Ndoped carbon nanomaterials are durable catalysts for oxygen
更新时间:2024-05-30 00:23:01 阅读量: 综合文库 文档下载
- ndo培训是什么意思推荐度:
- 相关推荐
RESEARCHARTICLE
ENERGYRESOURCES
2015?TheAuthors,somerightsreserved;N-dopedcarbonnanomaterialsaredurable
exclusivelicenseeAmericanAssociationfortheAdvancementofScience.DistributedcatalystsforoxygenreductionreactioninacidicunderaCreativeCommonsAttributionNon-CommercialLicense4.0(CCBY-NC).fuelcells
10.1126/sciadv.1400129
JianglanShui,MinWang,FengDu,LimingDai*
Theavailabilityoflow-cost,efficient,anddurablecatalystsforoxygenreductionreaction(ORR)isaprerequisiteforcommercializationofthefuelcelltechnology.Alongwithintensiveresearcheffortsofmorethanhalfacenturyindevelopingnonpreciousmetalcatalysts(NPMCs)toreplacetheexpensiveandscarceplatinum-basedcatalysts,anewclassofcarbon-based,low-cost,metal-freeORRcatalystswasdemonstratedtoshowsuperiorORRperformancetocommercialplatinumcatalysts,particularlyinalkalineelectrolytes.However,theirlarge-scalepracticalapplicationinmorepopularacidicpolymerelectrolytemembrane(PEM)fuelcellsremainedelusivebecausetheyareoftenfoundtobelesseffectiveinacidicelectrolytes,andnoattempthasbeenmadeforasinglePEMcelltest.Wedemonstratedthatrationallydesigned,metal-free,nitrogen-dopedcarbonnanotubesandtheirgraphenecompositesexhibitedsig-nificantlybetterlong-termoperationalstabilitiesandcomparablegravimetricpowerdensitieswithrespecttothebestNPMCinacidicPEMcells.Thisworkrepresentsamajorbreakthroughinremovingthebottleneckstotranslatelow-cost,metal-free,carbon-basedORRcatalyststocommercialreality,andopensavenuesforcleanenergygenerationfromaffordableanddurablefuelcells.
INTRODUCTION
AlongwithintensiveresearcheffortsofmorethanhalfacenturyinThemolecularoxygenreductionreaction(ORR)isimportanttomanydevelopingnonpreciousmetalORRcatalysts,anewclassofmetal-freefields,suchasenergyconversion(forexample,fuelcells,metal-airbat-ORRcatalystsbasedoncarbonnanomaterialshasbeendiscovered(1)teries,andsolarcells),corrosion,andbiology(1,2).Forfuelcellstogen-andattractedworldwideattention(15–33),which,asalternativeORRerateelectricitybyelectrochemicallyreducingoxygenandoxidizingfuelcatalysts,couldmarkedlyreducethecostandincreasetheefficiencyofintowater,cathodicoxygenreductionplaysanessentialroleinproducingfuelcells.Inparticular,itwasfoundthatverticallyalignednitrogen-dopedelectricityandisakeylimitingfactoronthefuelcellperformance(3–5).carbonnanotubeToconstructfuelcellsofpracticalsignificance,efficientcatalystsare?(VA-NCNT)arrayscanactasametal-freeelectrodetocatalyzea4eORRprocesswithathreetimeshigherelectrocatalyticrequiredtopromotetheORRatcathode(6–8).Traditionally,platinumactivityandbetterlong-termstabilitythancommerciallyavailablehasbeenregardedasthebestcatalystforfuelcells,althoughitstillsuffersplatinum/Celectrodes(forexample,C2-20,20%platinumonVulcanfrommultipledrawbacks,includingitssusceptibilitytotime-dependentXC-72R;E-TEK)inanalkalineelectrochemicalcell(1).Thesecarbon-driftandMeOHcrossoverandCOpoisoningeffects(4,9).However,basedmetal-freeORRcatalystsarealsofreefromtheCOpoisoningandthelarge-scalepracticalapplicationoffuelcellscannotberealizedifthemethanolcrossovereffects.
expensiveplatinum-basedelectrocatalystsforORRcannotbereplacedQuantummechanicscalculationswithB3LYPhybriddensityfunc-byotherefficient,low-cost,anddurableelectrodes.
tionaltheoryandsubsequentexperimentalobservationsindicatedthatCobaltphthalocyaninewasreportedastheORRelectrocatalystinal-thecarbonatomsadjacenttonitrogendopantsintheNCNTstructurekalineelectrolytesin1964(5,10).Sincethen,thesearchfornonprecioushadasubstantiallyhighpositivechargedensitytocounterbalancethemetalcatalysts(NPMCs)withtransitionmetal/nitrogen/carbon(M-Nx/C,strongelectronicaffinityofthenitrogenatom(1).Aredoxcyclingpro-typicallyx=2or4,M=Co,Fe,Ni,Mn)complexcatalyticsitesaslow-cessreducedthecarbonatomsthatnaturallyexistinanoxidizedform,costalternativestoPtforelectrochemicalreductionofoxygeninfuelcellsfollowedbyreoxidationofthereducedcarbonatomstotheirpreferredhasattractedlong-terminterest.AlthoughtremendousprogresshasbeenoxidizedstateuponOmadeandafewrecentlyreportedNPMCsshowelectrocatalyticper-2absorptionandreduction,leadingtoareducedORRpotential.Furthermore,theNdoping–inducedchargetransferformancecomparabletothatofPt(11–14),mostoftheNPMCsarestillfromadjacentcarbonatomscouldchangethechemisorptionmodetooexpensiveand/orfarawayfromsatisfactionindurabilityforpracticalofOapplications.ThoseNPMCsofhighcatalyticactivitiesoftenexhibitfast2fromanusualend-onadsorption(Paulingmodel)atthepureCNTsurfacetoaside-onadsorption(Yeagermodel)ofOdecayundersomewhatchallengingtesting/operationconditions,suchastoeffectivelyweakentheO-Obondingfor2ontotheNCNTelectrodeefficientataconstantvoltageof0.5Vwithpureoxygenascathodefuel(11,13),andORR(1).Hence,dopingcarbonnanomaterialswithheteroatomsasrelativelygooddurabilityhasonlybeenobservedunderlessefficientintheNCNTelectrodescouldefficientlycreatethemetal-freeactiveworkingconditionswitharelativelylowpotential(forexample,0.4V)sitesforelectrochemicalreductionofO2.
and/ordilutedoxygen(air)asthecathodefuel(14).
