高三总复习 解三角形教案

更新时间:2024-01-21 23:00:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高三总复习 解三角形教学设计

大方三中 余学敏

(一)课标要求

1、通过题型设计,培养学生对这类题的解题思路与技巧 2、解题过程中规范学生答题

3、培养学生用解三角形的思想解决生活中的问题 (二)三维目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的应用方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过对问题题设的分析,得出合理的解题方法。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点:培养学生正解的解题思维

●教学难点:正确使用符号与逻辑语言表达解题过程 ●教学方法:引导式,参与式与对比教学相结合

(三)教学过程 一、考情分析

本知识点近五年考查情况如下

2009年 选择题第4,解答题第18题 共17分 2010年 解答题第17 共10分 2011年 解答题第18 共12分 2012年 解答题第17 共12分 2013年 选择题第4 共5分 思考:根据近几年的考查情况,你有什么想法? 二、2014年考纲要求

能用正余弦定理解决三角形的度量问题,能用与三角形有关的知识解决三角形的测量和几何计算问题。 三、学习目标要求

1、 识记三角形的有关知识 2、 正确判断考查题型

3、 总结相关题型的解题方法与技巧 4、 规范答题过

四、归纳与三角形有关的知识点(可网上查找) 1、 三角形的角角关系:

2、 角形的边边关系:

3、 三角形的分类及判断方法:

4、 三角形的周长与面积计算法:

5、 与三角形有关的定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

asinA?bsinB?csinC=2R

余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 a2?b2?c2?2bccosA b2?a2?c2?2accosB c2?a2?b2?2abcosC

五、关注题型,提高应用 一、选择题

1、已知△ABC中,

,

,

,那么角A等于 ( )

A.135° B.90° C.45° D.30°

2、若2x,2x+1,3x+3是钝角三角形的三边,则实数x的取值范围是 ( ) A.

B.

C. D.

,则∠C=( )

3、若△ABC的内角A,B,C所对的边分别为a,b,c,且

A.4、在

B. C. D.

,则

的形状是( )

中,角A,B均为锐角,且

A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形

5、在△ABC中,角A、B、C的对边分别为状为( )

、、,若=,则△ABC的形

A、正三角形 B、直角三角形 C、等腰三角形或直角三角形 D、等腰直角三角形

6、设则

是的重心,且,

的大小为( )

A.45 B.60 C.30 D.15

二、填空题

7、为椭圆

的面积

上的点,是其两个焦点,若,则

是 .

8、在△△

中,的面积为

为边上一点,,则∠

=________.

,=2.若

三、简答题

9、在(1)求角

中,角;

所对的边分别为且.

(2)已知

,求的值.

10、已知a,b,c分别为△ABC三个内角A,B,C的对边,(Ⅰ)求A;

(Ⅱ)若a=2,△ABC的面积为

,求b,c的值.

为,的等差中项.

11、已知△ABC的面积为1,tanB=,tanC=-2,求△ABC的各边长及tanA.

12、在锐角△ABC中,cos B+cos (A-C)=(Ⅰ) 求角A的大小;

(Ⅱ) 当BC=2时,求△ABC面积的最大值.

sin C.

真题回顾

1、(06—17)(12分)在长; (2)若点

2、(07—18)(12分)在周长为

.(1)求函数

中,已知内角

,边

.设内角的最大值. . (Ⅰ)求

,求(1)

的解析式和定义域;(2)求中,

,求

的面积. ,则

3、(08—17)(10分)在的值;(Ⅱ)设

4、(09)已知△ABC中,

(A) (B) (C) (D)

5、(09—18)(12分)设△ABC的内角A、B、C的对边长分别为a、b、c,

,

6、(10—17)(10分)

中,

,求B.

为边上的一点,,,

,求。

7、(11—18)(l2分)△ABC的内角A、B、C的对边分别为a、b、c.己知

. (Ⅰ)求B;(Ⅱ)若

8(2012课标全国Ⅱ).已知a,b,c分别为△ABC三个内角A,B,C的对边,c = asinC-ccosA (1) 求A

(2) 若a=2,△ABC的面积为,求b,c

9.(2013课标全国Ⅱ,文4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,,

,则△ABC的面积为( ). A.

参考答案 一、选择题

1、C 2、B 3、C 4、C 5、B 6、B

B. C. D.

二、填空题

7、

8、

三、简答题

9、解:(1) 在中,

.

(2)由余弦定理

又则

......................10

解得:

10、解:(Ⅰ)∵

....................................................12分 ,

的等差中项,

∵,∴A=.

(Ⅱ)△ABC的面积S=

2

2

2

bcsinA=

2

2

,故bc=4.

而a=b+c-2bccosA,故b+c=8. 解得b=c=2.

11、解:tanA=tan[

-(B+C)]=-tan(B+C)

=-

∵tanB=.0

又tanC=-2,

sinC=,cosC=- sinA=sin(B+C)=sinBcosC+cosBsinC

=×(-)+×=.

∵.∴

又S

=

解得.

于是.c=.

12、 (Ⅰ) 解:因为cos B+cos (A-C)=所以-cos (A+C)+cos (A-C)=2sin A sin C=

sinC,

sin C,

sin C,得

故sin A=.

因为△ABC为锐角三角形,

所以A=60°.………………………………………7分 (Ⅱ) 解:设角A,B,C所对的边分别为a,b,c. 由题意知 a=2, 由余弦定理得

4=b+c-2bccos60°=b+c-bc≥bc,

2

2

2

2

所以△ABC面积=bcsin60°≤,

且当△ABC为等边三角形时取等号, 所以△ABC面积的最大值为

. ………………………14分

本文来源:https://www.bwwdw.com/article/47ro.html

微信扫码分享

《高三总复习 解三角形教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文
范文搜索
下载文档
Top