在圆锥曲线中的几何图形的面积问题

更新时间:2023-04-09 12:15:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

在圆锥曲线中的几何图形的面积问题(四)

在圆锥曲线中,经常要求最值问题:常常会平面图形的面积问题。我们要分析图形的面积的变化是什么量引起的?我们根据变化的量来建立等量关系,尽量化简变成了两个变量之间的函数关系。我们借助函数来求最值,可以是二次函数法、可以是导数法。若不能变成函数的关系,我们利用方程的几何意义来求最值,我们借助圆锥曲线和直线与圆的知识来解决。我们也可借助参数,把问题变成以“角”为参变量的参数方程,我们借助三角函数的知识来求最值问题。若方程中含有三个变量时,我们可虑有均值不等式法来求最值。在寻找等量关系之间时,恰当地利用原圆锥曲线的性质:变量的取值范围、利用图像的对称性,利用圆锥曲线的参数方程等等知识。

在圆锥曲线中,我们经常求圆中的有关三角形的面积时,通常我们要选择圆心到弦的距离为参数来进行寻找等量关系,便于我们整体思想来化简问题,简化问题,便于我们解决问题。

例4已知椭圆13

42

2=+y x , 直线x t =(0t >)与曲线E 交于不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C .若圆C 与y 轴相交于不同的两点,A B ,求ABC ?的面积的最大值.

)解法1:依题意,圆心为(,0)(02)C t t <<.

由22,1,43x t x y =???+=??

得221234t y -=. ∴ 圆C

的半径为r =. ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,

0t <<

,即07

t <<. ∴

弦长||AB === ∴ABC ?

的面积12S =

?

)2127

t =

- )22

1272

t +-≤

=

=,即

t =. ∴ ABC ?的面积的最大值为7

. 解法2:依题意,圆心为(,0)(02)C t t <<.

由22,1,43

x t x y =???+=?? 得221234t

y -=. ∴ 圆C 的半径为2

r =. ∴ 圆C 的方程为2

22

123()4t x t y --+=. ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C

到y 轴的距离d t =,

02t <<,即07

t <<. 在圆C 的方程2

22

123()4t x t y

--+=中,令0x =,得

y = ∴ 弦长||AB =

∴ABC ?

的面积12S =

?

)2127

t =

- )22

1272

t +-≤

7=.

=,即7t

=时,等号成立. ∴ ABC ?.

本文来源:https://www.bwwdw.com/article/49bl.html

Top