Recentworldwideresearchactivities(15–33)inthisexcitingfieldhavenotonlyconfirmedtheabovefindingsbutalsofurtherprovedthatCenterofAdvancedScienceandEngineeringforCarbon(Case4Carbon),Departmentthedoping-inducedchargetransferhaslargeimpactonthedesign/ofMacromolecularScienceEngineering,CaseSchoolofEngineering,CaseWesterndevelopmentofnewmetal-freeelectrocatalyticmaterials,includingvar-ReserveUniversity,10900EuclidAvenue,Cleveland,OH44106,USA.iousheteroatom-dopedCNTs(1,19),graphene(16,20,21),andgraph-*Correspondingauthor:E-mail:liming.dai@case.edu
ite(22–28)forfuelcellandmanyotherapplications(29–31).High
Shuietal.Sci.Adv.2015;1:e140012927February2015
1of7
Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE
electrocatalyticactivitycomparableorevensuperiortocommercialPt/CetchingoffthepurifiedVA-NCNTarrayfromtheSiwafersubstrateinelectrodesandexcellenttolerancetoMeOHcrossoverandCOpoi-aqueoushydrogenfluoride[10weightpercent(wt%)],rinsingitcopiouslysoningeffectshavebeendemonstratedformanyofthecarbon-basedwithdeionizedwater,transferringitontoagasdiffusionlayer[GDL;Car-metal-freeORRcatalystsinelectrochemicalhalf-cellswithalkalineelec-bonMicro-porousLayer(CMPL),ElectroChemInc.],anddrop-coatingtrolytes.Nevertheless,thelarge-scaleapplicationsofthecarbon-basedwithasulfonatedtetrafluoroethylene-basedionomer“Nafion”(DuPont)metal-freeORRcatalystsinpracticalfuelcellscannotberealizediftheyasbinderandelectrolyte,whichwasthenassembledwithaPt/C-coateddonothaveanadequatelong-termdurabilityandhighORRperformanceGDLastheanodeandanintermediatelayerofproton-conductiveinacidicpolymerelectrolytemembrane(PEM)fuelcells,whichcurrentlymembrane(NafionN211,DuPont)astheseparator(seetheSupple-serveasthemainstreamfuelcelltechnologyofgreatpotentialforlarge-mentaryMaterialsfordetailedpreparationandfig.S4fortheMEAscaleapplicationsinbothtransportandstationarysystems(9).Asyet,cross-sectionimages).AscanbeseeninFig.1(AtoC)andfig.S4,thehowever,theperformanceevaluation(forexample,electrocatalyticac-NCNTORRcatalystwithintheMEAthusproducedlargelyretaineditstivityandlong-termoperationalstability)ofcarbon-basedmetal-freeverticalalignment.
ORRcatalystsinactualPEMfuelcellshasbeenlargelyignored.ThisisTheresultingMEAcontainingtheVA-NCNTmetal-freeORRelec-presumablybecausecarbon-basedmetal-freeORRcatalystsareoftentrocatalystswasevaluatedinanacidicPEMfuelcelloperatingwiththefoundtobelesseffectiveinacidicelectrolyteswithrespecttoalkalineNafionelectrolyteandpureH2/O2gases.Tostartwith,thePEMfuelcellmedia,anditisquitechallengingtomakethemsufficientlyeffectivewasactivatedafter100scanningcyclesfromopencircuitpotentialforsingle-celltestinginacidicPEMfuelcells.
(OCV)to~0.1V(Fig.1D).Tooursurprise,aconsistentpolarizationper-Inspiteofthis,wedemonstratedherethatboththeVA-NCNTarrayformancewasobservedformorethan5100scanningcycles,indicat-andarationallydesignednitrogen-dopedgraphene/CNTcompositeingastableelectrocatalyticperformanceeveninacidundertheharsh(N-G-CNT)asthecathodecatalystsinacidicPEMfuelcellsexhibitedworkingcondition.Thus,N-Ccentersinthecarbon-basedmetal-freecat-remarkablyhighgravimetriccurrentdensitycomparabletothemostalystsseemtobemorestablethanthetransitionmetalactivesitesinactiveNPMCs.Becausecarbonismuchmoreanti-corrosivetoacidsNPMCsinPEMfuelcells(34,35).Therelativelypoorpolarizationperform-thanmosttransitionmetals,theVA-NCNTarrayandN-G-CNTcom-anceseeninFig.1Dforthefirst10cyclesis,mostprobably,duetotheweakpositefurthershowedasignificantlydurableperformance,evenwithelectrode-electrolyteinteractionontheas-preparedhydrophobic
pureH2/O2gases,inacidicPEMfuelcells,outperformingtheirNPMCcounterparts.Therefore,carbon-basedmetal-freecata-lystsholdgreatpotentialaslow-cost,effi-cient,anddurableORRcatalyststoreplacePtinpracticalPEMfuelcells.
RESULTS
VA-NCNTarrayshavebeenpreviouslyreportedtoshowexcellentORRperform-ance(1),evensuperiortothecommerciallyavailablePt/Celectrodes,inelectrochem-icalhalf-cellswithalkalineelectrolytes,asalsoconfirmedbytheVA-NCNTsusedinthisstudy(figs.S1toS3).TocarryouttheperformanceevaluationofVA-NCNTsinPEMfuelcells,wemadetheVA-NCNTarrays(80mminheight,?2asurfacepackingdensityof0.16mgcm)intoamembraneelectrodeassembly(MEA)atthehighestal-lowablecatalystloadingof0.16mgcm?2.Figure1schematicallyshowsproceduresfortheMEApreparation(Fig.1A),alongwithatypicalscanningelectronmicroscopic(SEM)imageofthestartingVA-NCNTar-ray(Fig.1B)andaphotographicimageofthenewlydevelopedMEA(Fig.1C),whereasFig.1.FabricationofMEAofVA-NCNTarraysanditsperformanceinaPEMfuelcell.(A)SchematictheMEAfabricationdetailsaregiveninthedrawingsforthefabricationofMEAfromVA-NCNTarrays(0.16mgcm?2)andtheelectrochemicaloxidationSupplementaryMaterials.Briefly,wefirsttoremoveresidueFe.C.E.,counterelectrode;R.E.,referenceelectrode;W.E.,workingelectrode.(B)TypicalperformedtheelectrochemicaloxidationSEMimageoftheVA-NCNTarray.(C)DigitalphotoimageoftheusedMEAafterdurabilitytestwiththecross-inHsectionSEMimagesshownintheinserts.(D)Polarizationcurvesasthefunctionofthearealcurrentdensity2SO4toremoveFeresidue,ifany,intheVA-NCNTsmadefrompyrolysisofafteraccelerateddegradationbyrepeatedlyscanningthecellfromOCVto0.1Vattherateof10mAs?1.(E)Polarizationandpowerdensityasthefunctionofthegravimetriccurrentdensity.Cathodecatalystloadingiron(II)phthalocyanine(1),followedby
0.16mgcm?2,Nafion/VA-NCNT=1/1.H2/O2:80°C,100%relativehumidity,2-barbackpressure.
