初中证明题
更新时间:2023-03-31 10:50:01 阅读量: 高中教案 文档下载
第1篇:初中数学证明题
1.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.
2.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC。求证:AE=BE。
.3.如图,△ABC中,AD
平分∠BAC,BP⊥AD于P,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB。
B 图1 P B C
4.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.
图
15.点D、E在△ABC的边BC上,AB=AC,AD=AE 求证:BD=CE
6.△ABC中,AB=AC,PB=PC.求证:AD⊥
BC A B D E C
7.已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:
HB=HC
8 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰三角
形.9.如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,
直线BM、CN交于点F。
(1) 求证:AN=BM;
(2) 求证:△CEF是等边三角形
A
10 如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD
的中线,CF
平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.
11.如图:Rt△ABC
中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.
12.已知:如图,△BDE是等边三角形,
A在BE延长线上,C在BD的延长线上,且AD=AC。求证:DE+DC=AE。
13.已知ΔACF
≌ΔDBE,∠E =∠F,AD = 9cm,BC = 5cm;求AB的长.
第2篇:初中几何证明题
(1) 如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:
证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则⊿AEC∽⊿ADB,AE/AD=AC/AB;
又∠EAD=∠CAB,则⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.
∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)
连接DG,EG.点G为BC的中点,则DG=BC/2;(直角三角形斜边的中线等于斜边的一半) 同理可证:EG=BC/2.故DG=EG.
又F为DE的中点,则FG⊥DE.(等腰三角形底边的中线也是底边的高)-----------------(2) 所以,AO∥FG.
(2) 已知梯形ABCD中,对角线AC与腰BC相等,M是底边AB的中点,L是边DA延长线上一点连接LM并延长交对角线BD于N点
延长LM至E,使LM=ME。
∵AM=MB,LM=ME,∴ALBE是平行四边形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。
延长CN交AB于F,令LC与AB的交点为G。。
∵AB是梯形ABCD的底边,∴BF∥CD,∴CN/FN=DN/BN。
由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。
由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。
由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,
∴∠ALG=∠BEF,结合证得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。
∵AC=BC,∴∠CAG=∠CBF,结合证得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。
(3) 如图,三角形ABC中,D,E分别在边AB,AC上且BD=CE,F,G分别为BE,CD的中点,直线FG交
AB于P,交AC于Q.求证:AP=AQ
取BC中点为H
连接HF,HG并分别延长交AB于M点,交AC于N点
由于H,F均为中点
易得:
HM‖AC,HN‖AB
HF=CE/2,HG=BD/
2得到:
∠BMH=∠A
∠CNH=∠A
又:BD=CE
于是得:
HF=HG
在△HFG中即得:
∠HFG=∠HGF
即:∠PFM=∠QGN
于是在△PFM中得:
∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN
在△QNG中得:
∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN
即证得:
∠APQ=∠AQP
在△APQ中易得到: AP=AQ
(4) ABCD为圆内接凸四边形,取△DAB,△ABC,△BCD,△CDA的内心O,O,O,O.求证:OOOO为矩形. 123
41234
已知锐角三角形ABC的外接圆O,过B,C作圆的切线交于E,连结AE,M为BC的中点。求证角BAM=角EAC。
设点O为△ABC外接圆圆心,连接OP;
则O、E、M三点共线,都在线段BC的垂直平分线上。
设AM和圆O相交于点Q,连接OQ、OB。
由切割线定理,得:MB2 = Q·MA ;
由射影定理,可得:MB2 = ME·MO ;
∴MQ·MA = ME·MO ,
即MQ∶MO = ME∶MA ;
又∵ ∠OMQ = ∠AME ,
∴△OMQ ∽ △AME ,
可得:∠MOQ = ∠MAE 。
设OM和圆O相交于点D,连接AD。
∵弧BD = 弧CD ,
∴∠BAD = ∠CAD 。
∵∠DAQ = (1/2)∠MOQ = (1/2)∠MAE ,
∴∠DAE = ∠MAE∠DAE = ∠CAD - ∠DAQ = ∠CAM 。
设AD、BE、CF是△ABC的高线,则△DEF称为△ABC的垂足三角形,证明这些高线平分垂足三角形的内角或外角 设交点为O,
OE⊥EC,OD⊥DC,
则CDOE四点共圆,
由圆周角定理,
∠ODE=∠OCE。
CF⊥FC,AD⊥DC,
则ACDF四点共圆,
由圆周角定理,
∠ADF=∠ACF=∠OCE=∠ODE,
AD平分∠EDF。
其他同理。
平行四边形内有一点P,满足角PAB=角PCB,求证:角PBA=角PDA
过P作PH//DA,使PH=AD,连结AH、BH
∴四边形AHPD是平行四边形
∴∠PHA=∠PDA,HP//=AD
∵四边形ABCD是平行四边形
∴AD//=BC
∴HP//=BC
∴四边形PHBC是平行四边形
∴∠PHB=∠PCB
又∠PAB=∠PCB
∴∠PAB=∠PHB
∴A、H、B、P四点共圆
∴∠PHA=∠PBA
∴∠PBA=∠PDA
补充:
补充:
把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,
若能证明其顶角相等,从而即可肯定这四点共圆.
