兰大08年09年数分考研试题及解答

更新时间:2024-03-04 16:47:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

兰州大学2008年数学分析考研试题及解答

一.计算. 1.求limlnn?1?n????1??2??n?1??1??????. n??n??n?解 limlnn??nn1??2??n?1?k??ln?1?? ??1???1????1???limn??n??n?n??k?1n?n?? ??10ln?1?x?dx

2 ??1lnxdx??xlnx?x?

12 ?2ln2?1. 2.设an?1?3?5??2n?1?2?4?6??2n?,?n?1,2,??,

求证(1)?an?单调递减; (2)an?12n?1;

(3)求liman.

n??证明 (1)因为

an?1an?2n?12n?2?1,

所以an?1?an,?n?1,2,??, 于是?an?是单调递减的; (2)由?2k?1??2k?1??1?3?5??2n?1?2?4?6??2n??2k?1???2k?1?2?2k,

得an??113?335?2n?12n?12n?1

?12n?112n?1,?n?1,2,??

(3)由(2)知0?an?,

所以liman?0.

n??11?3?233 求lim??x?3x???x?2x?2?.

x?????11?3?2解 lim??x?3x?3??x?2x?2?

x?????11??3232?????limx??x?2???1??? x?????x?x?????113?3?2?2?1??1????2?x?x????limx???1x

?lim?t?0?1?3t?213??1?2t?2t1

21??1?1?23?lim???1?3t??6t??1?2t?2??2?? t?02?3??1.

4. 求I?解 I????0xsinx1?cosxxsinx2dx

0?01?cosx2dx?????0???y?sin???y?21?cos???y???dy?

????0?x?sin???x?1?cosx2dx

???所以 I??sinx1?cosx2dx?I,

?22??0sinx1?cosx2dx

??21?111?tdt

??2arctant1?1???2?2??24.

x3y?x?y3?5. 求lim?cos?x??,x??y?ax3.

y?x?y3?解lim?cos?x??,x??y?a

31??yy??cos?1?lim??1?cos?1?x?x??,??x??y?a??y??x?cos?1?3x??x?y

?ey?ay?x?lim?cos?1?x??,?x?x?y33,

33yx??x?2y? lim?cos?1??lim?2sin??33x??,x??,xx?yxx?y????y?ay?a ??2limyx22x??,y?a?x33x?y

??2limy1?2x??,y?ay3??2a2,

xx32y?x?y3??2a?e故lim?cos?x??,x??y?a.

6. 求I???Lxdy?ydxx?y22,其中L是不过原点的简单闭曲线.

xx?y22解 记P??Q?x?P?y?yx?y22,Q?,

??0,?x,y???0,0?,

而由Green公式

若原点?0,0?在L所围区域的内部,则取??0充分小,使得B??0,0?,??包含在L所围区域的内部.

I?x?y?B??0,0?,??2?0?xdy?ydx22

? ???cos????cos????sin?????sin???d??2?.

2d?

?2?0二.设f?x?在x?0处可导,且f?0??0,f??0??1. 证明 存在??0,使得x??0,??时,有f?x??x. 证明 由题设条件,知

limf?x?x?limf?x??f?0?x?0?f??0??1,

x?0x?0于是存在??0,使得当0?x??时, 有

f?x?xf??0??12?1,

?从而当x??0,??时,有f?x??x.

三.试证明f?x??x?2在?0,1?上不一致连续,但是对任何0???1,f?x??x?2在

??,1?上一致连续.

证明(1)取xn?2n,yn?3421n,尽管lim?xn?yn??0,

n??但f?xn??f?yn??n???,?n????,

所有f?x??x?2在?0,1?上不一致连续; (2)f??x???2x?3,当x???,1?时,

?3f??x???2x?2??3,

即f??x?在??,1?上有界,故f??x?在??,1?上一致连续. 对任意x1,x2???,1?,

f?x1??f?x2??1x12?1x22

?x1?x2xx2122x1?x2?2?3x1?x2,

由此,即得f?x?在??,1?上一致连续.

四.设0????,?为实参数,记f??x??x??x???.

证明 存在A?0,使得对任何???0,A?都存在??0,a?0,满足f??a???. 证明 由于当x?1,x??x??0,f??x??0, 对x??0,1?,有x??1?x?????0,

存在0?a1?a2?1,使得当x??a1,a2?时,x??x??0,

x?x?min??x??a1,a2?x???x???b?0,

取A?b3,则对任何???0,A?,

当x??a1,a2?,

f??x??x?x???b???b3?23b,

取??23b,对x??a1,a2?,都有f??a???.

?五.设p?0,讨论级数?n?1xnnp的敛散性.