Shuietal.Sci.Adv.2015;1:e1400129
27February2015
2of7
Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE
VA-NCNTelectrode,whichbecamehydrophilicuponelectrochemicalEmmett-Teller)surfacearea,1270m2g?1;KetjenblackEC-600JD]andactivationduringthesubsequentpolarizationcycles(36).FortheVA-NCNT375mgofNafionsolution(5%)in1.5mlofdeionizedwaterandiso-MEA,significantlyhighgravimetriccurrentdensitieswereobserved:35Ag?1propanolmixture(volumeratio=1:2).Thereafter,theinkwassonicatedat0.8V,145Ag?1at0.6V,and1550Ag?1at0.2V(Fig.1E).Ascanalsofor10minandstirredovernight,thenpaintedontoa5-cm2GDLasthebeseeninFig.1E,thepeakpowerdensitywas320Wg?1forourVA-NCNTcathodeelectrode,andassembledintoaMEAwithaPt/C-coatedGDLMEA,outperformingorcomparabletoeventhemostactiveNPMCcat-astheanodeandanintermediatelayerofproton-conductivemembranealysts(Table1)(11).
(NafionN211,DuPont)astheseparatorforsubsequenttesting(fig.S6).AsabuildingblockforCNTs,thetwo-dimensional(2D)singleSeveralsynergisticeffectscanarisefromtheabovefabricationprocesstoatomiccarbonsheetofgraphenewithalargesurfaceareaandpeculiarmaximizetheutilizationofcatalystsitesintheN-G-CNTcomposite:(i)electronicpropertiesisanattractivecandidateforpotentialusesinN-GcanpreventN-CNTsfromtheformationofthebundlestructuremanyareaswhereCNTshavebeenexploited.Thus,heteroatom-dopedtofacilitatethedispersionofN-CNTsbyanchoringindividualN-graphenehasquicklyemergedasanotherclassofinterestingcarbo-CNTsonthegraphenesheetsviathestrongp-pstackinginteractionnaceousmetal-freeORRcatalysts(16)soonafterthediscoveryof(fig.S5,AtoD);(ii)N-CNTscanalsoeffectivelypreventtheN-GsheetselectrocatalyticactivityofVA-NCNTs(1).SuperiortoCNTs,theone-fromrestackingbydispersingCNTsonthegraphenebasalplanetoatom-thickgraphenesheetshaveallconstituentcarbonatomsatthemakemorerigidcurvedN-G-CNTsheetsthantheN-Gsheets(fig.S5,surfacetoenhancethesurfaceareaanda2DplanargeometrytofurtherCtoF);and(iii)theadditionofcarbonblack(Ketjenblack)cannotfacilitateelectrontransport(37),andhenceveryeffectiveelectrocat-onlyfurtherseparateN-G-CNTsheetsinthecatalystlayerbutalsoin-alysis.Althoughgraphenesheetswithalargesurfaceareaandexcel-ducecontinuedporousmultichannelpathwaysbetweentheN-G-CNTlentchargetransportpropertiesareidealelectrocatalyticmaterialsforsheetsforefficientO2diffusion(Fig.2).Acomparisonoffig.S6FwithORRafterdopingwithappropriateheteroatoms(forexample,B,S,N,fig.S6Cindicatesthattheintroductionofcarbonblackparticlesledtoand/orP)(16,20,38),muchofthegraphenesurfaceareaandtheas-aporousnetworkstructurefortheN-G-CNT/KBcatalystlayer,facili-sociatedcatalystsitesarelostbecauseofrestackingviathestrongp-ptatingtheO2diffusion(seealso,Fig.2,AtoD).BETmeasurementsoninteractionifthegraphenesheetsarenotphysicallyseparatedtopreservetheelectrodesshowedthata5-cm2porouscathodeN-G-CNT/KB@GDLthehighsurfaceareaintrinsicallyassociatedwithindividualgraphenehasasurfaceareaof155m2g?1(or1161m2g?1aftertakingofftheweightsheets.Alongwithothers(37,39),wehaveprepared3Dgraphene-CNTofGDLandNafion)andasignificantnumberofporesfrommicro-toself-assemblies(dopedwithorwithoutheteroatoms)oflargesurface/macrosizes(Fig.2,EandF).Incontrast,adensecathodeN-G-CNT@GDLinterfaceareasandwell-definedporousnetworkstructuresaselectrodewithoutinterspersedcarbonblackparticleshasasurfaceareaaslowmaterialswithfastiondiffusionandefficientelectrontransportforen-as16cm2g?1withnegligibleporevolume.Thepresenceofporesinergyconversionandstorage(31,40–42),includingmetal-freeORRcat-Fig.2(CandD)couldfacilitatethemasstransferofO2gasintheporousalysts(43).
N-G-CNT/KBcatalystlayer(Fig.2G)withrespecttothedenselypackedBecauseexcellentORRperformance,particularlyinalkalinemedia,N-G-CNTsheets(Fig.2,AandB)withouttheintercalatedcarbonblackhasalsobeendemonstratedforgraphene-basedmetal-freeORRcata-(Fig.2H).