已知点o为三角型ABC在平面内的一点,且向量OA2+BC2=OB2+CA2=OC2+AB2,,则O为三角型ABC的()
只说左边2式子 其他一样
OA2+BC2=OB2+CA2 移项后平方差公式可得
(OA+OB)(OA-OB)=(CA+BC)(CA-BC)化简
得 BA(OA+OB)=BA(CA-BC)
移项并合并得BA(OA+OB+BC-CA)=0
即 BA*2OC=0 所以BA和OC垂直
同理AC垂直BO BC垂直AO哈哈啊是垂心
设H是△ABC的垂心,求证:AH2+BC2=HB2+AC2=HC2+AB2.
作△ABC的外接圆及直径AP.连接BP.高AD的延长线交外接圆于G,连接CG. 易证∠HCB=∠BCG,
从而△HCD≌△GCD.
故CH=GC.
又显然有∠BAP=∠DAC,
从而GC=BP.
从而又有CH2+AB2=BP2+AB2=AP2=4R2.
同理可证AH2+BC2=BH2+AC2=4R2.
第3篇:初中几何证明题
初中几何证明题
己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。
求证:BD+CE≥DE。
1.延长EM至F,使MF=EM,连BF.
∵BM=CM,∠BMF=∠CME,
∴△BFM≌△CEM(SAS),
∴BF=CE,
又DM⊥EM,MF=EM,
∴DE=DF
而∠DBF=∠ABC+∠MBF=∠ABC+∠ACB
∴BD+BF>DF,
∴BD+CE>DE。
2.
己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。
求证:BD+CE≥DE
如图
过点C作AB的平行线,交DM的延长线于点F;连接EF
因为CF//AB
所以,∠B=∠FCM
已知M为BC中点,所以BM=CM
又,∠BMD=∠CMF
所以,△BMD≌△CMF(ASA)
所以,BD=CF
那么,BD+CE=CF+CE……………………………………………(1)
且,DM=FM
而,EM⊥DM
所以,EM为线段DF的中垂线
所以,DE=EF
在△CEF中,很明显有CE+CF>EF………………………………(2)
所以,BD+CE>DE
当点D与点B重合,或者点E与点C重合时,仍然采用上述方法,可以得到BD+CE=DE
综上就有:BD+CE≥DE。
3.
证明因为∠DME=90°,∠BMD
截取BF=BC/2=BM=CM。连结DF,EF。
易证△BMD≌△FMD,△CME≌△FME
所以BD=DF,CE=EF。
在△DFE中,DF+EF≥DE,即BD+CE≥DE。
当F点落在DE时取等号。
另证
延长EM到F使MF=ME,连结DF,BF。
∵MB=MC,∠BMF=∠CME,
∴△MBF≌△MCE,∴BF=CE,DF=DE,
在三角形BDF中,BD+BF≥DF,
即BD+CE≥DE。
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
第4篇:初中平面几何证明题
九年级数学练习题
1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG
求证:S△ABC?S△
AEG
2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:EG=2AO
3.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H
求证:AH⊥
BC
4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O
求证:O为EG的中点
5.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:
(1)BE=CG
(2)BE⊥CG
6.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 作FM⊥BC,交CB的延长线于点M,作DN⊥BC,交BC的延长线于点N
求证:FM+DN=BC
7.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG、FD O是FD中点,OP⊥BC于点P
求证:BC=2OP
8.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点
求证:四边形MNPQ是正方形
正在阅读:
初中证明题03-31
福建省莆田第八中学高中政治 第一单元 第1课 第2框《文化与经济04-19
小学二年级数学上册期末试卷101-02
功图法油井计量技术12-04
教学案例分析02-26
第一次上台比赛作文400字06-29
新陶家都市工业园3-112-13
人在囧途的观后感04-01
人教版三年级下册数学教学计划及单元计划05-25