解 设u?x??xnnp,

当x?0时,显然级数收敛, 当x?0时,由于limun?1?x?un?x??n??lim??x?xn??n?1??,

n??所以当x?1时,原级数绝对收敛, 当x?1时,原级数发散,

?当x??1时,由???1?n?1p1np收敛,

当x??1,p?1时,原级数条件收敛,

当x??1,p?1时原级数绝对收敛, 当x?1,p?1,原级数发散, 当x?1,p?1原级数绝对收敛.

六.设f?x?在?a,b?上有界,记f??x??max?f?x?,0?,f??x??max??f?x?,0?, 证明 f?x?在?a,b?上可积的充分必要条件是f??x?,f??x?在?a,b?上均可积,并且?f?x?dx?ab?baf??x?dx??abf??x?dx.

证明 必要性 设f?x?在?a,b?上可积,我们知道f?x?上可积,由

f??x??f?x??f?x?2,f??x??f?x??f2?x?

得 f??x?,f??x?在?a,b?上均可积, 显然f?x??f??x??f??x?, 所以?f?x?dx?ab?baf??x?dx??abf??x?dx;

充分性 设f??x?,f??x?在?a,b?上均可积, 由f?x??f??x??f??x?, 知f?x?在?a,b?上可积, 且?f?x?dx?ab?baf??x?dx??abf??x?dx.

七.设二元函数f?x,y?对x连续,对y连续且关于其中一个变元单调, 证明 它关于两个变元是混合连续的. 证明 不妨设f?x,y?关于y单增,

对于任意固定的?x0,y0?,由于f?x0,y?关于y连续, 对任意??0,存在?1?0,使得当y?y0??1时, 有f?x0,y??f?x0,y0???4,(1)

由于f?x,y0??1?,f?x,y0?,f?x,y0??1?关于x连续,

对于上述??0,存在?2?0,使得当x?x0??2时, 有f?x,y0??f?x0,y0??ff?4,

???x,y0??1??f?x0,y0??1??x,y0??1??f?x0,y0??1??4, ,

?4现对任意的?x,y?满足

x?x0??2, y?y0??1,

当y0?y?y0??1时,

f?x,y??f?x0,y0??f

?f?x,y??f?x,y0??x,y??f?x0,y0?

?f?x,y0??1??f?x,y0??f?x,y??f?x0,y0??f?x,y0??1??f?x0,y0??1??f?x0,y0??1??f?x0,y0? ?f?x0,y0??f?x,y0??f?x,y0??f?x0,y0?

??,

同理当y0??1?y?y0时f?x,y??f?x0,y0???, 于是得f?x,y?在?x0,y0?处连续, 结论得证.

八.设连续函数f?x?满足f?1??1,记F?t??2???2f?x?y?z22222?dxdydz,

x?y?z?t证明 F??t??4?. 证明 F?t???2?0d??d??f?r00t0?t2?r2sin?dr

?4??r2f?r2?dr,

F??t??4?tf?t22?,

F??1??4?f?1??4?.

九.称f?x?是凸函数,如果对任意的???0,1?,x,y?I,均有

f??x??1???y???f?x???1???f?y?,

(1)试着给出凸函数的几何解释;

(2)若f?x?是区间I上的凸函数,试讨论f?x?在I上的连续性质;

(3)若f?x?有下界,即存在常数M,使得对任何x,都有f?x??M,问f?x?是否有最小值?证明你的结论.

解(1)联结f图像上两点直线段总在这两点间f图像的上方. (2)对任意x1,x2,x3?I,满足x1?x2?x3,记

??x3?x2x,

3?x1而x2??x1??1???x3,

f?x2??f??x1??1???x3?

??f?x1???1???f?x3? ?x3?x2xf?xx11??x2?3?x1xf?x3?,

3?x1x3?x2xf?xx2?x1?x?x2x2?x12??,

3?x1x2??x33?xf1xf?x1??xf?x3?3?x13?x1x3?x2x(f?x2??f?x1?)?x2?x1x(f?x3??f?x2?),

3?x13?x1由此可得,

f?x2??f?x1??f?x3??f?x2?x2?x1x,

3?x2进而

f?x2??f?x1?fx3??f?x2??f?x3??f?x1?x2?x??1x3?x2x3?x;

1(3)对任意固定x0?(a,b),任取x1,x2,x4?(a,b),x4?x0?x1?x2 则有

f(x4)?f(x0)f(x1)?f(x0)f(x2)?f(x0)x4?x?0x1?x?0x2?x,

0则 F(x,x0)?f(x)?f(x0)x?x0,(x?x0),关于x单调递增,且有下界,于是存在右极限,

即f?'(x0)存在,同理可证f?'(x0)存在,由极限的保不等式性,可得f??(x0)?f??(x0) 。

于是f(x)在(a,b)内右导数存在,f(x)在(a,b)内左导数存在,且f??(x)?f??(x) 。

(4)对任意a?????b , ??x3?x1?x2?x4??,

f(x3)?f??x3????f?x1??f?x3?x1?x3?f?x2??f?x1?x2?x1?f?x4??f?x2?x4?x2?f(?)?f?x4???x4,

从而有

f??(?)?f?x2??f?x1?x2?x1?f??(?)