lysts(17,43),itishighlydesirabletoalsoevaluatetheirperformanceinBeforethesingle-cellperformanceevaluation,wecarriedoutthero-actualPEMfuelcellsinacidicmedia.Forthispurpose,wefirstpreparedtatingdiscelectrode(RDE)androtatingring-discelectrode(RRDE)metal-freegrapheneoxide(GO)suspensionbythemodifiedHummers’testsforthenewlydevelopedN-G-CNTmetal-freecatalystinamethod(31),whichwasthenmixedwithoxidizedCNTsuspension,three-electrodeelectrochemicalcell.Figure3AreproducestypicalcyclicpreparedfromcommerciallyavailablenonalignedmultiwalledCNTsvoltammetric(CV)curvesoftheN-G-CNT,showingalargecathodic(BaytubesC150HP,BayerMaterialScience)afterpurificationtore-peakat0.8VinO2-saturated0.1MKOHsolution,butnotN2-saturatedmovemetalresidues,toproducemetal-freeporousN-dopedgrapheneelectrolyte.TheonsetpotentialoftheN-G-CNTisashighas1.08V,andCNTcomposites(N-G-CNT)throughfreeze-drying,followedbynearly80mVhigherthanthatofPt/C(Fig.3B).Half-wavepotentialannealingat800°CinNHoftheN-G-CNTis0.87V,30mVhigherthanthatofPt/C.Therefore,detailsandfig.S5).3for3hours(seetheSupplementaryMate-rialsforTheN-G-CNT–basedcatalystinkforMEAstheN-G-CNTshowsexcellentelectrocatalyticperformancein0.1Mwasthenpreparedbymixing2.5mgofN-G-CNTcatalystwith10mgKOH,evenbetterthanthecommercialPt/Celectrode(C2-20,20%ofcarbonblackparticles[primaryparticleradius,34nm;BET(Brunauer-platinumonVulcanXC-72R;E-TEK),viaaone-step4e?ORRprocess
Table1.Thegravimetricactivitiesofvarioustransitionmetal–derivedNPMCscomparedwiththemetal-freeVA-NCNTandN-G-CNT+KBinPEMfuelcells.Allthedatainthetablehavealsobeenscaledbytheelectrodesurfacearea.Materials
Currentat0.8V
Currentat0.2V
Peakpowerdensity
Catalystloading-H2back(Ag?1)
(Ag?1)
(Wg?1)
(mgcm?2O2)
pressure(bars)
Reference
FeCo/N/C1570020021.0(14)Fe/N/C8/100800/2500233/4003.9/0.90.5(11)Fe/N/C153258041.3(45)VA-NCNT3515503200.161.5ThisworkN-G-CNT+KB
30
1500
300
0.5
1.5
Thiswork
Shuietal.Sci.Adv.2015;1:e140012927February20153of7
Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE
Fig.2.MorphologicalfeaturesoftheN-G-CNTelectrodeswithandwithoutvolumedistributions(F)ofapieceof5-cm2GDL,GDLwithKB(2mgcm?2theadditionofKetjenblack.(AtoD)Cross-sectionSEMimagesof(AandB)?2),GDLwithN-G-CNT(0.5mgcm),andGDLwithN-G-CNT/KB(0.5/2mgcm?2)thedenselypackedcatalystlayerofN-G-CNT/Nafion(0.5/0.5mgcm?2)andasindicatedinthefigures.(GandH)SchematicdrawingsoftheMEAcatalyst(CandD)theporouscatalystlayerofN-G-CNT/KB/Nafion(0.5/2/2.5mgcm?2).layercrosssection,showingthatO2efficientlydiffusedthroughthecarbonPurplearrowsin(D)indicatetheparallellyseparatedN-G-CNTsheetswithin-blackseparatedN-G-CNTsheets(G)butnotthedenselypackedN-G-CNTterdispersedporousKBagglomerates.(EandF)BETsurfaceareas(E)andpore
sheets(H).
(fig.S7)withabetterstabilityaswellasahighertolerancetoMeOHcrossoverandCOpoisoningeffectsthanthePtcatalyst(fig.S8).Asfarasweareaware,thesere-sultsarethehighestrecordsformetal-freegrapheneandCNTORRcatalysts.Asex-pected,theN-G-CNTcompositealsoexhib-itedmuchbetterORRperformancethanthatofN-CNTandN-Gcatalystsinboththealkaline(Fig.3C)andacidicmedia(Fig.3D)becauseofitsuniquefoam-like3Darchitectureformedinthethincom-positelayerontheRDEelectrodeevenwith-outtheadditionofcarbonblackintheabsenceofmechanicalcompression(fig.S9,videinfra)because3Dcarbonnetworkshavebeenpreviouslydemonstratedtofa-cilitateelectrocatalyticactivities(31,43).MoredetailedORRperformanceoftheN-G-CNTinacidicmediawithrespecttoFe/N/CandPt/Ccanbefoundinfig.S10.TheaboveresultsindicatethatN-G-CNTholdsgreatpotentialforoxygenre-ductioninpracticalfuelcells.Therefore,wefurthercarriedouttheperformanceeval-Fig.3.Electrocatalyticactivitiesofthecarbon-basedmetal-freecatalystsinhalf-celltests.(A)CVsoftheuationonMEAsbasedontheN-G-CNTN-G-CNTinO2-orN2-saturated0.1MKOH.(B)Linearsweepvoltammetry(LSV)curvesoftheN-G-CNTcom-ina5-cm2PEMfuelcellwithpureHparedwithPt/C(20%)electrocatalystbyRRDEinO2-saturated0.1MKOHsolutionatascanrateof10mVs?1asfuelgasesat80°C.andarotationspeedof1600rpm.(CandD)LSVcurvesoftheN-GandN-CNTcomparedwiththeN-G-CNTin?2Atatypicalcatalyst2/O2loadingof2mgcm(11–14,44),thecellO2-saturated0.1MKOH(C)and0.1MHClO4(D).
limitingcurrentwasaslowas700mAcm?2,
Shuietal.Sci.Adv.2015;1:e1400129
27February2015
4of7
Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE
althoughthecellOCVreached0.97V(fig.S11A).Wefoundthattheadditionofcar-bonblack(KB,2mgcm?2)intotheN-G-CNTcatalystlayerintheMEAcaused~85%improvementonthedeliveredcur-rentdensityatalowvoltagerange(<0.4V),althoughKBitselfhadnegligibleelectro-catalyticactivity(fig.S11A).Theaboveob-servedenhancementinthecurrentoutputcanbeattributedtotheKB-inducedporousnetworkformationtoenhancetheO(Fig.2,DandG,andfig.S6F)2dif-fusionbe-causetheporosityseeninfig.S9Ffortheas-castN-G-CNTsingleelectrodehasbeensignificantlyreducedwithinthecorre-spondingMEA(fig.S6C)preparedundermechanicalpressing(seetheSupplemen-taryMaterialsfortheMEApreparation).Theimprovedelectrocatalyticperform-ancewasalsosupportedbythereducedcellimpedancefortheN-G-CNT+KBwithrespecttoitsN-G-CNTcounterpart(fig.S11B).
