节能型走廊清扫机的设计

更新时间:2023-11-11 20:10:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

优秀本科毕业设计(论文)

摘要

本文所设计的是用于走廊清扫的清扫机。能源装置通过传动系统将运动传给两侧的盘形刷,使其分别作顺时针和逆时针转动,将两侧的垃圾扫到中间,传给中间的滚刷。然后,再由滚刷将垃圾扫入垃圾箱内实现清扫功能。此设备属中小型清扫工具,可以对各种大小的垃圾进行清理,两侧的清扫刷可方便的清扫墙角及靠近障碍物的地方。

本课题研究中,通过查阅搜集大量资料,对不同清扫设备进行分析对比最终确定出一种较为理想的走廊清扫机的设计方案,然后根据已定方案进行了具体结构的设计计算,并使该设备的结构更加紧凑可靠。确定出各个机构零部件的尺寸及型号后,并对其进行了校核以保证其能够满足设计要求。由于该设备的零部件相对比较普通易于制造,因此该设备的制造成本较低,是一种较为理想的经济实用的走廊清扫工具。 关键词:清扫机;盘形刷;滚刷;制造成本

答辩无忧,值得下载!

优秀本科毕业设计(论文)

ABSTRACT

The corridor sweeping equipment is designed in this work. The energy installmen tpasses the movement to brush discs in both sides through the transmission system and makes their separately clockwise and the anti-clockwise rotation. They sweep both sides trash together, and pass it to middle rolls brushes. Then, rolls brushes again sweep trash into the trashcan to realize the function of clear sweeping. This equipment is the medium and small sweeper, which can carry on the cleaning to each kind of trash. Both brushes can facilitate to sweep the wall corner and the near obstacle clearly.

In this article, massive materials can be collected. One more ideal corridor sweeper design proposal has been determined by analysis and comparison of the different scavenging arrangement. Then the concrete structure design calculation can be made according to this plan. The structure of this equipment can be made more compacted. The strength of all parts are calculated, and they all guarantee the request of design. Because the parts of equipment can be made quite easily, and the production cost is quite low, it is one more ideal economical practical corridor sweeper.

Key Words: Sweeper; Disc brushes; Rolls brushes; Production cost

答辩无忧,值得下载!

优秀本科毕业设计(论文)

目 录

摘要·········································································································Ⅰ ABSTRACT······························································································Ⅱ 目 录··········································································································Ⅲ 第1章 前言······························································································1

1.1 清扫机的现状和发展前景··········································································1 1.2 清扫设备的概述···························································································2 1.2.1 清扫设备的分类··················································································2 1.2.2 我国清扫机械的发展趋势··································································2 1.2.3 发现的问题和解决途径······································································3 1.3 课题需要完成的任务···················································································4 1.3.1 设计主要内容······················································································4 1.3.2 设计工作基本要求··············································································4

第2章 总体方案设计·············································································6

2.1 设计主要技术要求·······················································································6 2.2 总体方案的确定···························································································6

第3章 动力装置的确定········································································10

3.1 蓄电池的选择·····························································································10 3.2 电动机的选择····························································································11 第4章 清扫机的结构设计····································································13

4.1 传动比的分配···························································································13 4.2 带轮的选择设计·······················································································14

4.2.1 主轴带轮的设计计算·······································································14 4.2.2 Ⅰ—Ⅱ轴带轮的设计计算·······························································18 4.2.3 Ⅲ—Ⅳ轴的带轮设计·······································································21 4.3 主轴的设计计算························································································22

答辩无忧,值得下载!

优秀本科毕业设计(论文)

4.3.1 主轴的结构设计············································································22 4.3.2 轴的校核·························································································24 4.3.3 键的校核·························································································27 4.4 锥齿轮的计算······························································································27

4.4.1 锥齿轮的计算···················································································27

4.4.2 锥齿轮的校核计算··········································································32 4.5 车架的设计计算·························································································33

结论············································································································35 参考文献····································································································36 致谢············································································································37 附件1·········································································································38 附件2·········································································································49

答辩无忧,值得下载!

优秀本科毕业设计(论文)

第1章 前 言

1.1清扫工具的现状和发展前景

从20世纪60 年代我国研制生产路面清扫机械开始(指大型清扫机的研制),已有40 多年的生产历史,然而中小型清扫机的研制开发则刚刚起步。相对于发达国家,我国地面清扫机在销售规模、技术水平、清扫效果等方面都存在一定的差距。 随着公共环境卫生、工厂清洁机械市场的迅猛发展,2005 年之后,国内地面清扫机开始呈现快速发展的态势。但与国外相比,国内还停留在市场的初级发展阶段。

我国已逐步进入现代化社会,陈旧、落后的清扫方式及设备,已不能满足社会进步的需要。对于自动化扫地器具,人们常见的是马路上的扫地车,它能进行大面积街道清扫、工作效率高,并且节约人力。然而,小面积区域的清扫工具还主要沿用传统手工扫地工具:扫帚,工作效率低、清扫效果不够理想、浪费人力资源。而工作效率高的省时省力的庞然大物扫地车在比如厂区、居住小区、机关、学校、医院、小街小巷、走廊等场所,确是英雄无用武之地。随着现代生活节奏的加快及居住面积的增大,家居地面的清扫工作也越来越繁重,严重干扰了人们的生活。因此急需开发一种成本低、节约人力物力、清扫效果良好的适应院落、小区、小巷、走廊等小区域场所的小型清扫设备。

目前,许多国家研制的清洁机器人应时而生。日本,美国,欧洲各大厂商竞相开发,有些产品甚至很超前。例如,有一种具有高效吸尘除灰功能的清洁机器人,可遥控也可自主运作,能转向,躲避障碍物,有很高的实用价值,可对家居、厂矿企业等地面进行清洁,帮助人们从繁杂的劳动中解放出来。在国外清洁设备的拥有率和洗衣机几乎相当,甚至要高(有公用洗衣房,专业洗衣店的缘故)。在这方面,国内的研发步伐较慢,但是随着国家城市化的进程不断加大和经济的发展,许多新兴的中小城市正在崛起,城市化规模不断扩大,现代化的工厂不断建成,机关、小区、医院、学校和公共场不断建设机械化清扫已经成为一种必然,地面的清洁养护及工厂清洁生产已经越来越重要。劳动力成本的不断提高,清扫设备的市场前景日渐看好。

由于人们对环境污染问题越来越重视,燃油车在很大程度上受到限制。政府大力提倡绿色能源设备。近日国家出台燃油含税的政策,给电动扫地车带来福音。小型清扫设备因其实用性强、 垃圾清扫率高 、污染小、成本底、结构紧凑、操作简单、维修方便等特点具有广泛的市场前景和实用价值,它的出现和使用,将极大减轻人们繁琐的家务劳动,节省宝贵的时间,提高了人们的生活质量。小型清扫设备现在正是一个高速发展的时期,有着极其广阔的发展空。

答辩无忧,值得下载!

本文来源:https://www.bwwdw.com/article/45kv.html

Top