ) 20、光滑的曲线段必是可求长可求长的曲线段, 同样光滑的曲面块是可求面积的曲面块. ( ) 2

共 4 页 第 3 页 23、计算I???x2dydz?y2dzdx?z2dxdy,其中S为单位球的上半部分,外侧为正向. S 25、求第二型曲面积分I???yzdxdy?zxdydz?xydzdx的值,其中S是由圆柱面S· ··········································································································解: 装订 线·································································································· 五、求解题(本大题共2小题,每小题8分,共16分) x2?y2?a2,z?h,(a,h?0)及三个坐标平面所围的第一象限部分的外侧曲面. 得分 评卷人 解: 24、求第二型曲线积分I???x2?xy?dx??xy?y2?dy的值, 其中L表示逆时针方向的左 L半椭圆解: xy??1 ?x?0,a,b?0?. 22ab22

3

共 4 页 第 4 页 S(t)?1. t???F(t)· ··········································································································装订线·································································································· 六、证明题(本大题共1小题,26题13分,共13分) 得分 评卷人 126、设悬链方程为y?ex?e?x,它在?0,t?上的一段弧长和曲边梯形的面积分别记为2 ??s(t),A(t).该曲边梯形绕x轴旋转一周所得旋转体的体积、侧面积和x?t处的截面面积分别记为V(t),S(t),F(t),证明: (1)s(t)?A(t),t?0;(2)S(t)?2V(t);(3)lim证明:

4

本文来源:https://www.bwwdw.com/article/4gv6.html

Top