ThecellperformancesattheN-G-CNTloading?of20.5and2mgcm?2plus
KB(2mgcm)arecomparable(Fig.4A),indicatingamarkedactivitysuppressionatFig.4.PoweranddurabilityperformanceofN-G-CNTwiththe?2additionofKBinPEMfuelcells.(A)highcatalystloadingevenwithcarbonPolarizationcurvesofN-G-CNTwithloadings:2,0.5,or0.15mgcmplusKB(2mgcm?2the)foreachcathode.blackdispersing.Whenthecatalystload-Theweightratioof(N-G-CNT/KB)/Nafion=1/1.(B)Cellpolarizationandpowerdensityasthefunctionofingwasfurtherreducedto0.15mgcm?2,gravimetriccurrentfortheN-G-CNT/KB(0.5/2mgcm?2)withtheweightratioof(N-G-CNT/KB)/Nafion=1/1.(C)Durabilityofthemetal-freeN-G-CNTinaPEMfuelcellmeasuredat0.5VcomparedwithaFe/N/Ccat-however,thecatalyticsitesinthecathodealyst(seetheSupplementaryMaterialsforpreparationdetails).CatalystloadingofN-G-CNT/KB(0.5mgcm?2)
werenotsufficienttosupportanormalandFe/N/C(0.5and2mgcm?2).Testcondition:H2/O2:80°C,100%relativehumidity,2-barbackpressure.polarizationcurve.Figure4Bshowsthegravimetricpolarizationandpowerden-sitycurvesfortheN-G-CNTinthepresenceofcarbonblack(N-G-theN-G-CNT+KBcatalystatbothlowandhighloadings(Fig.4CCNT/KB/Nafion=0.5:2:2.5mgcm?2),fromwhichacurrentof30Ag?1andfig.S14).at0.8V,alimitingcurrentof2000Ag?1at0.1V,andapeakpower
densityof300Wg?1wereobtained.Althoughmetal-freecatalystsusuallyexhibitedalowercatalyticactivitythandidNPMCsinRDEmea-DISCUSSIONsurements(45),theobservedgravimetricactivityoftheN-G-CNT+KBThefastperformancedropatthefirst20hoursfortheFe/N/Ccatalystiscomparabletohigh-performanceFe(Co)/N/Ccatalysts(Table1andwastypicalforNPMCs(5,11,45,46)becauseofdetrimentaleffectsoffig.S12,AtoC),attributabletothefullutilizationofcatalyticsitesintheacidicandstrongreductionenvironmentsonthemetalactivecen-therationallydesignedN-G-CNT+KBcatalystlayerwiththeenhancedtersatthePEMfuelcellcathode(34).BecausetheN-G-CNT+KBcat-multichannelO2pathways(Fig.2,DandG,andfig.S6F).The3Dmulti-alyticsitesarefreefrommetalnanoparticle(fig.S15),nosignificantchannelporousstructure,togetherwiththeuniquematerialshybrid-acidiccorrosionisenvisionedforthecarbonelectrodebecausecarbonization,makesthePEMfuelcellbasedontheN-G-CNT+KBcathodeismuchmoreanti-corrosivetoacidsthanmosttransitionmetals.There-toshowamuchbettercellperformancethandoitscounterpartswithfore,theobservedexcellentstabilitiesforbothN-G-CNT+KBandVA-thecathodemadefromeitheroftheconstituentcomponents(thatis,N-G+NCNTcathodesinPEMfuelcellsshouldbeanimportantintrinsic
KBandN-CNT+KB,respectively)(fig.S13).
characterforthecarbon-basedmetal-freecatalysts,facilitatingthemFinally,theN-G-CNT+KBwasfurthersubjectedtothedurabilityforalargevarietyofpracticalapplications.Theseresultsshowgreatpo-testintheacidicPEMfuelcellsataconstantvoltageof0.5Vwithpuretentialforcarbon-basedmetal-freecatalyststobeusedaslow-cost,H2/O2asfuelgases(Fig.4C)incomparisonwiththeFe/N/CNPMCefficient,anddurableORRcatalystsinpracticalPEMfuelcells.Further-(seetheSupplementaryMaterialsforpreparation).LikeVA-NCNT,more,theVA-NCNTandN-G-CNT+KBcatalystsusedinthisstudytheN-G-CNT+KBexhibitedanexcellentstabilitywitharelativelysharedsimilarfeaturesinthatN-dopedcarbonnanomaterialsweresmallcurrentdecay(~20Tcayover100hours;Fig.4C).Incontrast,usedforthehighORRelectrocatalyticactivities,andthattheporoustheFe/N/Ccatalystshowedaninitialsharpcurrentdecaywithatotalstructureswithalargesurfaceareawererationallydesignedforofabout75Tcayover100hoursatboththehigh(2mgcm?2)andenhancedelectrolyte/reactantdiffusion.Themethodologydevelopedlowloadings(0.5mgcm?2).Excellentdurabilitieswereobservedforherecanberegardedasageneralapproachforthedevelopmentof
Shuietal.Sci.Adv.2015;1:e1400129
27February2015
5of7
Downloaded from http://advances.sciencemag.org/ on January 28, 2016
RESEARCHARTICLE
alargevarietyofhigh-performance,low-cost,metal-freecatalystsforvariouspracticalenergydevices,particularlyinPEMfuelcells.
MATERIALSANDMETHODS
VA-NCNTwassynthesizedbypyrolysisofiron(II)phthalocyanineac-cordingtoourpreviouslypublishedprocedures(1).N-G-CNTcompositewassynthesizedbysequentiallycombiningamodifiedHummers’methodfortheGOfabrication(31),freeze-dryingamixtureofGOandoxidizedCNT,followedbyannealingat800°CinNHbefoundintheSupplementary3for3hours.ThepreparationdetailscanMaterials.ThetransitionmetalFe-derivedcontrolsample(Fe/N/C)wassynthesizedaccordingtoliteratures(11,46).Specifically,100mgofzeoliticimidazo-lateframeworks(ZIF8),togetherwith10mgoftris(1,10-phenanthroline)iron(II)perchlorateion,wasball-milledfor1hourandheatedinArat1000°Cfor1hourandthenat900°CunderNH3for15min.
TheelectrochemicalperformancesoftheaboveORRcatalystswerecharacterizedthrough(i)half-celltestsin0.1MKOHor0.1MHClO4electrolytesbyanRDEmethodand(ii)single-celltestswitha5-cm2MEAandpureHpressure.2/ODetailed2asfuelsat80°C,100%relativehumidity,and2-barbackelectrodefabricationandtestprocessesaredescribedintheSupplementaryMaterials.ThemorphologyandcompositioncharacterizationofthematerialsarealsogivenintheSup-plementaryMaterials.
SUPPLEMENTARYMATERIALS
Supplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/1/1/e1400129/DC1
Fig.S1.CharacterizationofVA-NCNTs.
Fig.S2.ElectrocatalyticactivitiesoftheVA-NCNTcatalystinalkalineelectrolyte(O2-saturated0.1MKOH)byhalf-celltests.
Fig.S3.ElectrocatalyticactivitiesoftheVA-NCNTcatalystinacidicelectrolyte(O2-saturated0.1MHClO4)byhalf-celltests.