于是有

|f?x2??f?x1?|?L|x2?x1|,

即得f?x?在[?,?]上是Lipschitz连续的,从而f?x?在[?,?]上是连续,

故可得知f?x?在I内连续.

当I有端点时,f?x?在断点处未必连续. (5)f?x?未必有最小值, 例1 设f?x????1,2x?0?x,0?x?1,显然此函数在?0,1?上是凸函数,

但是f?x?在?0,1?上无最小值,f?x?在x?0处不连续. 例2 设f?x??1x,x??0,???,

f?x?在x??0,???上是凸函数,且有下界,

但是f?x??

1x在x??0,???上无最小值.

兰州大学2009年数学分析考研试题及解答

一.计算题

1.求limx?0??sint?0x0x232dt?.

?t?t?sint?dt2x?sinx2解 原式?limx?0?32?x?x?sinx?2??x?3

?limx?0?x?sinx

?12xsinx ?limx?0x2?6x2?1?cosx32?lim?x?0??12

2注:limx?0??sint?0x0dt??t?t?sint?dt?12,lim?x?0??sint?0x0x32dt??12

?t?t?sint?dt2.求?arctanxdx. 解 原式?xarctanx??111?x21?1x?12?xdx

?xarctanx? ?xarctanx?dx ?21?xx21?21?yy2dy y??x?

?xarctanx?y?arctany?C ??x?1?arctanx?y?C. 3.计算?dx?12xx1yyyedy??x?42dx?2x1yedy.

?x解 原式? ??21221dy?1yedx

?x??y?1?e?y?ydy

?2 ???ye?21??2e?e.

?1

4.求抛物线y2?4x与它在?1,2?处的法线所围成的有限区域的面积. 解 在?1,2?处,

dydxx?1dydx?2y,

k??1,

法线的斜率为?1,

设法线方程为y?2???x?1?,x?3?y, 法线与抛物线交于?1,2?,?9,?6?, 于是所求的面积

S??2?6dy?y243?y2?y?dx???3?y??dy ?64??223?12y? ??3y?y??212??

?6?3?8?12???32??1?24?16?563??1264?224

3.

n?15.求幂级数???1?n?1x2n?1n2n?1的收敛域与和函数.

解 设un?x????1?xn,

un?1?x?un?x??n?22?lim?x?x?n???n?1?当x?0时,由于lim,

n??当x?1时,原幂级数绝对收敛,

?当x??1时,?n?1???1?nn为条件收敛,

当x?1时,?n?1??1?nn?1为条件收敛,

当x?1时,原幂级数发散,

?S?x?????1?n?1n?1x2n?1n??2x????1?n?1n?1x2n2n

??2x2x?x0x0??n2n?1??1t?????dt ?n?1???dt? ???n1??2????t?t?n?1

??2x?1x1xx01?dt 2t1?txt2 ?? ???2t1?t20dt

ln?1?t2?x0??ln?1?xx2?,?x?1?.

limln?1?xx2?2x?lim1?xx?01L2x?0?0.

6.计算曲线积分??exsiny?b?x?y??dx??excosy?ax?dy,其中L是从?2a,0?沿着曲线y?2ax?x2到点?0,0?的一段. 解 记P?exsiny?b?x?y?,Q?excosy?ax, 则

?P?y?ecosy?b,

x?Q?x?ecosy?ax,于是

?Q?x??P?y?b?a,

曲线y?2ax?x2,即

x?2ax?y?0,y?0,

22?x?a?D?2?y?a22,y?0,

2??x,y?:?x?a??y?a,y?0,

22?由Green公式 原曲线积分????b?a?dxdy?D???bx?dx

022a ??b?a???a2?b?2a?

2211 ????4?ab??a232n??.

二.证明:limsinn不存在. 证明 由于区间??2k????4,2k???3??,k?0,1,2,??长度为?1,而存在整数 ?4?2??3???; nk??2k??,2k???44??同理存在mk??2k??, ,2k???44??假若limsinn?a存在,

n???5?7??则有limsinnk?a,limsinmk?a,

k??k??由于

2222?sinnk?1,?1?sinmk??22,

从而?a?1,?1?a??22,

这是矛盾的, 所以limsinn不存在.

n??三.设函数f:?a,b???a,b?,满足f?x??f?y??Lx?y,任意x,y??a,b?其中

L?,?为正常数.

