利用中国股市历史数据建立上证综合指数的预测模型并进行模型验证与股指预测

更新时间:2023-11-22 16:54:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

利用中国股市历史数据建立上证综合指数的预测模型并进行模型验

证与股指预测

[摘要]本模型采用SVM神经网络算法对2007年的股票形势进行分析、预测及验证,并预测出未来5天的开盘走势,此预测模型的精度达到99%。并结合小波神经网络对其中特殊的国家政策及经济情况分析拟合,使模型更加符合实际的股指走势。将两种算法取长补短,在2012年上半年的股指进行分析预测的基础上,对未来可能出现的经济干扰模型进行预估,预测出未来股指走势。

运用GUI界面将建立的模型输出,使仿真模型更有操作性,运用此界面,选取不同的干扰模型及年份,预测出更合理的股指走势,预测真实可靠。

【关键词】SVM算法;小波神经网络;股指预测;经济干扰模型;GUI界面

一、简介

1.研究的意义及目的

21世纪进入信息时代,随着大家生活水平的提高,股票自然而然也成为了一部分人的娱乐方式,甚至有人成为职业炒股。股票和股票市场对国家企业的经济发展起到了积极的作用,如可以为投资者开拓投资渠道,增强投资的流动性和灵活性等。但股票价格的形成机制是颇为复杂的,股票价格既受到多种因素,同时股票市场是国民经济的“晴雨表”和“报警器”,其作用不仅被政府所重视,更受到广大投资者的关注。对股票投资者来说,未来股价变化趋势预测越准确,对利润的获取及风险的规避就越有把握。因此对股票内在性质及预测的研究,帮助投资者掌握投资的方法,使投资者能更好的预测和分析股市,选择股票进行投资,优化组合投资,降低投资风险,获得最大收益,具有重大的理论意义和诱人的应用前景。

2.股票市场研究现状

国内在股票的趋势走向预测中使用了很多数学方法,比如:神经网络、模糊神经网络、数据挖掘技术以及灰色预测等等。其中有的比较好的方法的准确程度比较高,可是这些建立的模型有的所需要的样本太多,有的对于结果的预测不是非常准确。另外由于股票中的影响因素非常多,单一的用一种方法很难有非常高的准确度。以灰色预测方法为例,它只能在近期内的股票的走势作出预测,假如从长远角度来看,它就需要一些适当的改进和完善。并且对于连续型的数据,要想做相关分析是比较困难的,即使将数据离散化,得到的关联规则也很难找到实际意义。

二、预测及验证部分算法模型

本文来源:https://www.bwwdw.com/article/46pv.html

Top