Fig.S4.Typicalcross-sectionSEMimagesoftheGDLwiththeMEAofVA-NCNTsasthecath-odecatalystlayer,Nafionmembrane(N211)astheseparator,andPt/Castheanode.Fig.S5.SEM(A)andTEM(B)imagesofN-CNTbundles.
Fig.S6.Typicalcross-sectionSEMimagesoftheGDLswiththeMEAsof(AtoC)N-G-CNT(2mgcm?2)and(DtoF)N-G-CNT+KB(0.5+2mgcm?2)asthecathodecatalystlayers,respectively.
Fig.S7.Tafelplot(A)andelectrontransfernumber(B)fortheN-G-CNTandPt/C(20%)asthefunctionofelectrodepotentialbyRRDEinoxygen-saturated0.1MKOHsolutionatascanspeedof5mVs?1andarotationspeedof1600rpm.
Fig.S8.Long-timestabilityandtolerancetomethanol/carbonmonoxideofmetal-freecatalystN-G-CNT.
Fig.S9.SEMimagesofcatalystlayercrosssectionsusedinRDEmeasurements.
Fig.S10.Electrocatalyticactivitiesofthecarbon-basedmetal-freeN-G-CNTcatalystsinacidicelectrolyte(O2-saturated0.1MHClO4)byhalf-celltests.
Fig.S11.Optimizationofcathodecatalystlayercomposition.
Fig.S12.Single-cellperformancecomparisonbetweenN-G-CNTandFe/N/Ccatalystsatthesamecatalystlayercomposition:catalyst(0.5mgcm?2)/KB(2mgcm?2)/Nafion(2.5mgcm?2).Fig.S13.PolarizationcurvesoftheN-G-CNTandindividualcomponentsofN-GorN-CNT.Fig.S14.Durabilityofthecatalystlayercomposedofmetal-freeN-G-CNT(2mgcm?2)+KB(2mgcm?2)inaPEMfuelcellmeasuredat0.5V.Fig.S15.Themetal-freecharacterofN-G-CNTcatalyst.
REFERENCESANDNOTES
1.K.P.Gong,F.Du,Z.H.Xia,M.Durstock,L.M.Dai,Nitrogen-dopedcarbonnanotubearrayswithhighelectrocatalyticactivityforoxygenreduction.Science323,760–764(2009).2.J.L.Shui,N.K.Karan,M.Balasubramanian,S.Y.Li,D.J.Liu,Fe/N/CcompositeinLi–O2battery:Studiesofcatalyticstructureandactivitytowardoxygenevolutionreaction.J.Am.Chem.Soc.134,16654–16661(2012).
3.S.Basu,RecentTrendsinFuelCellScienceandTechnology(Springer,NewYork,2007).
Shuietal.Sci.Adv.2015;1:e140012927February20154.H.A.Gasteiger,S.S.Kocha,B.Sompalli,F.T.Wagner,ActivitybenchmarksandrequirementsforPt,Pt-alloy,andnon-PtoxygenreductioncatalystsforPEMFCs.Appl.Catal.BEnviron.56,9–35(2005).
5.F.Jaouen,J.Herranz,M.Lefèvre,J.P.Dodelet,U.I.Kramm,I.Herrmann,P.Bogdanoff,J.Maruyama,T.Nagaoka,A.Garsuch,J.R.Dahn,T.Olson,S.Pylypenko,P.Atanassov,E.A.Ustinov,Cross-laboratoryexperimentalstudyofnon-noble-metalelectrocatalystsfortheoxygenreductionreaction.ACSAppl.Mater.Inter.1,1623–1639(2009).
6.A.J.Appleby,Electrocatalysisofaqueousdioxygenreduction.J.Electroanal.Chem.357,117–179(1993).
7.R.Adzic,RecentAdvancesintheKineticsofOxygenReductioninElectrocatalysis(Wiley-VCH,NewYork,1998).
8.P.Somasundaran,EncyclopediaofSurfaceandColloidScience(Taylor&Francis,NewYork,ed.2,2006).
9.M.K.Debe,Electrocatalystapproachesandchallengesforautomotivefuelcells.Nature486,43–51(2012).
10.R.Jasinski,Anewfuelcellcathodecatalyst.Nature201,1212–1213(1964).
11.E.Proietti,F.Jaouen,M.Lefèvre,N.Larouche,J.Tian,J.Herranz,J.P.Dodelet,Iron-based
cathodecatalystwithenhancedpowerdensityinpolymerelectrolytemembranefuelcells.Nat.Commun.2,416(2011).
12.C.Chen,Y.Kang,Z.Huo,Z.Zhu,W.Huang,H.L.Xin,J.D.Snyder,D.Li,J.A.Herron,
M.Mavrikakis,M.Chi,K.L.More,Y.Li,N.M.Markovic,G.A.Somorjai,P.Yang,V.R.Stamenkovic,Highlycrystallinemultimetallicnanoframeswiththree-dimensionalelectrocatalyticsurfaces.Science343,1339–1343(2014).
13.M.Lefevre,E.Proietti,F.Jaouen,J.P.Dodelet,Iron-basedcatalystswithimprovedoxygen
reductionactivityinpolymerelectrolytefuelcells.Science324,71–74(2009).
14.G.Wu,K.L.More,C.M.Johnston,P.Zelenay,High-performanceelectrocatalystsforoxygen
reductionderivedfrompolyaniline,iron,andcobalt.Science332,443–447(2011).
15.S.B.Yang,X.L.Feng,X.C.Wang,K.Mullen,Graphene-basedcarbonnitridenanosheetsas
efficientmetal-freeelectrocatalystsforoxygenreductionreactions.Angew.Chem.Int.Ed.50,5339–5343(2011).
16.L.T.Qu,Y.Liu,J.B.Baek,L.M.Dai,Nitrogen-dopedgrapheneasefficientmetal-freeelec-trocatalystforoxygenreductioninfuelcells.ACSNano4,1321–1326(2010).
17.S.Wang,L.Zhang,Z.Xia,A.Roy,D.W.Chang,J.B.Baek,L.Dai,BCNgrapheneasefficient
metal-freeelectrocatalystfortheoxygenreductionreaction.Angew.Chem.Int.Ed.51,4209–4212(2012).
18.Y.Zheng,Y.Jiao,M.Jaroniec,Y.G.Jin,S.Z.Qiao,Nanostructuredmetal-free
electrochemicalcatalystsforhighlyefficientoxygenreduction.Small8,3550–3566(2012).19.L.Yang,S.Jiang,Y.Zhao,L.Zhu,S.Chen,X.Wang,Q.Wu,J.Ma,Y.Ma,Z.Hu,Boron-doped
carbonnanotubesasmetal-freeelectrocatalystsfortheoxygenreductionreaction.Angew.Chem.Int.Ed.50,7132–7135(2011).