证明 (1)当??1时,f?x?恒为常数;

(2)当L?1,??1,存在唯一的???a,b?,使得f?????. 证明 (1)当??1时, 由0?f?y??f?x?y?x?Ly?x??1?0,?y?x?,

知f??x??0,?x??a,b?,于是f?x?恒为常数; (2)显然f?x?连续,又a?f?x??b,

存在???a,b?,使得f?????, 下证唯一性.

设???a,b?,也满足f?????, 则????f????f????L???, 由于0?L?1, 所以????0,???,

故存在唯一的???a,b?,使得f?????.

四.设f?x?是区间I上的有界函数,证明f?x?在区间I上一致连续的充分必要条件是对任给的??0,总存在正数

fM,使得当x,y?I,x?y,且

?y??f??xy?x?M时,就有f?y??f?x???.

证明 充分性 用反证法.

假若f?x?在区间I上不一致连续,则存在?0?0,存在?xn?,?yn??I, 使得xn?yn?即有

f?xn??fxn?yn1n,但f?xn??f?yn???0,

?n?0,

?0,只需要n充分大,

?yn??02由假设条件,对

就有f?xn??f?yn??矛盾

?02,

所以f?x?在区间I上一致连续; 必要性 设f?x?在区间I上一致连续, 用反证法若结论不成立,

则存在?0?0,对任意正整数n,存在?xn?,?yn??I, 使得

f?xn??fxn?yn?yn??n,

但f?xn??f?yn???0. 即有xn?yn?2Mn?,??M?supf?x??, ?x?I?这与f一致连续矛盾.

注:对函数f?x??C,或者f?x??x,显然在I上一致连续,不成立必要性的结论,反证法中的?xn?,?yn?不存在,所以此题应只有充分性,应无必要性. 五.设f:R2?R2是连续映射,若对R2中任何有界闭集K,f?1?K?均是有界的,证明f?R2?是闭集.

证明 设y是f?R2?的任意一个极限点, 则存在?xn??R2, 使得limf?xn??y,

n??而集合A??f?xn?:n?1,2,????y?,

作为R2中的有界闭集(有界是因为极限存在,而闭性是由于极限唯一) 其原像f?1?A?是有界的, 现因xn?f?1?A?, 所以?xn?是有界的,

由Weierstrass聚点定理,存在子列?xn?及x?R2,

k使得limxn?x,

k??k由f得连续性,limf?xnk??k??f?x??y,

所以y?f?x??f?R2?, 故f?R2?是闭集. 六.证明二元函数f?x,y??但在点?0,0?处不可微.

xy在点?0,0?处连续,fx?0,0?,fy?0,0?存在

证明(1)显然limf?x,y??0?f?0,0?,

x?0y?0所以f?x,y?在点?0,0?处连续, 由

f?x,0??f?0,0?x?0,

f?0,y??f?0,0?y?0,

知fx?0,0??0,fy?0,0??0,

?R??x,?y??f??x,?y????f?0,0??fx?0,0??x?fy?0,0??y?

?2?x?y,

2当??x????y??0时,

R??x,?y???x?y??x?2???y?2??x?2???y?2不存在极限,

所以f?x,y?在?0,0?处不可微.

?七.设f?x???n?112?xn,

证明(1)f?x?在?0,???上可导,且一致连续; (2)反常积分???0f?x?dx发散.

12?xn证明 (1)记un?x??对任意x??0,???,

0?un?x???,

12n,

所以?un?x?在?0,???一致收敛,

n?1?f?x???n?112?xn在?0,???上连续,

对x1,x2??0,???,

f?x1??f?x2???11???n?n?2?x2?x2?n?1?1?

? ??n?1?1?2nn?x1??2?x2?nx1?x2

??n?1122nx1?x2

?13x1?x2,

由此既得f?x?在?0,???一致连续;

??x???un1??x??,un122n?2n?x?2?14n,

?u??x?在?0,???上一致收敛,

nn?1???于是f?x?在?0,???连续可导,且f??x??(2)由于,f??x??0,

?n?1??x????unn?11?2n?x?2.

?22kk?1f?x?dx??2?k?12k?n12?x1dxkdx

n?1 ? ? ??22k?22kk?12?xkk

k?112?2k?214?2?

2k?1k2?2?,?k?1,

所以?k?1?k?1f?x?dx发散,

故???0f?x?dx发散.

本文来源:https://www.bwwdw.com/article/49xa.html

Top