20.C.Z.Zhu,S.J.Dong,Recentprogressingraphene-basednanomaterialsasadvancedelec-trocatalyststowardsoxygenreductionreaction.Nanoscale5,1753–1767(2013).
21.X.Q.Wang,J.S.Lee,Q.Zhu,J.Liu,Y.Wang,S.Dai,Ammonia-treatedorderedmesoporous
carbonsascatalyticmaterialsforoxygenreductionreaction.Chem.Mater.22,2178–2180(2010).
22.G.Liu,X.G.Li,J.W.Lee,B.N.Popov,Areviewofthedevelopmentofnitrogen-modified
carbon-basedcatalystsforoxygenreductionatUSC.Catal.Sci.Technol.1,207–217(2011).
23.R.A.Sidik,A.B.Anderson,N.P.Subramanian,S.P.Kumaraguru,B.N.Popov,O2reduction
ongraphiteandnitrogen-dopedgraphite:Experimentandtheory.J.Phys.Chem.B110,1787–1793(2006).
24.Z.W.Liu,F.Peng,H.J.Wang,H.Yu,W.X.Zheng,J.Yang,Phosphorus-dopedgraphite
layerswithhighelectrocatalyticactivityfortheO2reductioninanalkalinemedium.Angew.Chem.Int.Ed.50,3257–3261(2011).
25.I.Y.Jeon,H.J.Choi,M.J.Ju,I.T.Choi,K.Lim,J.Ko,H.K.Kim,J.C.Kim,J.J.Lee,D.Shin,
S.M.Jung,J.M.Seo,M.J.Kim,N.Park,L.Dai,J.B.Baek,Directnitrogenfixationattheedgesofgraphenenanoplateletsasefficientelectrocatalystsforenergyconversion.Sci.Rep.3,2260(2013).
26.I.Y.Jeon,H.J.Choi,M.Choi,J.M.Seo,S.M.Jung,M.J.Kim,S.Zhang,L.Zhang,Z.Xia,L.Dai,
N.Park,J.B.Baek,Facile,scalablesynthesisofedge-halogenatedgraphenenanoplateletsasefficientmetal-freeeletrocatalystsforoxygenreductionreaction.Sci.Rep.3,1810(2013).
27.I.Y.Jeon,S.Zhang,L.Zhang,H.J.Choi,J.M.Seo,Z.Xia,L.Dai,J.B.Baek,Edge-selectively
sulfurizedgraphenenanoplateletsasefficientmetal-freeelectrocatalystsforoxygenre-ductionreaction:Theelectronspineffect.Adv.Mater.25,6138–6145(2013).
28.I.Y.Jeon,H.J.Choi,S.M.Jung,J.M.Seo,M.J.Kim,L.Dai,J.B.Baek,Large-scalepro-ductionofedge-selectivelyfunctionalizedgraphenenanoplateletsviaballmillingandtheiruseasmetal-freeelectrocatalystsforoxygenreductionreaction.J.Am.Chem.Soc.135,1386–1393(2013).
29.Y.Li,J.Wang,X.Li,J.Liu,D.Geng,J.Yang,R.Li,X.Sun,Nitrogen-dopedcarbonnanotubes
ascathodeforlithium–airbatteries.Electrochem.Commun.13,668–672(2011).
6of7
Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE
30.J.L.Shui,F.Du,C.M.Xue,Q.Li,L.M.Dai,VerticallyalignedN-dopedcoral-likecarbonfiber
arraysasefficientairelectrodesforhigh-performancenonaqueousLi-O2batteries.ACSNano8,3015–3022(2014).
31.Y.Xue,J.Liu,H.Chen,R.Wang,D.Li,J.Qu,L.Dai,Nitrogen-dopedgraphenefoamsas
metal-freecounterelectrodesinhigh-performancedye-sensitizedsolarcells.Angew.Chem.Int.Ed.Engl.51,12124–12127(2012).
32.H.T.Chung,C.M.Johnstona,K.Artyushkovab,M.Ferrandonc,D.J.Myersc,P.Zelenay,
Cyanamide-derivednon-preciousmetalcatalystforoxygenreduction.Electrochem.Commun.12,1792–1795(2010).
33.C.H.Choi,M.W.Chung,H.C.Kwon,S.H.Park,S.I.Woo,B,N-andP,N-dopedgrapheneas
highlyactivecatalystsforoxygenreductionreactionsinacidicmedia.J.Mater.Chem.A1,3694–3699(2013).
34.Q.Wang,Z.Y.Zhou,Y.J.Lai,Y.You,J.G.Liu,X.L.Wu,E.Terefe,C.Chen,L.Song,M.Rauf,N.Tian,
S.G.Sun,Phenylenediamine-basedFeNx/Ccatalystwithhighactivityforoxygenreductioninacidmediumanditsactive-siteprobing.J.Am.Chem.Soc.136,10882–10885(2014).
35.Y.Jiao,Y.Zheng,M.Jaroniec,S.Z.Qiao,OriginoftheElectrocatalyticoxygenreduction
activityofgraphene-basedcatalysts:Aroadmaptoachievethebestperformance.J.Am.Chem.Soc.136,4394–4403(2014).
36.L.Li,Y.C.Xing,Electrochemicaldurabilityofcarbonnanotubesinnoncatalyzedand
catalyzedoxidations.J.Electrochem.Soc.153,A1823–A1828(2006).
37.L.M.Dai,Functionalizationofgrapheneforefficientenergyconversionandstorage.Acc.
Chem.Res.46,31–42(2013),andreferencescitedtherein.
38.Z.Yang,Z.Yao,G.Li,G.Fang,H.Nie,Z.Liu,X.Zhou,X.Chen,S.Huang,Sulfur-dopedgrapheneas
anefficientmetal-freecathodecatalystforoxygenreduction.ACSNano6,205–211(2012).39.T.Y.Ma,S.Dai,M.Jaroniec,S.Z.Qiao,Graphiticcarbonnitridenanosheet–carbonnano-tubethree-dimensionalporouscompositesashigh-performanceoxygenevolutionelec-trocatalysts.Angew.Chem.Int.Ed.53,7281–7285(2014).
40.F.Du,D.Yu,L.Dai,S.Ganguli,V.Varshney,A.K.Roy,Preparationoftunable3Dpillaredcarbon
nanotube-graphenenetworksforhigh-performancecapacitance.Chem.Mater.23,4810–4816(2011).
Shuietal.Sci.Adv.2015;1:e140012927February201541.D.S.Yu,L.M.Dai,Self-assembledgraphene/carbonnanotubehybridfilmsforsupercapacitors.
J.Phys.Chem.Lett.1,467–470(2010).
42.D.Yu,K.Goh,H.Wang,L.Wei,W.Jiang,Q.Zhang,L.Dai,Y.Chen,Scalablesynthesisof
hierarchically-structuredcarbonnanotube-graphenefibresforcapacitiveenergystorage.Nat.Nanotechnol.9,555–562(2014).
43.Y.Xue,D.Yu,L.Dai,R.Wang,D.Li,A.Roy,F.Lu,H.Chen,Y.Liu,J.Qu,Three-dimensionalB,
N-dopedgraphenefoamasmetal-freecatalystsforoxygenreductionreaction.Phys.Chem.Chem.Phys.15,12220–12226(2013).
44.G.Wu,C.S.Dai,D.L.Wang,D.Y.Li,N.Li,Nitrogen-dopedmagneticonion-likecarbon
assupportforPtparticlesinahybridcathodecatalystforfuelcells.J.Mater.Chem.20,3059–3068(2010).
45.G.Wu,K.L.More,P.Xu,H.L.Wang,M.Ferrandon,A.J.Kropf,D.J.Myers,S.Ma,
C.M.Johnston,P.Zelenay,Acarbon-nanotube-supportedgraphene-richnon-preciousmetaloxygenreductioncatalystwithenhancedperformancedurability.Chem.Commun.49,3291–3293(2013).
46.D.Zhao,J.L.Shui,L.R.Grabstanowicz,C.Chen,S.M.Commet,T.Xu,J.Lu,D.J.Liu,Highly
efficientnon-preciousmetalelectrocatalystspreparedfromone-potsynthesizedzeoliticimidazolateframeworks.Adv.Mater.26,1093–1097(2014).Acknowledgments:WethankthesupportfromtheNationalScienceFoundation(AcceleratingInnovationResearch-IIP-1343270andCMMI-1266295).
Submitted20November2014Accepted24January2015Published27February201510.1126/sciadv.1400129
Citation:Shuietal.,N-dopedcarbonnanomaterialsaredurablecatalystsforoxygenreductionreactioninacidicfuelcells.Sci.Adv.1,e1400129(2015).
7of7
Downloaded from http://advances.sciencemag.org/ on January 28, 2016N-doped carbon nanomaterials are durable catalysts foroxygen reduction reaction in acidic fuel cells
Jianglan Shui, Min Wang, Feng Du and Liming Dai (February 27,2015)
Sci Adv 2015, 1:.
doi: 10.1126/sciadv.1400129
This article is publisher under a Creative Commons license. The specific license under whichthis article is published is noted on the first page.
For articles published under CC BY licenses, you may freely distribute, adapt, or reuse thearticle, including for commercial purposes, provided you give proper attribution.
For articles published under CC BY-NC licenses, you may distribute, adapt, or reuse the articlefor non-commerical purposes. Commercial use requires prior permission from the American Association for the Advancement of Science (AAAS). You may request permission by clicking here.
The following resources related to this article are available online at
http://advances.sciencemag.org. (This information is current as of January 28, 2016):Updated information and services, including high-resolution figures, can be found in theonline version of this article at:
http://advances.sciencemag.org/content/1/1/e1400129.full
Supporting Online Material can be found at:
http://advances.sciencemag.org/content/suppl/2015/02/25/1.1.e1400129.DC1This article cites 41 articles,5 of which you can be accessed free: http://advances.sciencemag.org/content/1/1/e1400129#BIBL
Science Advancespublished by the American Association for the Advancement of Science (AAAS), 1200 New (ISSN 2375-2548) publishes new articles weekly. The journal is
York Avenue NW, Washington, DC 20005. Copyright is held by the Authors unless statedotherwise. AAAS is the exclusive licensee. The title Science Advances is a registered trademark of AAAS
Downloaded from http://advances.sciencemag.org/ on January 28, 2016
正在阅读:
Ndoped carbon nanomaterials are durable catalysts for oxygen05-30
浅谈政治课教学中的情感教育08-19
2015-2016学年八年级上学期第一次质量检测政治试题(江苏适用含答案)07-20
学员信息登记表09-01
电子商务专业毕业综合实习报告格式05-18
在政府采购过程中,采购人员及相关人员与供应商有利害关系的应当回避,这体08-31
2019年中国电子管用云母片行业市场运营态势及投资前景分析报告目录11-23
马原考试复习题 - (带全答案)11-05
基础护理学 - 图文09-15
被动句03-16
- 1carbon杂志最新的Checklist-20150216
- 2Prediction of methane and carbon dioxide solubility in water
- 3Honeycomb Carbon A Review of Graphene 石墨烯综述
- 4Water soluble carbon nanoparticles Hydrothermal synthesis and excellent photoluminescence properties
- 506-AM-Structure-Dependent Electrical Properties of Carbon Nanotube
- 6碳捕捉(Carbon capture and storage,简称CCS)
- 7Honeycomb Carbon A Review of Graphene 石墨烯综述
- 8Simultaneous determination of catechol and hydroquinone by carbon paste electrode modified
- 9xide into synthesisgorted catalysts. Effect of Ni-Al2 O3interactions
- 10Evaluation of Removal Efficiency of Cobalt from Aqueous Solution Using Granular Activated Carbon
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- nanomaterials
- catalysts
- durable
- Ndoped
- carbon
- oxygen
- 小学数学自学能力的培养策略
- 舌尖上的植物学答案
- 防治水规定四项制度
- 物业电工大纲(初稿)
- 唐珂-溱湖农业生态旅游开发的SWOT分析 - 图文
- 岳阳市中考满分作文-十六岁的天空
- 2009年全国1卷高考数学试题(文科)
- 数学运算习题
- GB2GC3质量体系责任人员考试题
- 计算机网络期末考试试题及答案
- 电力拖动自动控制系统_第四版_课后答案
- 三年级上册劳动技术教案(云教版上册)
- 开展继续解放思想大讨论活动第一阶段工作情况汇报
- 期权习题库
- 2013年广州市中考英语试卷及答案
- 《网络编程课程设计》实习总结
- 杨受成携妻出席《杜老志》舞台剧现场 刘嘉玲14年后首演舞台剧
- 智能立体车库控制系统设计PLC控制电机部分
- 河北省唐山市2018届高三第二次模拟考试文综地理试题含答案
- 化工原理上册填空选择(课堂版)